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What is statistical physics?

• Statistical physics investigates how the collective behavior of a large 
number of microscopic interacting particles gives rise to macroscopic 
phenomena

• Examples: gases, magnets, ....

• Not only in the physical domain, but also in the social domain

many nontrivial regularities emerge out of apparently of erratic behavior.
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Regularities in social systems

• patterns in price fluctuations in finance
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Regularities in social systems

• the network structure of the internet
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Locally clustered structure
Long range connections
Degree heterogeneity

Self-organization is the key point



Data revolution

• Huge amount of data available: enormous databases collect data about 
many human/social activities (credit cards, phone calls, marketing data, 
activity on the internet).

• Computers make the analysis of these data possible.

• Entire new social phenomena started in the past few decades: internet, 
electronic financial markets, mobile telephones, etc.
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Data-driven Computational Social Science
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Opinion/consensus dynamics

Starting from a random initial state

what is the effect of repeated interactions?

Ingredients:

• type of opinions (discrete/continuous,...)

• type of interactions

• connectivity patterns

• ...... 

Questions:

• Is consensus reached? 

• What type of consensus?

• How many interactions are needed?
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Consensus dynamics



Consensus dynamics



“Cultural” dynamics

“If people tend to become more alike in their beliefs, attitudes and 
behaviors when they interact, why do not all differences disappear?”

R. Axelrod, J. of Conflict Resolut., 41, 203 (1997).

“Culture” is a set of several coupled features (variables).

Two basic ingredients:

• Social Influence: interactions make individuals more similar

• Homophily: Likeliness of interactions grows with similarity

10



Fragmentation-consensus transition

The evolution depends on the number q of traits in the initial state
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small q =
low initial
variability

large q =
high initial
variability



The Naming Game



The Naming Game

How does a shared vocabulary arise among agents in a self-organized way?

Shared vocabulary = shared mapping between words and meanings.

Agents develop privately their

own vocabulary

Agents interact and vocabulary alignment is beneficial 

(mutual understanding)
13

Steels (1999)



negotiation + memory + dynamic inventories 

The Naming Game

 [1] Baronchelli et al. J. Stat. Mech. P06014 (2006) 



N

1N/2

Invention

Building of correlations

Convergence

Nw(t) = total number of words

Nd(t) = number of different words

S(t) = interaction success rate



The Category Game



The category game

A. Puglisi, A. Baronchelli and VL
“Cultural route to the emergence of linguistic categories”

Proc. Natl. Acad. Sci USA (PNAS) 105, 7936 (2008).

N individuals performing binary language games
Individual task: discriminate stimuli from a continuous [0:1] perceptual space

Real values on the interval  [0, 1]

dmin
the minimum distance 
between two stimuli that can 
be distinguished by agents



N=50, d_min=0.01

N=50, d_min=0.02

Evolution of Linguistic Categories



Comparison with 
real data



World color survey (WCS)

110 “preindustrialized” languages
24 “monolingual” speakers

speakers were asked to:
1. name each of the 330 munsell chips
2. indicate the best example(s) of each of his basic color terms



Basic Color Terms name all the colors:

English (11 words)

Blue
Purple

Pink
yellow

Brown

Green
Orange

White

Black

Gray

Red

Courtesy of Lindsey & Brown (2006). PNAS, 102.



testing universality of color naming

Paul Kay and Terry Regier
“Resolving the question of color naming universals”

Proc. Natl. Acad. Sci USA (PNAS) 100, 9085 (2003).

(either real or hypothetical), we found the closest term c* in each
language l* in the BK data set and added up those distances to
obtain the sum S.

S ! !
l!WCS,
l*!BK

!
c!l

min
c*!l*

distance!c, c*". [2]

Comparing the value for S observed in the WCS data set to the
distribution of values obtained in 1,000 hypothetical randomiza-
tions of that data set, Fig. 3b shows that the value of S for the
actual WCS data is well below the lower limit of the hypothetical
distribution. Thus, the WCS data are significantly closer to the
BK data than expected by chance, P # 0.001. We then removed
from the BK data set the only unwritten languages of nonin-
dustrialized societies in that data set (Ibibio, Pomo, and Tzeltal),
reran this test, and obtained the same qualitative result, P #
0.001. This finding indicates a similarity in color naming across
languages of industrialized and nonindustrialized societies.

These universal tendencies are shown in Fig. 4a. The floor
plane of this display corresponds to the 320 chromatic (non-
neutral) colors in the stimulus array of Fig. 1, and the height of
the surface at each position represents the number of WCS
speaker centroids falling at that point in color space [MacLaury
(23) displays a comparable histogram, restricted to the hue
dimension]. This distribution of color terms from nonindustri-
alized languages is shown from above in the contour plot of Fig.

Fig. 3. Monte Carlo tests. (a) Clustering within the WCS. The distribution of
dispersion values shown in gray was obtained from 1,000 randomized data
sets. The arrow indicates the dispersion value obtained from the WCS data. (b)
Comparing the WCS with BK. The distribution of separation values shown in
gray was obtained from 1,000 randomized data sets. The arrow indicates the
separation value obtained by comparing the WCS data with BK data (1).

Table 2. Languages studied by BK (1)

Index Language Where spoken

1 Arabic (Lebanese colloquial) Lebanon
2 Bahasa Indonesia Indonesia
3 Bulgarian Bulgaria
4 Cantonese China
5 Catalan Spain
6 (American) English United States
7 Hebrew Israel
8 Hungarian Hungary
9 Ibibio Nigeria

10 Japanese Japan
11 Korean Korea
12 Mandarin China
13 (Mexican) Spanish Mexico
14 Pomo United States
15 Swahili Tanzania
16 Tagalog Philippines
17 Thai Thailand
18 Tzeltal Mexico
19 Urdu Pakistan
20 Vietnamese Vietnam

Data reported from one subject per language.

Fig. 4. Distribution of color terms from nonindustrialized languages. (a) The
floor plane corresponds to the chromatic (non-neutral) portion of the color
stimulus array. The height of the surface at each point in the plane denotes the
number of speaker centroids in the WCS data set that fall at that position in
color space. (b) The distribution of a is viewed from above by a contour plot.
The outermost contour represents a height of 100 centroids, and each subse-
quent contour represents an increment in height of 100 centroids. English
color terms fall near the peaks of the WCS distribution.
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We approach the issue of whether there are universal ten-
dencies in color naming by asking two questions:

(i) Do color terms from different languages in the WCS cluster
together in color space to a degree greater than chance?

(ii) Do WCS color terms, all from unwritten languages of
nonindustrialized societies, fall near color terms of written
languages from industrialized societies, as represented by the BK
sample?

To test for clustering, we represented color terms as points
in color space, and then tested for clustering of those points.
Because the idea of clustering depends essentially on the
concept of distance, we required a color space in which
psychologically meaningful distances can be calculated. Con-
sequently we transformed our 330 color stimuli from Munsell
space, which lacks such a distance metric, to CIEL*a*b* space,
which has one (22). CIEL*a*b* is a 3D color space, in which
the L* dimension represents lightness, and the two remaining
dimensions, a* and b*, define a plane orthogonal to L*, such
that angle in that plane represents hue, and radius represents
saturation. We represented each color term T in each language
L by its centroid in this space. This was computed by first
finding, for each speaker of L who used term T, the centroid
in CIEL*a*b* space of the chips named T by that speaker.
These speaker centroids were then averaged together to yield
an overall term centroid for T. Finally, that term centroid was
coerced back to the chip most similar to it in the stimulus array,
so that our overall representation of the term resided within
the set of points out of which it was constructed. This coercion
was done by first selecting that row of the array with L* value
nearest that of the centroid [L* values are constant within each
value (i.e., lightness) row of the stimulus array]. We then
examined two chips, the chromatic (colored) chip in that row
with hue angle in the a*b* plane closest to the centroid, and
the neutral chip in that row, and selected the one that had hue
radius in the a*b* plane closest to the average radius of the
chips represented by the centroid. This selected chip was our
point representation of the color term.

Given such point representations of all color terms, we tested
whether these points were more clustered across languages than
would be expected by chance, through a Monte Carlo test. This
required first a measure of color-term clustering and then an
indication of how clustered one might expect color terms to be
by chance.

We defined a measure D of the dispersion of the terms in the
WCS data set: for each color term c in each language l, we found
the closest term c* in each other language l*, and added up those

distances. Distance between terms was defined as CIEL*a*b*
distance between their point representations.

D ! !
l,l*!WCS

!
c!l

min
c*!l*

distance!c, c*". [1]

Because D is a measure of dispersion, low values of D indicate
clustering.

To determine how much dispersion one would expect by
chance, we created a set of randomized hypothetical datasets
through computer simulation and measured dispersion in
them. Our randomization method was informed by the obser-
vation that general principles of categorization operating
within a given language can be expected to produce a certain
amount of dispersion in any natural system of categories. We
wanted to be certain that our randomized data sets obeyed
such within-language principles of categorization. To this end,
we started with the actual WCS data set and rotated each
language’s term centroids in the a*b* (hue) plane by a random
amount, the same random amount for all terms within a
language, but different random amounts for different lan-
guages, as shown in Fig. 2. These rotated centroids were then
coerced back to the WCS color array in the manner described
above. This process produced one hypothetical data set, which
preserved within-language structure while randomizing cross-
language structure, appropriately, as the latter is the central
focus of this study.

The process creating a randomized data set was repeated
independently 1,000 times, and the D dispersion measure was
calculated for each hypothetical data set. Fig. 3a shows the
distribution of D in the 1,000 hypothetical data sets compared
with D in the actual WCS data. The actual WCS D value is well
below the lower boundary of the hypothetical distribution.

Fig. 2. Creating a randomized data set.

Fig. 1. Color array from the WCS. For the Munsell notations of the colors in this stimulus array see ref. 1.
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Human Case

We approach the issue of whether there are universal ten-
dencies in color naming by asking two questions:

(i) Do color terms from different languages in the WCS cluster
together in color space to a degree greater than chance?

(ii) Do WCS color terms, all from unwritten languages of
nonindustrialized societies, fall near color terms of written
languages from industrialized societies, as represented by the BK
sample?

To test for clustering, we represented color terms as points
in color space, and then tested for clustering of those points.
Because the idea of clustering depends essentially on the
concept of distance, we required a color space in which
psychologically meaningful distances can be calculated. Con-
sequently we transformed our 330 color stimuli from Munsell
space, which lacks such a distance metric, to CIEL*a*b* space,
which has one (22). CIEL*a*b* is a 3D color space, in which
the L* dimension represents lightness, and the two remaining
dimensions, a* and b*, define a plane orthogonal to L*, such
that angle in that plane represents hue, and radius represents
saturation. We represented each color term T in each language
L by its centroid in this space. This was computed by first
finding, for each speaker of L who used term T, the centroid
in CIEL*a*b* space of the chips named T by that speaker.
These speaker centroids were then averaged together to yield
an overall term centroid for T. Finally, that term centroid was
coerced back to the chip most similar to it in the stimulus array,
so that our overall representation of the term resided within
the set of points out of which it was constructed. This coercion
was done by first selecting that row of the array with L* value
nearest that of the centroid [L* values are constant within each
value (i.e., lightness) row of the stimulus array]. We then
examined two chips, the chromatic (colored) chip in that row
with hue angle in the a*b* plane closest to the centroid, and
the neutral chip in that row, and selected the one that had hue
radius in the a*b* plane closest to the average radius of the
chips represented by the centroid. This selected chip was our
point representation of the color term.

Given such point representations of all color terms, we tested
whether these points were more clustered across languages than
would be expected by chance, through a Monte Carlo test. This
required first a measure of color-term clustering and then an
indication of how clustered one might expect color terms to be
by chance.

We defined a measure D of the dispersion of the terms in the
WCS data set: for each color term c in each language l, we found
the closest term c* in each other language l*, and added up those

distances. Distance between terms was defined as CIEL*a*b*
distance between their point representations.

D ! !
l,l*!WCS

!
c!l

min
c*!l*

distance!c, c*". [1]

Because D is a measure of dispersion, low values of D indicate
clustering.

To determine how much dispersion one would expect by
chance, we created a set of randomized hypothetical datasets
through computer simulation and measured dispersion in
them. Our randomization method was informed by the obser-
vation that general principles of categorization operating
within a given language can be expected to produce a certain
amount of dispersion in any natural system of categories. We
wanted to be certain that our randomized data sets obeyed
such within-language principles of categorization. To this end,
we started with the actual WCS data set and rotated each
language’s term centroids in the a*b* (hue) plane by a random
amount, the same random amount for all terms within a
language, but different random amounts for different lan-
guages, as shown in Fig. 2. These rotated centroids were then
coerced back to the WCS color array in the manner described
above. This process produced one hypothetical data set, which
preserved within-language structure while randomizing cross-
language structure, appropriately, as the latter is the central
focus of this study.

The process creating a randomized data set was repeated
independently 1,000 times, and the D dispersion measure was
calculated for each hypothetical data set. Fig. 3a shows the
distribution of D in the 1,000 hypothetical data sets compared
with D in the actual WCS data. The actual WCS D value is well
below the lower boundary of the hypothetical distribution.

Fig. 2. Creating a randomized data set.

Fig. 1. Color array from the WCS. For the Munsell notations of the colors in this stimulus array see ref. 1.
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Color Space Dimensions
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Long PH, Yang ZY, Purves D. 2006. Special statistics in natural scenes 
predict hue, saturation, and brightness. PNAS, 103(15): 6013-6018.

Human eyes discrimination ability dmin

Just Noticeable Difference (JND)



“In silico” version of  the WCS
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“In silico” version of  the WCS

A. Baronchelli, T. Gong, A. Puglisi  and VL, 
Modeling the emergence of universality in color naming patterns 

Proc. Natl. Acad. Sci. USA, 107, 2403 (2010).



An experimental 
avenue: the Web



• collaborative tagging
• online collaborative games
• collaborative filtering
• recommendation/trust networks

http://www.peekaboom.org/

human computing

http://images.google.com/imagelabeler/

Populations of users facing 
collectively difficult 
problems using a small 
cognitive overhead

http://www.peekaboom.org
http://www.peekaboom.org
http://images.google.com/imagelabeler/
http://images.google.com/imagelabeler/


Users/Players

Game managers

ET 

ser
ver

Blindate

Nexicon

...
...

Interfaces

Generic 
Game

XTribe: a new web-based platform 
for web-gaming and social-computing

www.xtribe.eu

http://www.xtribe.eu
http://www.xtribe.eu


http://www.isi.it/

Post-doc positions open
in Language Dynamics

DRUST: Digging for the Roots of Understanding
Post-doc position for 1+1 years

ISI Foundation - Turin

Post-doc position for 1+1 years

http://www.everyaware.eu
http://www.everyaware.eu
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