
A Cognitive Architecture for Communicative
Repair Strategies

Katrien Beuls
katrien@arti.vub.ac.be
VUB AI LAB, Brussels

EuroUnderstanding Launch Meeting
14 - 16 October 2011, Malmö

 Understanding and Misunderstanding:
 Cognition, Communication and Culture
 (EuroUnderstanding)

EuroUnderstanding Launch Meeting

14-16 October 2011

Malmö, Sweden

Programme booklet

1

mailto:katrien@arti.vub.ac.be
mailto:katrien@arti.vub.ac.be

Research at the VUB AI Lab
(and Sony CSL Paris)

2

Our Research is a Team Effort

3

Our Approach

• Make detailed operational models of all information processing that goes into
language processing + language learning

• Even if it is only for limited domains

• Simulate language evolution in populations of agents playing language games

• Use robots to address issues of sensori-motor embodiment

• Grounded semantics

• Influence of environment on emergent language

4

Semiotic Cycle

world

utterance

world
model

world
model

groundinggrounding

meaning

co
nc

ep
tu

ali
za

tio
n

producing parsing
meaning

interpretation

semantic/syntactic structure semantic/syntactic structure

speaker listener

5

Example of a
Language Game The Grounded Naming Game

Steels, Luc and Michael Spranger (2012). The Grounded Naming Game. In: Luc Steels (ed.) Experiments in Cultural Language Evolution.
John Benjamins: Amsterdam.

6

Semiotic Network

Example

7

http://file://localhost/Users/katrien/Documents/PhD/Projects/DRUST/Launch_Meeting_Oct2011/semiotic-network-of-first-agent.swf
http://file://localhost/Users/katrien/Documents/PhD/Projects/DRUST/Launch_Meeting_Oct2011/semiotic-network-of-first-agent.swf

Results after 20 000 games

8

Steels Luc and Michael Spranger (2008). Can body language shape body image? Artificial Life XI. The MIT Press, Cambridge Ma. pp. 577-584.

Action Games

9

When a game fails...

10

Example

• Father: Could you pass me the salmon, please?

• (The student hesitates and then reaches for the
salt.)

• (The father shakes his head.)

• Father: No, I meant the salmon. (Points to the
fish on a plate.)

• (The student puts the salt back and hands over
the plate.)

• Father: Thank you.

Initial
state

Speaker asks
for an object

Listener
performs action

Listener signals
failure

Speaker signals
failure

Speaker signals
success

Speaker points to
the object

desired
action?

wrong
action?

New state

11

A Reflective Architecture

...

routine processing

diagnostic diagnostic diagnostic

problem

meta-layer processing

repair

diagnostic

problem

repair

Beuls Katrien, Remi van Trijp and Pieter Wellens (2012). A Reflective Architecture for Open-Ended Language Processing in Fluid Construction
Grammar. In: Luc Steels (ed.) Computational Issues in Fluid Construction Grammar. Springer Verlag: Berlin.

Diagnostics and Repairs

12

Example Repair

• Student in example game passed the host father the salt instead of the
salmon.

• Problem = unknown word

• “salt” closely resembles “salmon”

• phonologically (syllable “sal”)

• semantically (edible, present in shared context, graspable)

13

Diagnostic: Detect unknown word

• When search node is a leaf and it contains unprocessed strings => create
unknown word problem

• Unprocessed strings are words that cannot be retrieved from the current
grammar of an agent

14 K. Beuls, P. Wellens and R. van Trijp

Now we can define a diagnose-fcg method that specializes on this new class.
Here, we define a method that takes its second argument (i.e. an FCG node) and
checks whether there are unprocessed strings left in the linguistic structure that
is contained in the node. The method only cares about leaf nodes, which are the
last nodes of the branches of a search tree, which means that no constructions
can apply anymore. If there is one unknown string, the method instantiates an
unknown-word problem. For illustration purposes, the diagnostic only handles
single unknown words instead of multiple unknown strings. In pseudo code, the
method looks as follows:

diagnose-fcg (detect-unknown-word-in-fcg-search FCG-node)

When NODE is a LEAF then:
let UNPROCESSED-STRINGS be the EXTRACTED-UNPROCESSED-STRINGS of FCG-NODE

if UNPROCESSED-STRINGS contains a SINGLE-WORD
then return an instance of UNKNOWN-WORD

and set the slot-value of :WORD to SINGLE-WORD
else return NIL

In the FCG web interface [15], the problematic node is colored differently
from the successful nodes and receives an additional status: problem-found.
Figure 6 shows a screen shot of such a node, where the ‘top-unit’ (the open box
to the right) acts as a buffer that contains all unprocessed information. As can be
seen, the unprocessed string as signaled by the diagnostic is “salmon". Also the
word order conditions (cf. meets attributes) are still unprocessed at this stage.

* ,

top
syn-subunits
form

problem-found, succeeded, cxn-applied

top
(the-20 pass-20 me-20)

((meets the-20 salmon-19)
(meets me-20 the-20)
(meets pass-20 me-20)
(string salmon-19 "salmon"))

determiner-cxn (fun)

me-20

pass-20

the-20

sem syn
the-20

pass-20

me-20

Fig. 6. A problem is diagnosed after the string “salmon" is left unprocessed at the end
of the search tree.

Repair Once an unknown word has been detected inside the FCG search tree,
a repair will trigger and try to solve the problem. In the use case that we are
investigating here, the unknown word is “salmon". An example of an FCG repair
strategy that would tackle this problem is retry-with-closest-match. Such a
strategy will loop through all words in the current grammar and find the word
that mostly resembles the unknown word based on its form. The example repair
strategy here only considers similarity in terms of spelling, not in phonetic form.
In a more advanced implementation, the latter could of course also be taken into
account.

* ,

top
syn-subunits
form

problem-found, succeeded, cxn-applied

top
(the-20 pass-20 me-20)

((meets the-20 salmon-19)
(meets me-20 the-20)
(meets pass-20 me-20)
(string salmon-19 "salmon"))

determiner-cxn (fun)

me-20

pass-20

the-20

sem syn
the-20

pass-20

me-20

14

Repair: Retry with closest match
• Loop through all words in the current grammar and return the word that most

closely resembles the unknown word based on its form.

• Similarity in terms of spelling and phonetic form.

• The unknown word is then replaced with the closest match in the input structure
and parsing is restarted.

• Now, parsing succeeds and the agent passes the salt.

• However, the game FAILS since the wrong object was picked by the listener.

A Reflective Architecture 15

The repair strategy is initialized with the following slot values:

Definition 18.

class retry-with-
closest-match

subclass of fcg-repair

Description: Repairs unprocessed words in parsing.
Set slot-value: direction
Set slot-value: triggered-by- unknown-word

problems

When these initial values are satisfied, the main repair-fcg method can trig-
ger for this particular repair strategy. The pseudo code explains how the orig-
inal utterance by the host father (expert-utterance) is replaced with a slightly
modified version (learner-utterance) by substituting the unknown word with its
closest match. The function find-closest-string is responsible for searching
the existing lexical items and returning the most similar word.

repair-fcg (retry-with-closest-match problem FCG-node)

Let UTTERANCE be the RENDERED LINGUISTIC STRUCTURE of FCG-NODE
and UNKNOWN-WORD be the :WORD slot in PROBLEM
and CLOSEST-MATCH be the UNKNOWN-WORD’S CLOSEST RELATED WORD in FCG-NODE-GRAMMAR

if there is a CLOSEST-MATCH
then return TRUE

and let the REVISED-UTTERANCE be the UTTERANCE after the UNKNOWN-WORD
has been REPLACED with CLOSEST-MATCH

then RESTART SEARCH TREE with REVISED-UTTERANCE
else return NIL

When the search tree is restarted, the initial node contains the substituted
utterance and parsing succeeds.

top

top

top

top

form

top

Interaction 1
context (speaker & hearer):

((salmon salmon-set base-set) (unique-definite salmon salmon-set) (pass pass-event base-set) (pass-who pass-event you) (pass-what pass-event salmon) (pass-to-whom pass-event me) (1sg-recipient me base-set))

Running agent 1 (speaker).
picked topic: (salmon)

running production

Computing max 3 solutions for application of construction set (11) in direction →

Found a solution

initial structure
top

application process

applied constructions

resulting structure

top

task-60: succeeded, 3.25

best task: task-60
meaning: ((salmon salmon-set base-set) (unique-definite salmon salmon-set) (pass pass-event base-set) (pass-who pass-event you) (pass-what pass-event salmon) (pass-to-whom pass-event me) (1sg-recipient me base-set))
utterance: ("pass" "me" "the" "salmon")

<speak-action:
 <action speak-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>
 utterance: (pass me the salmon)>

Running agent 2 (hearer).
running interpretation

Computing max 3 solutions for application of construction set (10) in direction ←

diagnostic detect-unknown-word-in-fcg-search returned

<unknown-word: word: salmon <problem: repaired-by: NIL, issued-after: NIL>>

repair strategy retry-with-closest-match repaired problem unknown-word-fcg

Restart requested

initial structure
top

application process

Found a solution

initial structure
top

((string salt-8 "salt")
(string the-21 "the")
(string me-21 "me")
(string pass-21 "pass")
(meets pass-21 me-21)
(meets me-21 the-21)
(meets the-21 salt-8))

application process

applied constructions

resulting structure

top

task-61: failed, 4.00

best task: task-61
parsed-meaning: ((salt ?base-set-538 ?base-set-532) (unique-definite ?indiv-225 ?base-set-538) (pass ?event-248 ?base-set-532) (pass-who ?event-248 ?agent-160) (pass-what ?event-248 ?indiv-225) (pass-to-whom ?event-248 ?oblique-158) (1sg-recipient ?oblique-158 ?base-set-532))

<action signal-failure-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>

Running agent 1 (speaker).
<signal-failure-and-point-action:
 <action signal-failure-and-point-action : agent-id: NIL,
 recipient-ids: (ALL-AGENTS)>thing: (SALMON)>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 1 (speaker).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Running agent 2 (hearer).
<no-action: <action no-action : agent-id: NIL, recipient-ids: (ALL-AGENTS)>>

Interaction failed, but repaired.

reset

sem syn

initial * pass (lex), the (lex), salmon (lex) * verb-verbal (fun), determiner-cxn (fun) me (lex) * pronoun-pronominal-cxn (fun), noun-nominal-cxn (fun) determiner-nominal-phrase-cxn (marked-phrasal) di-transitive (marked-phrasal)

di-transitive (marked-phrasal) determiner-nominal-phrase-cxn (marked-phrasal) noun-nominal-cxn (fun) pronoun-pronominal-cxn (fun) me (lex) determiner-cxn (fun) verb-verbal (fun) salmon (lex) the (lex) pass (lex)

trans-clause-21

nominal-phrase-23
new-unit-13

word-the-13

word-me-13

word-pass-13

sem syn
trans-clause-21

nominal-phrase-23
new-unit-13

word-the-13

word-pass-13

word-me-13

sem syn

initial * me (lex), pass (lex) * pronoun-pronominal-cxn (fun), verb-verbal (fun) the (lex)

top
syn-subunits
form

problem-found, succeeded, cxn-applied

top
(the-20 pass-20 me-20)

((meets the-20 salmon-19)
(meets me-20 the-20)
(meets pass-20 me-20)
(string salmon-19 "salmon"))

determiner-cxn (fun)

me-20

pass-20

the-20

sem syn
the-20

pass-20

me-20

sem syn

initial * me (lex), salt (lex), pass (lex) * pronoun-pronominal-cxn (fun), verb-verbal (fun), noun-nominal-cxn (fun) the (lex) determiner-cxn (fun) determiner-nominal-phrase-cxn (marked-phrasal) di-transitive (marked-phrasal)

di-transitive (marked-phrasal) determiner-nominal-phrase-cxn (marked-phrasal) determiner-cxn (fun) the (lex) noun-nominal-cxn (fun) verb-verbal (fun) pronoun-pronominal-cxn (fun) pass (lex) salt (lex) me (lex)

trans-clause-22

nominal-phrase-24
salt-8

the-21

pass-21

me-21

sem syn
trans-clause-22

nominal-phrase-24
the-21

salt-8

pass-21

me-21

Fig. 7. The new initial node after processing has been restarted.

The meaning that is parsed now is included below and leads to the action of
reaching for the salt in order to pass it.
((salt ?salt-set-233 ?base-set-532)

(unique-definite ?indiv-225 ?salt-set-233)

(pass ?event-248 ?base-set-532)

(pass-who ?event-248 ?agent-160)

(pass-what ?event-248 ?indiv-225)

(pass-to-whom ?event-248 ?oblique-158)

(1sg-recipient ?oblique-158 ?base-set-532))

15

• Never considered during routine processing

• Generic template:

• Template for salmon construction:

Generic Lexical Construction

(def-lex-cxn generic-lexical-cxn

(def-lex-skeleton generic-lexical-cxn
:meaning (?unknown-meaning ?set ?context)
:args (?set ?context)
:string ?unknown-string)

(def-lex-cat generic-lexical-cxn
:sem-cat ?sem-cat
:syn-cat ?syn-cat))

(def-lex-cxn salmon-cxn
:inherits-from generic-lexical-cxn

(def-lex-require salmon-cxn
:cxn-string "salmon"))

16

New Construction after Pointing

• At the end of the game, the speaker
points to the object he meant:

• The listener can now update the salmon construction with a meaning that he
attributes to this object. This meaning can be expanded and modified in later
interactions.

17

Conclusions

• Reflective processing architecture to capture that:

• Language is open-ended

• Same linguistic material is recruited in multiple ways (homonyms, word classes, etc.)

• Speakers (and listeners) are not perfect

• Repairs of misunderstandings can help to establish common ground

• Future work:

• Facilities for discourse marking and modality => development of a richer factual model

• Emergence of language-specific diagnostics and repairs

18

References

• Steels, Luc, ed. (2012a). Computational Issues in Fluid Construction
Grammar. Berlin: Springer Verlag.

• Steels, Luc, ed. (2012b). Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

• Steels, Luc, ed. (2012c). Experiments in Cultural Language Evolution.
Amsterdam: John Benjamins.

• Steels, Luc and Manfred Hild, ed. (2012). Language Grounding in Robots.
New York: Springer Verlag.

Questions?

19

