Modelling Resource Allocation in Linear Logic

Daniele Porello

Institute for Logic, Language & Computation (ILLC), University of Amsterdam

LogICCC, 17 September 2011, Berlin

Overview

- Resource allocation problems: combinatorial auctions;
- Logical modelling of preferences;
- A proof-theoretic approach: Linear logic, a constructive account of proofs;
- Combinatorial auctions on multi-sets of goods;
- ▶ Reasoning, structural rules, and allocation problems.

This presentation is based on Porello and Endriss *KR 2010* and *ECAI 2010*.

Combinatorial auctions

- Given a set of goods G and a set of bidders N;
- ▶ Bidders evaluate bundles of goods $S \subseteq G$ offering *atomic bids* of the form (S, w) where *w* is the price associated to the bundle *S*.
- Atomic bids (S, w) define utility functions $v_S : \mathcal{P}(\mathcal{G}) \to W$, where W is a set of values:

 $S' \subseteq G$, $v_S(S') = w$ if $S \subseteq S'$, $v_S(S') = 0$ otherwise.

- Languages for complex bids (Nisan, 2006).
- The value of an allocation α is given by $v(\alpha) = \sum_{i} \{w_i : (S_i, w_i) \in \alpha\}$
- Winner determination problem (WDP): finding an allocation that maximizes the revenue given a set of bids. (Usually NP-Complete, reduction form SET PACKING)

Types of goods

The matching between demand and offer can be modelled with logic: by viewing goods as propositional atoms, and preferences as logical formulas we have:

$$v_{a \wedge b}(\{a, b, c\}) = w \text{ iff } \{a, b, c\} \models a \wedge b$$

(Weighted formula, Goal bases).

- If goods are available in multi-sets, or lists, classical entailment is problematic:
- Structural rules in sequent calculus:

WeakeningContractionExchange
$$\{a, b\} \vdash a \land b$$
 $\{a, a\} \vdash a \land a$ $\{a, b\} \vdash a \land b$ $\{a, a, b\} \vdash a \land b$ $a \vdash a \land a$ $\{b, a\} \vdash a \land b$

- Which notion of logical consequence is suitable in such cases?
- Linear logic provides a good canddate since it is capable of controlling the application of structural rules.

Combinatorial auctions on multi-sets of goods

- A finite multiset of goods \mathcal{M} (with finite multiplicity).
- ► The atoms A = {p₁,..., p_m} are the elements of M. Multisets of goods can be defined using the tensor conjunction ⊗ in Linear Logic. E.g. p ⊗ p ⊗ q.

Atomic bids are implications $B \multimap u^k$ ("if you give me B, I give u^{kn}): B_i is a tensor product of atoms in A,

 u^k is used to model prices symbolically as tensors of a given unit symbol u: $u^k = u \otimes \cdots \otimes u$

k-times

$$\underbrace{p,q,r}_{goods},\underbrace{p\otimes q\otimes r\multimap u^k}_{bid}\vdash u^k$$

Weakening can be used to model (global) *Free Disposal Assumption* (a bidder is willing to obtain *at least* what she demands).

Valuations as formulas. Allocations as proofs

- We can define classes of bidding languages using fragments of linear logic, including the usual language (OR, XOR, Goal Bases).
- ► Moreover we can express much more: e.g. the distinction between sharable and non-sharable (or reusable) resources: !(a ⊗ b) ⊗ c. (! local structural rules).
- Valuations as formulas: formulas BID generate utility functions v_{BID} mapping multi-sets X ⊆ M to values:

$$v_{\text{BID}}(X) = \max\{k \mid X, \text{BID} \vdash u^k\}$$

 Allocations as proofs: we can use proof search to deal with allocation problems

Theorem [Porello and Endriss, KR 2010]

A proof in (fragments of) linear logic corresponds to an allocation of goods and *vice versa*.

Example

WDP (decision version):

Given goods: p, q, q, bids: $p \otimes q \multimap u^4$ and $q \multimap u^2$, can we get a revenue of 6 units (u^6) ? Can we prove the following sequent?

$$\underbrace{p,q,q}_{goods}, \underbrace{p \otimes q \multimap u^4}_{bid1}, \underbrace{q \multimap u^2}_{bid2} \vdash u^6$$

The proof shows that a given value is achievable.

Structural rules, reasoning methods and allocation problems

We can picture the following correspondence:

Structural Rules	Logic	Allocation problem
W, C, E	Classical Logic	Sets, quantities of types of good do not matter
W, E	Affine Logic	Multi-sets, with Free Disposal
E	LL	Multi-sets, without Free Dis- posal
-	NCLL (Lambek calculus)	Lists of goods

 Negotiation problem can be approached in a similar way. (Porello and Endriss ECAI 2010)

Conclusion

- We presented a model of resources allocation based on the constructive treatment of proofs.
- Linear logic allows for expressing valuations (utility functions) as formulas and to view allocations as proofs.
- In the treatment we proposed, we used the Horn fragment of LL for which proof-search complexity is NP complete.
- The bundle of goods the auctioneer owns is represented (basically) by the suitable *conjunction* of goods.
 (E.g. {p,q,q} ≡ p ⊗ q ⊗ q).
- Future work in this direction include the case in which the bundle the auctioneer owns is given by a general formula that represent the relations between the goods the auctioneer puts on the bundle to sell.