Complexity Results for Dependence Logic

Juha Kontinen

University of Helsinki

17.9.2011

Juha Kontinen (University of Helsinki) Complexity Results for Dependence Logic

• = • •

Outline of the talk

We discuss recent complexity results on dependence logic and its variants. We focus on:

- The expressive power and complexity of certain natural syntactic fragments of dependence logic.
- The complexity of certain extensions of dependence logic.

Motivations for this line of research include:

- understanding the computational content of logical operators and constructs can help us with finding the most appropriate logical tools for modeling.
- for applicability, it is very useful to know, just by looking at a formula it's approximate complexity.

• • = • • = •

Dependence logic

Definition

The syntax of $\ensuremath{\mathcal{D}}$ extends the syntax of FO by new atomic dependence formulas

$$=(t_1,\ldots,t_n), \tag{1}$$

where t_1, \ldots, t_n are terms.

In (1), n is called the *width* of the dependence atom.

()

Basic properties of $\ensuremath{\mathcal{D}}$

For sentences:

Theorem

 $\mathcal{D} = \text{ESO} = \text{NP}.$

The second equality holds over finite structures.

We will next look at the expressive power and complexity of certain syntactic fragments of \mathcal{D} . Such fragments can be defined by:

- I restricting the number of variables or quantifiers in formulas,
- 2 the width *n* of the dependence atoms = (x_1, \ldots, x_n, y) ,
- I restricting the quantifier nestings in formulas.

A B F A B F

Complexity of fragments of $\ensuremath{\mathcal{D}}$

The following result indicates that new methods and ideas might be needed in order to understand the complexity of such fragments:

Theorem (Jarmo Kontinen; 2010) *Define* **1** $\varphi \equiv =(x, y) \lor =(z, u)$ **2** $\psi \equiv =(x, y) \lor =(z, u) \lor =(z, u)$ *Deciding whether* \mathfrak{A} *and* X *satisfies* φ *is NL-complete and, for* ψ , *NP-complete.*

A B < A B </p>

Restricting the number of variables

Results on the 2-variable fragment of $\ensuremath{\mathcal{D}}$

Denote by \mathcal{D}^2 the sentences of $\mathcal D$ using only two variables.

Theorem (K., Kuusisto, Lohmann, and Virtema; 2011)

- The Satisfiability (and Finite Satisfiability) problem of D² is NEXPTIME-complete.
- **2** The logic D^2 is quite expressive being able to express, e.g., " \mathfrak{A} infinite" and "|P| = |Q|".
- In contrast, the satisfiability (and finite satisfiability) problem of IF² is undecidable.

Remark

Jonni Virtema (Univ. Tampere) recently observed that \mathcal{D}^2 can express NP-complete problems.

- 4 同 6 4 日 6 4 日 6

Restricting the number of universal quantifiers/the width of dependence atoms

Definition

Let $k \in \mathbb{N}^*$.

- D(k − ∀) consists of those sentences φ of D having at most k occurrences of ∀ (no reusing of variables).
- *D*(*k* − *dep*) consists of sentences φ of *D* in which dependence atoms of width at most *k* + 1 appear.

The case of $\mathcal{D}(k - dep)$

Definition

Denote by $ESO_f(k-ary)$ the class of ESO-sentences

 $\exists f_1 \ldots \exists f_n \psi,$

in which the function symbols f_i are at most k-ary and ψ is a FO-formula.

Theorem (Durand and K.; 2011) Let $k \in \mathbb{N}^*$. $\mathcal{D}(k - dep) = \text{ESO}_f(k - ary)$.

過 ト イヨ ト イヨト

The case of $\mathcal{D}(k - \forall)$

Definition

Denote by $\text{ESO}_f(k\forall)$ the class of ESO-sentences in Skolem Normal Form

 $\exists f_1 \ldots \exists f_n \forall x_1 \ldots \forall x_r \psi,$

where $r \leq k$ and ψ is quantifier-free.

Theorem (Durand and K.; 2011) Let $k \in \mathbb{N}^*$. Then $\operatorname{NTIME}_{\operatorname{RAM}}(n^k) = \operatorname{ESO}_f(k\forall) \le \mathcal{D}(2k - \forall) \le \operatorname{ESO}_f(2k\forall)$ $= \operatorname{NTIME}_{\operatorname{RAM}}(n^{2k}).$

The equality $\text{NTIME}_{\text{RAM}}(n^k) = \text{ESO}_f(k\forall)$ is due to Grandjean and Olive (2004).

Hierarchy theorems

Theorem (Durand and K.; 2011)

If τ has a k + 1-ary R, then $\mathcal{D}(k - dep)[\tau] \subsetneq \mathcal{D}(k + 1 - dep)[\tau]$.

Theorem (Durand and K.; 2011) For $k \ge 1$ and any vocabulary: **1** $\mathcal{D}(k - \forall) \subseteq \mathcal{D}(k - dep)$, **2** $\mathcal{D}(k - \forall) \subsetneq \mathcal{D}(k + 1 - dep)$, **3** $\mathcal{D}(k - \forall) \subsetneq \mathcal{D}(2k + 2 - \forall)$.

・ 回 ト ・ ヨ ト ・ ・ ヨ ト …

Extensions of dependence logic

We briefly discuss three different types of extensions of dependence logic.

Theorem (Abramsky and Väänänen; 2009, Yang; 2010)

The extension of dependence logic by the intuitionistic implication is equivalent to full SO = PH.

Above, PH is the complexity class the *Polynomial Hierarchy*.

Theorem (Grädel and Väänänen; 2010)

Independence logic is equivalent to ESO = NP for sentences.

Extensions of dependence logic cont.

Let $\mathcal{D}(M)$ be the extension of $\mathcal D$ by the following majority quantifier:

 $\mathfrak{A} \models_X \mathrm{Mx}\phi(x) \text{ iff for at least } |A|^{|X|}/2 \text{ many function } F \colon X \to A \text{ we have} \\ \mathfrak{A} \models_{X(F/x)} \phi(x).$

Theorem (Durand, Ebbing, K., and Vollmer; 2011) $\mathcal{D}(M) = CH.$

Above, CH is the complexity class the *Counting Hierarchy* that contains PH and full second-order logic.