
ATL and extensions

Thomas Brihaye1, Arnaud Da Costa2, François Laroussinie3,
Nicolas Markey2

1 U. Mons, Belgium
2 LSV, CNRS & ENS Cachan, France

3 LIAFA, CNRS & Univ. Paris7-Diderot, France

LogICCC final conference – Berlin, Sep. 2011

Model checking

and control

system:

⇒

property:

G(request⇒F grant)model-checking
algorithm

yes/no

model-checking
algorithm

yes/no

Model checking and control

system:

⇒

property:

G(request⇒F grant)

model-checking
algorithm

yes/no

model-checking
algorithm

yes/no

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

Theorem
CTL model checking is PTIME-complete.

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

✓ E(true U) ≡ E F

✓ E G ¬ ≡ ¬ (A F ¬)

× E(¬ U)

✓ E G(¬ ∧ E F)

Theorem
CTL model checking is PTIME-complete.

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

✓ E(true U) ≡ E F

✓ E G ¬ ≡ ¬ (A F ¬)

× E(¬ U)

✓ E G(¬ ∧ E F)

Theorem
CTL model checking is PTIME-complete.

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

✓ E(true U) ≡ E F

✓ E G ¬ ≡ ¬ (A F ¬)

× E(¬ U)

✓ E G(¬ ∧ E F)

Theorem
CTL model checking is PTIME-complete.

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

✓ E(true U) ≡ E F

✓ E G ¬ ≡ ¬ (A F ¬)

× E(¬ U)

✓ E G(¬ ∧ E F)

Theorem
CTL model checking is PTIME-complete.

Computation-Tree Logic (CTL) [CE81,QS82]

Definition

CTL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | E X ϕ | E G ϕ | Eϕ U ϕ

✓ E(true U) ≡ E F

✓ E G ¬ ≡ ¬ (A F ¬)

× E(¬ U)

✓ E G(¬ ∧ E F)

Theorem
CTL model checking is PTIME-complete.

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

✓ 〈〈 〉〉 F

× 〈〈 〉〉 F

×

〈〈 〉〉 G(〈〈 〉〉 F)

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

✓ 〈〈 〉〉 F

× 〈〈 〉〉 F

×

〈〈 〉〉 G(〈〈 〉〉 F)

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

✓ 〈〈 〉〉 F

× 〈〈 〉〉 F

×

〈〈 〉〉 G(〈〈 〉〉 F)

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

✓ 〈〈 〉〉 F

× 〈〈 〉〉 F

× 〈〈 〉〉 G(〈〈 〉〉 F)

Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL 3 ϕ ::= | ϕ ∨ ϕ | ¬ϕ | 〈〈A〉〉 X ϕ |
〈〈A〉〉ϕ U ϕ | 〈〈A〉〉 ¬ (ϕ U ϕ)

✓ 〈〈 〉〉 F

× 〈〈 〉〉 F

× 〈〈 〉〉 G(〈〈 〉〉 F)

Theorem
ATL model checking is PTIME-complete.

ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:

✓

〈· ·〉 G(〈· ·〉 F)

Evaluate the formula on the execution
tree:

apply a strategy of Player ;
in the remaining tree, check
that Player can always
enforce a visit to .

ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:

✓

〈· ·〉 G(〈· ·〉 F)

Evaluate the formula on the execution
tree:

apply a strategy of Player ;
in the remaining tree, check
that Player can always
enforce a visit to .

ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:

✓

〈· ·〉 G(〈· ·〉 F)

Evaluate the formula on the execution
tree:

apply a strategy of Player ;

in the remaining tree, check
that Player can always
enforce a visit to .

ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:

✓

〈· ·〉 G(〈· ·〉 F)

Evaluate the formula on the execution
tree:

apply a strategy of Player ;
in the remaining tree, check
that Player can always
enforce a visit to .

ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:

✓ 〈· ·〉 G(〈· ·〉 F)

Evaluate the formula on the execution
tree:

apply a strategy of Player ;
in the remaining tree, check
that Player can always
enforce a visit to .

What ATLsc can express
All ATL and ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients
〈·c·〉 F accessc

∧
¬

∧
c 6=c′

accessc ∧ accessc′


Existence of Nash equilibria:

〈·A1, ..., An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express
All ATL and ATL∗ properties;
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients
〈·c·〉 F accessc

∧
¬

∧
c 6=c′

accessc ∧ accessc′



Existence of Nash equilibria:

〈·A1, ..., An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express
All ATL and ATL∗ properties;
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients
〈·c·〉 F accessc

∧
¬

∧
c 6=c′

accessc ∧ accessc′


Existence of Nash equilibria:

〈·A1, ..., An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

What ATLsc can express
All ATL and ATL∗ properties;
Client-server interactions for accessing a shared resource:

〈·Server·〉 G


∧

c∈Clients
〈·c·〉 F accessc

∧
¬

∧
c 6=c′

accessc ∧ accessc′


Existence of Nash equilibria:

〈·A1, ..., An·〉
∧
i

(〈·Ai ·〉ϕAi ⇒ ϕAi)

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)

Verifying ATLsc properties

Theorem
Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build a
Büchi tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers in ϕ.

Checking whether C, `0 |=∅ ϕ is in d-EXPTIME.

Proposition
Checking whether C, `0 |=∅ ϕ is (d−1)-EXPSPACE-hard.

Verifying ATLsc properties

Theorem
Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build a
Büchi tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers in ϕ.

Checking whether C, `0 |=∅ ϕ is in d-EXPTIME.

Proposition
Checking whether C, `0 |=∅ ϕ is (d−1)-EXPSPACE-hard.

Conclusions and research directions

ATLsc has a natural semantics:
it can express many interesting properties (especially
non-zero-sum);
this expressiveness comes with a cost (in terms of
model-checking complexity);
we also studied bounded-memory strategies.

We keep on exploring ATLsc :
characterize behavioural equivalence for ATLsc ;
randomized strategies;
find interesting sublogics, with more efficient model-checking
algorithm;
study satisfiability of ATLsc .

Conclusions and research directions

ATLsc has a natural semantics:
it can express many interesting properties (especially
non-zero-sum);
this expressiveness comes with a cost (in terms of
model-checking complexity);
we also studied bounded-memory strategies.

We keep on exploring ATLsc :
characterize behavioural equivalence for ATLsc ;
randomized strategies;
find interesting sublogics, with more efficient model-checking
algorithm;
study satisfiability of ATLsc .

	Introduction
	Conclusions

