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Theorem
CTL model checking is PTIME-complete.




Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL3 =0l Vel o] {A) Xo|
(Ao U] (A) = (o U o)




Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL3 =0l Vel o] {A) Xo|
(Ahe U | (A) ~(p U »)

/Q\ v {0y FO



Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL3 =0l Vel o] {A) Xo|
(Ahe U | (A) ~(p U »)

Q\ v (O)FO
/ < (@) FO



Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL3 =0l Vel o] {A) Xo|
(Ahe U | (A) ~(p U »)

/Q\ QO v (©)FO
CQ/ o
(©) 6((0) FO)

N




Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:

ATL3 =0l Vel o] {A) Xo|
(Ahe U | (A) ~(p U »)

/Q\ QO v (©)FO
CQ/ o
< (0) 6({O) FO)

N




Alternating-time Temporal Logic (ATL) [AHK97]

Definition
ATL extends CTL with strategy quantifiers:
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Theorem
ATL model checking is PTIME-complete.
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@ Existence of dominating strategy:

(A) IBI(—¢ = [A] —~¢)



Verifying ATL,. properties

Theorem

Given a CGS C, a state ¢y and an ATLs. formula o, we can build a
Biichi tree automaton A s.t.
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A has size d-exponential, where d is the maximal number of
nested quantifiers in .

Checking whether C, ly =g ¢ is in d-EXPTIME.
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LA £ < Cl o ep.
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nested quantifiers in .

Checking whether C, ly =g ¢ is in d-EXPTIME.

Proposition
Checking whether C, {y =5 ¢ is (d—1)-EXPSPACE-hard.




Conclusions and research directions

ATL.. has a natural semantics:

@ it can express many interesting properties (especially
non-zero-sum);

@ this expressiveness comes with a cost (in terms of
model-checking complexity);

@ we also studied bounded-memory strategies.




Conclusions and research directions

ATL.. has a natural semantics:

@ it can express many interesting properties (especially
non-zero-sum);

@ this expressiveness comes with a cost (in terms of
model-checking complexity);

@ we also studied bounded-memory strategies.

We keep on exploring ATL,.:
@ characterize behavioural equivalence for ATL;
@ randomized strategies;

@ find interesting sublogics, with more efficient model-checking
algorithm;

@ study satisfiability of ATL..
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