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ATL with strategy contexts [BDLM09]
ATLsc has the same syntax as ATL, but different semantics:
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Evaluate the formula on the execution
tree:

apply a strategy of Player ;
in the remaining tree, check
that Player can always
enforce a visit to .
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What ATLsc can express
All ATL and ATL∗ properties;

Client-server interactions for accessing a shared resource:

〈·Server·〉 G
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〈·c·〉 F accessc

∧
¬

∧
c 6=c′
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Existence of Nash equilibria:

〈·A1, ..., An·〉
∧
i

( 〈·Ai ·〉ϕAi ⇒ ϕAi )

Existence of dominating strategy:

〈·A·〉 [·B·] (¬ϕ ⇒ [·A·] ¬ϕ)
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Verifying ATLsc properties

Theorem
Given a CGS C, a state `0 and an ATLsc formula ϕ, we can build a
Büchi tree automaton A s.t.

L(A) 6= ∅ ⇔ C, `0 |=∅ ϕ.

A has size d-exponential, where d is the maximal number of
nested quantifiers in ϕ.

Checking whether C, `0 |=∅ ϕ is in d-EXPTIME.

Proposition
Checking whether C, `0 |=∅ ϕ is (d−1)-EXPSPACE-hard.
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Conclusions and research directions

ATLsc has a natural semantics:
it can express many interesting properties (especially
non-zero-sum);
this expressiveness comes with a cost (in terms of
model-checking complexity);
we also studied bounded-memory strategies.

We keep on exploring ATLsc :
characterize behavioural equivalence for ATLsc ;
randomized strategies;
find interesting sublogics, with more efficient model-checking
algorithm;
study satisfiability of ATLsc .
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