**Skeptical Agents** 

#### Ondrej Majer Marta Bílková, Michal Peliš, Greg Restall

< ロ > < 同 > < 回 > < 回 >

LogiCCC, Berlin 2011

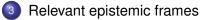
1/36

Ondrej Majer Marta Bílková, Michal Peliš, Gre

# Outline

### Introduction

#### Framework



- Properties
- 5 Axiomatics, soundness, completeness
  - Further modalities

A B F A B F

### Outline

### Introduction

- 2) Framework
- 3 Relevant epistemic frames
- Properties
- 5) Axiomatics, soundness, completeness
- 6 Further modalities

#### knowledge = true justified belief

- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

- knowledge = true justified belief
- belief = set of propositions
- any set of propositions?

No, our agent shall be *rational!* Rational beliefs should be:

- consistent (not to belief A and notA)
- complete (to believe A or not A for any A)
- closed with respect to
  - conjunctions, disjunctions
  - logical consequence

A B F A B F

4 A N

Classical solution - possible worlds semantics

- belief sets are represented by means of possible worlds
- it is usually required
  - what she knows is true (truth)
  - if she knows something, she knows, that she knows it, (positive introspection)
  - other properties (negative introspection...)
- we get fully introspective logically omniscient agents with complete and consistent sets of beliefs
- Isn't it too perfect ??

・ロト ・ 四ト ・ ヨト ・ ヨト

Classical solution - possible worlds semantics

- belief sets are represented by means of possible worlds
- it is usually required
  - what she knows is true (truth)
  - if she knows something, she knows, that she knows it, (positive introspection)
  - other properties (negative introspection...)
- we get fully introspective logically omniscient agents with complete and consistent sets of beliefs
- Isn't it too perfect ??

・ロト ・ 四ト ・ ヨト ・ ヨト

Classical solution - possible worlds semantics

- belief sets are represented by means of possible worlds
- it is usually required
  - what she knows is true (truth)
  - if she knows something, she knows, that she knows it, (positive introspection)
  - other properties (negative introspection...)
- we get fully introspective logically omniscient agents with complete and consistent sets of beliefs

・ロト ・四ト ・ヨト ・ヨト

LogiCCC. Berlin 2011

5/36

Isn't it too perfect ??

Classical solution - possible worlds semantics

- belief sets are represented by means of possible worlds
- it is usually required
  - what she knows is true (truth)
  - if she knows something, she knows, that she knows it, (positive introspection)
  - other properties (negative introspection...)
- we get fully introspective logically omniscient agents with complete and consistent sets of beliefs
- Isn't it too perfect ??

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- Conditions a belief set has to satisfy depend on the kind of agent we have in mind.
  - our prototypical agent works with collections of data
  - data are typically incomplete and might be inconsistent
  - she might accept some of them as knowledge
  - only data which are confirmed might be accepted

- Conditions a belief set has to satisfy depend on the kind of agent we have in mind.
  - our prototypical agent works with collections of data
  - data are typically incomplete and might be inconsistent
  - she might accept some of them as knowledge
  - only data which are confirmed might be accepted

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Conditions a belief set has to satisfy depend on the kind of agent we have in mind.
  - our prototypical agent works with collections of data
  - data are typically incomplete and might be inconsistent
  - she might accept some of them as knowledge
  - only data which are confirmed might be accepted

・ロト ・ 四ト ・ ヨト ・ ヨト

- Conditions a belief set has to satisfy depend on the kind of agent we have in mind.
  - our prototypical agent works with collections of data
  - data are typically incomplete and might be inconsistent
  - she might accept some of them as knowledge
  - only data which are confirmed might be accepted

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### a scientist performing experiments in a laboratory

 two kinds of information: experimental data – inputs and outputs of experiments/observations ('facts') An α particle hits the surface.

generalizations extracted from these data ('laws')
 If an α particle hits the surface a photon is emitted.

- a scientist performing experiments in a laboratory
- two kinds of information: experimental data – inputs and outputs of experiments/observations ('facts') An α particle hits the surface.
- generalizations extracted from these data ('laws') If an α particle hits the surface a photon is emitted.

- a scientist performing experiments in a laboratory
- two kinds of information: experimental data – inputs and outputs of experiments/observations ('facts')
   An α particle hits the surface.
- generalizations extracted from these data ('laws')
   If an α particle hits the surface a photon is emitted.

- A TE N - A TE N

### Outline

#### Introduction



- Relevant epistemic frames
- 4 Properties
- 5 Axiomatics, soundness, completeness
- 6 Further modalities

 'facts' - atomic formulas and their (weak) conjunctions and disjunctions

Iaws' - implication

incomplete/inconsistent states (not possible words)

• no omniscience, no introspection

• reasonable implication (no 'paradoxes')

substructural epistemic logic

- 'facts' atomic formulas and their (weak) conjunctions and disjunctions
- 'laws' implication
- incomplete/inconsistent states (not possible words)
- no omniscience, no introspection
- reasonable implication (no 'paradoxes')
- substructural epistemic logic

- 'facts' atomic formulas and their (weak) conjunctions and disjunctions
- 'laws' implication
- incomplete/inconsistent states (not possible words)
- no omniscience, no introspection
- reasonable implication (no 'paradoxes')
- substructural epistemic logic

- 'facts' atomic formulas and their (weak) conjunctions and disjunctions
- 'laws' implication
- incomplete/inconsistent states (not possible words)
- no omniscience, no introspection
- reasonable implication (no 'paradoxes')
- substructural epistemic logic

- 'facts' atomic formulas and their (weak) conjunctions and disjunctions
- 'laws' implication
- incomplete/inconsistent states (not possible words)
- no omniscience, no introspection
- reasonable implication (no 'paradoxes')
- substructural epistemic logic

- 'facts' atomic formulas and their (weak) conjunctions and disjunctions
- 'laws' implication
- incomplete/inconsistent states (not possible words)
- no omniscience, no introspection
- reasonable implication (no 'paradoxes')
- substructural epistemic logic

# **Relational semantics**

#### Information states

'Local' data available to the agent

- sets of propositions
- might be incomplete (neither  $s \Vdash \varphi$  nor  $s \Vdash \neg \varphi$  for some  $\varphi$
- or/and inconsistent (both  $s \Vdash \varphi$  and  $s \Vdash \neg \varphi$  for some  $\varphi$

Involvement

relation representing evolution of information states

persistence – all the information from the past states is preserved

LogiCCC, Berlin 2011

10/36

o partial order

# **Relational semantics**

#### Information states

'Local' data available to the agent

- sets of propositions
- might be incomplete (neither  $s \Vdash \varphi$  nor  $s \Vdash \neg \varphi$  for some  $\varphi$
- or/and inconsistent (both  $s \Vdash \varphi$  and  $s \Vdash \neg \varphi$  for some  $\varphi$

#### Involvement

relation representing evolution of information states

• persistence – all the information from the past states is preserved

LogiCCC, Berlin 2011

10/36

partial order

# Relational semantics - lattice connectives

#### Local combinations of data

- (lattice) conjunctions  $x \Vdash \varphi \land \psi$  iff  $x \Vdash \varphi$  and  $x \Vdash \psi$
- (lattice) disjunctions  $x \Vdash \varphi \lor \psi$  iff  $x \Vdash \varphi$  or  $x \Vdash \psi$

**B N A B N** 

# Relational semantics – implication

#### Relevance

ternary relation R reponsible for *implication* R(x, y, z) connects different sources of data

- y 'antecedent state' initial data of an experiment,
- *z* 'consequent state' resulting data of the experiment.
- implication empirical rule: if I observe at x, that an observation of φ at any antecedent state y is followed by observation of ψ in the consequent state, then I accept 'ψ follows φ' as a rule.

# Relational semantics – implication

#### Relevance

ternary relation R reponsible for *implication* R(x, y, z) connects different sources of data

- y 'antecedent state' initial data of an experiment,
- z 'consequent state' resulting data of the experiment.
- implication empirical rule: if I observe at *x*, that an observation of φ at any antecedent state *y* is followed by observation of ψ in the consequent state, then I accept 'ψ follows φ' as a rule.

(日)

# Relational semantics – implication

#### Relevance

ternary relation R reponsible for *implication* R(x, y, z) connects different sources of data

- y 'antecedent state' initial data of an experiment,
- z 'consequent state' resulting data of the experiment.
- implication empirical rule: if I observe at x, that an observation of φ at any antecedent state y is followed by observation of ψ in the consequent state, then I accept 'ψ follows φ' as a rule.

# Relational semantics - implication

Formally:

#### $x \Vdash \varphi \rightarrow \psi$ iff for all y, z, Rxyz and $y \Vdash \varphi$ implies $z \Vdash \psi$

 $\varphi \rightarrow \psi$  holds everywhere in the *R*-neighborhood of *s* (< *y*, *z* > such that *R*(*s*, *y*, *z*))

# Relational semantics – implication

Formally:

 $x \Vdash \varphi \rightarrow \psi$  iff for all y, z, Rxyz and  $y \Vdash \varphi$  implies  $z \Vdash \psi$ 

 $\varphi \rightarrow \psi$  holds everywhere in the *R*-neighborhood of *s* (< *y*, *z* > such that *R*(*s*, *y*, *z*))

3

イロト 不得 トイヨト イヨト

# Properties of the relation R

- *Rxyz* and  $x' \le x, y' \le y, z' \ge z$  implies Rx'y'z' monotonicity
- *Rxyz* implies *Ryxz* exchange
- Rxxx contraction
- $R^2(xy)zw$  implies  $R^2(xz)yw$  associativity

A B F A B F

#### Compatibility

binary relation C responsible for **negation** 

- compatible states are collections of data our scientist wants to be consistent with

- before accepting a negative claim the agent 'looks around' – if nobody claims that  $\varphi$  she can accept  $\neg \varphi$  as a piece of data

- asymmetry of positive and negative data

#### Compatibility

binary relation C responsible for **negation** 

- compatible states are collections of data our scientist wants to be consistent with

- before accepting a negative claim the agent 'looks around' – if nobody claims that  $\varphi$  she can accept  $\neg \varphi$  as a piece of data

- asymmetry of positive and negative data

#### Compatibility

binary relation C responsible for **negation** 

- compatible states are collections of data our scientist wants to be consistent with

- before accepting a negative claim the agent 'looks around' – if nobody claims that  $\varphi$  she can accept  $\neg \varphi$  as a piece of data

- asymmetry of positive and negative data

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

#### Formally:

## $x \Vdash \neg \varphi$ iff $y \nvDash \varphi$ for all y such that xCy

 $\varphi$  does not hold anywhere in the *C*-neighborhood of *x* {y|C(x, y)} (necessary) negation in a Kripke frame )

Formally:

 $x \Vdash \neg \varphi$  iff  $y \nvDash \varphi$  for all y such that xCy

 $\varphi$  does not hold anywhere in the *C*-neighborhood of *x*  $\{y|C(x,y)\}$  (necessary) negation in a Kripke frame )

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Properties of the relation C

Compatibility is in general neither reflexive nor transitive.

- xCy,  $x_1 \le x$ , and  $y_1 \le y$ , imply  $x_1Cy_1$  monotonicity
- *xCy* implies *yCx* symmetry one negation
- $(\forall x)(\exists y)(xCy)$  directedness  $\neg \top \vdash \bot$
- convergence
   (∀x)(∃y(xCy) implies (∃x\*)(xCx\* and ∀z(xCz implies z ≤ x\*)))
- $x \le y$  implies  $y^* \le x^*$
- $x^{**} \leq x$

#### Logical states

 $L \subseteq W$  a set of states responsible for the definition of **truth** in a relevant frame (model).

 $\mathcal{F} \Vdash \varphi \text{ iff } (\forall x \in L)(x \Vdash \varphi) \tag{1}$ 

- if require truth in all states, we get very weak system (e.g.  $(\alpha \rightarrow \alpha)$  and the Modus Ponens fail)

we require truth only in logically 'well behaved' states

**Relevant frame** is a tuple  $F = (W, L, \leq, C, R)$ ,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Logical states

 $L \subseteq W$  a set of states responsible for the definition of **truth** in a relevant frame (model).

$$\mathcal{F} \Vdash \varphi \text{ iff } (\forall x \in L)(x \Vdash \varphi) \tag{1}$$

– if require truth in all states, we get very weak system (e.g.  $(\alpha \rightarrow \alpha)$  and the Modus Ponens fail)

we require truth only in logically 'well behaved' states

**Relevant frame** is a tuple  $F = (W, L, \leq, C, R)$ ,

< ロ > < 同 > < 回 > < 回 >

#### Logical states

 $L \subseteq W$  a set of states responsible for the definition of **truth** in a relevant frame (model).

$$\mathcal{F} \Vdash \varphi \text{ iff } (\forall x \in L)(x \Vdash \varphi) \tag{1}$$

- if require truth in all states, we get very weak system (e.g.  $(\alpha \rightarrow \alpha)$  and the Modus Ponens fail)

- we require truth only in logically 'well behaved' states

**Relevant frame** is a tuple  $F = (W, L, \leq, C, R)$ ,

#### Logical states

 $L \subseteq W$  a set of states responsible for the definition of **truth** in a relevant frame (model).

$$\mathcal{F} \Vdash \varphi \text{ iff } (\forall x \in L)(x \Vdash \varphi) \tag{1}$$

– if require truth in all states, we get very weak system (e.g.  $(\alpha \rightarrow \alpha)$  and the Modus Ponens fail)

- we require truth only in logically 'well behaved' states

**Relevant frame** is a tuple  $F = (W, L, \leq, C, R)$ ,

A B F A B F

# Outline

## Introduction

## 2 Framework

- 3 Relevant epistemic frames
  - 4 Properties
- 5 Axiomatics, soundness, completeness
- 6 Further modalities

#### data can be accepted as knowledge only if they are *confirmed* by a *source*

• we explicitly represent the relation of *being a source* by a new binary relation *S* on the set of states *W* 

• we define our epistemic modality K:

 $x \Vdash K\varphi$  iff  $s \Vdash \varphi$  for some s such that sSx

• which states can serve as sources?

A B F A B F

- data can be accepted as knowledge only if they are confirmed by a source
- we explicitly represent the relation of *being a source* by a new binary relation *S* on the set of states *W*
- we define our epistemic modality K:

 $x \Vdash K\varphi$  iff  $s \Vdash \varphi$  for some *s* such that *sSx* 

• which states can serve as sources?

A B F A B F

- data can be accepted as knowledge only if they are *confirmed* by a *source*
- we explicitly represent the relation of *being a source* by a new binary relation *S* on the set of states *W*
- we define our epistemic modality K:

 $x \Vdash K\varphi$  iff  $s \Vdash \varphi$  for some s such that sSx

• which states can serve as sources?

A B F A B F

(2)

- data can be accepted as knowledge only if they are *confirmed* by a *source*
- we explicitly represent the relation of *being a source* by a new binary relation *S* on the set of states *W*
- we define our epistemic modality K:

 $x \Vdash K\varphi$  iff  $s \Vdash \varphi$  for some *s* such that sSx

(2)

20/36

▶ ◀ ■ ▶ ◀ ■ ▶
LogiCCC, Berlin 2011

• which states can serve as sources?

A source shall be:

- compatible with the current state
- preceding the current state in the involvement ordering
- persistent with respect to the involvement relation (once you have a source, you don't lose it)

LogiCCC, Berlin 2011

21/36

The relation *S* is definable in terms of *C* and  $\leq$ :

A source shall be:

- compatible with the current state
- preceding the current state in the involvement ordering

 persistent with respect to the involvement relation (once you have a source, you don't lose it)

The relation *S* is definable in terms of *C* and  $\leq$ :

A source shall be:

- compatible with the current state
- preceding the current state in the involvement ordering
- persistent with respect to the involvement relation (once you have a source, you don't lose it)

The relation *S* is definable in terms of *C* and  $\leq$ :

A B F A B F

A source shall be:

- compatible with the current state
- preceding the current state in the involvement ordering
- persistent with respect to the involvement relation (once you have a source, you don't lose it)

The relation *S* is definable in terms of *C* and  $\leq$ :

A B F A B F

# 'Independent' confirmation – a source state should strictly precede the current state (a state should not count as a source for itself)

Classic frames,  $\mathcal{F}_c$  satisfy strict precedence, compatibility and persistency

sSx iff s < x and sCx

## sSx and $x \le x'$ then $(\exists s')(s \le s' \land s'Sx')$ (4)

Problem – axiomatization?

Ondrej Majer Marta Bílková, Michal Peliš, Gre

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

'Independent' confirmation – a source state should strictly precede the current state (a state should not count as a source for itself)

Classic frames,  $\mathcal{F}_c$  satisfy strict precedence, compatibility and persistency

sSx iff s < x and sCx (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LogiCCC, Berlin 2011

22/36

## sSx and $x \le x'$ then $(\exists s')(s \le s' \land s'Sx')$ (4)

Problem – axiomatization?

Ondrej Majer Marta Bílková, Michal Peliš, Gre

'Independent' confirmation – a source state should strictly precede the current state (a state should not count as a source for itself)

Classic frames,  $\mathcal{F}_c$  satisfy strict precedence, compatibility and persistency

$$sSx$$
 iff  $s < x$  and  $sCx$  (3)

A B F A B F

LogiCCC, Berlin 2011

22/36

$$sSx$$
 and  $x \le x'$  then  $(\exists s')(s \le s' \land s'Sx')$  (4)

Problem – axiomatization?

Ondrej Majer Marta Bílková, Michal Peliš, Gre

'Independent' confirmation – a source state should strictly precede the current state (a state should not count as a source for itself)

Classic frames,  $\mathcal{F}_c$  satisfy strict precedence, compatibility and persistency

$$sSx$$
 iff  $s < x$  and  $sCx$  (3)

A B F A B F

LogiCCC, Berlin 2011

22/36

$$sSx$$
 and  $x \le x'$  then  $(\exists s')(s \le s' \land s'Sx')$  (4)

Problem – axiomatization?

Ondrej Majer Marta Bílková, Michal Peliš, Gre

# Weak classic frames

Solution – to be less restrictive and to relax some condition(s): < to  $\leq$  (replace independence by non-strict precedence)

Weak classic frames,  $\mathcal{F}_{wc}$  satisfy precedence, compatibility and persistency

sSx iff  $s \leq x$  and sCx

We admit a state to be a source for itself.

Axiomatization? ... still not

A B F A B F

(5)

# Weak classic frames

Solution – to be less restrictive and to relax some condition(s): < to  $\leq$  (replace independence by non-strict precedence)

Weak classic frames,  $\mathcal{F}_{wc}$  satisfy precedence, compatibility and persistency

sSx iff  $s \leq x$  and sCx

We admit a state to be a source for itself.

Axiomatization? ... still not

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

(5)

# Weak classic frames

Solution – to be less restrictive and to relax some condition(s): < to  $\leq$  (replace independence by non-strict precedence)

Weak classic frames,  $\mathcal{F}_{wc}$  satisfy precedence, compatibility and persistency

sSx iff  $s \leq x$  and sCx

We admit a state to be a source for itself.

Axiomatization? ... still not

A B F A B F

(5)

 $\mathcal{F}_g$  (*General frames*) – even weaker condition, we replace 'iff' in the other condition with 'only if':

$$sSx$$
 then  $s \le x$  and  $sCx$  (6)

For  $\mathcal{F}_g$  we provide an axiomatisation .

Every classic (weak classic) frame is a general frame, we have

$$\mathcal{F}_c \subseteq \mathcal{F}_g$$
 and  $\mathcal{F}_{wc} \subseteq \mathcal{F}_g$ 

We can distinguish the class  $\mathcal{F}_{wc}$  from  $\mathcal{F}_{g}$  (and from  $\mathcal{F}_{c}$  as well)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathcal{F}_g$  (*General frames*) – even weaker condition, we replace 'iff' in the other condition with 'only if':

$$sSx$$
 then  $s \le x$  and  $sCx$  (6)

#### For $\mathcal{F}_g$ we provide an axiomatisation .

Every classic (weak classic) frame is a general frame, we have

$$\mathcal{F}_c \subseteq \mathcal{F}_g$$
 and  $\mathcal{F}_{wc} \subseteq \mathcal{F}_g$ 

We can distinguish the class  $\mathcal{F}_{wc}$  from  $\mathcal{F}_{g}$  (and from  $\mathcal{F}_{c}$  as well)

・ロト ・ 四ト ・ ヨト ・ ヨト

 $\mathcal{F}_g$  (*General frames*) – even weaker condition, we replace 'iff' in the other condition with 'only if':

$$sSx$$
 then  $s \le x$  and  $sCx$  (6)

For  $\mathcal{F}_g$  we provide an axiomatisation .

Every classic (weak classic) frame is a general frame, we have

$$\mathcal{F}_{c} \subseteq \mathcal{F}_{g} \text{ and } \mathcal{F}_{wc} \subseteq \mathcal{F}_{g}$$

We can distinguish the class  $\mathcal{F}_{wc}$  from  $\mathcal{F}_{g}$  (and from  $\mathcal{F}_{c}$  as well)

(日)

 $\mathcal{F}_g$  (*General frames*) – even weaker condition, we replace 'iff' in the other condition with 'only if':

$$sSx$$
 then  $s \le x$  and  $sCx$  (6)

For  $\mathcal{F}_g$  we provide an axiomatisation .

Every classic (weak classic) frame is a general frame, we have

$$\mathcal{F}_{c} \subseteq \mathcal{F}_{g}$$
 and  $\mathcal{F}_{wc} \subseteq \mathcal{F}_{g}$ 

We can distinguish the class  $\mathcal{F}_{wc}$  from  $\mathcal{F}_{a}$  (and from  $\mathcal{F}_{c}$  as well)

< 日 > < 同 > < 回 > < 回 > < 回 > <

# Outline



- 2 Framework
- 3 Relevant epistemic frames
- Properties
- 5) Axiomatics, soundness, completeness
- Further modalities

# Positive properties

#### Factivity

 $K\varphi \to \varphi$ 

Strong factivity

### $\neg \varphi \wedge K \varphi \rightarrow \bot$

(not only information warranted at a state can be known, but that anything 'diswarranted' at a state is excluded from knowledge)

Monotonicity

$$\frac{\varphi \to \psi}{\mathsf{K}\varphi \to \mathsf{K}\psi}$$

Ondrej Majer Marta Bílková, Michal Peliš, Gre

3

# Positive properties

#### Factivity

$$K\varphi \to \varphi$$

Strong factivity

$$\neg \varphi \wedge \mathbf{K} \varphi \rightarrow \bot$$

(not only information warranted at a state can be known, but that anything 'diswarranted' at a state is excluded from knowledge)

Monotonicity

$$\frac{\varphi \to \psi}{\mathbf{K} \varphi \to \mathbf{K} \psi}$$

Ondrej Majer Marta Bílková, Michal Peliš, Gre

(日)

# Positive properties

#### Factivity

$$K\varphi \to \varphi$$

Strong factivity

$$\neg \varphi \wedge \mathbf{K} \varphi \rightarrow \bot$$

(not only information warranted at a state can be known, but that anything 'diswarranted' at a state is excluded from knowledge)

Monotonicity

$$\frac{\varphi \to \psi}{\mathbf{K}\varphi \to \mathbf{K}\psi}$$

Ondrej Majer Marta Bílková, Michal Peliš, Gre

(日)

# Negative properties

#### K-axiom

$$\not\models \mathsf{K}(\alpha \to \beta) \to (\mathsf{K}\alpha \to \mathsf{K}\beta)$$

**Necessitation rule** 

 $\frac{\varphi}{\pmb{K}\varphi}$ 

**Modal Modus Ponens** 

$$\frac{K\alpha \quad K(\alpha \to \beta)}{K\beta}$$

do not hold.

э

#### Negative properties

**Introspection** corresponds to a 'second order confirmation' (if  $\alpha$  is confirmed then the confirmation of  $\alpha$  is confirmed as well, similarly for the negative introspection).

Positive introspection

 $K\alpha \to KK\alpha$ 

fails in  $\mathcal{F}_g$  and  $\mathcal{F}_c$ , while it holds in  $\mathcal{F}_{wc}$ .

Negative introspection fails for all frames:

$$\not\models \neg \mathbf{K}\alpha \to \mathbf{K}\neg \mathbf{K}\alpha$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Outline

#### Introduction

- 2 Framework
- 3 Relevant epistemic frames

#### Properties



#### Axiomatics, soundness, completeness

#### Further modalities

Ondrej Majer Marta Bílková, Michal Peliš, Gre

### Axiomatisation

Hilbert style axiomatisation of the background (distributive) substructural logic (e.g. Restall 2000), + axioms for *t* and  $\top$  + axioms for *K*:

•  $K\varphi \rightarrow \varphi$  (factivity)

• 
$$\neg \varphi \land K \varphi \rightarrow \bot$$
 (strong factivity)

•  $K(\varphi \lor \psi) \to K\varphi \lor K\psi$  (distribution)

and the rules:

$$\frac{\varphi \ \psi}{\varphi \land \psi} \quad \frac{\varphi \ \varphi \to \psi}{\psi} \quad \frac{\varphi \to \psi}{K\varphi \to K\psi}$$

# Soundness and completeness

Proven for the background logic being distributive relevant logic R of Belnap and Anderson

Theorem (Soundness)

Any formula provable in RK is valid in all general frames.

Theorem (Strong Completeness)

The axiomatization RK is strongly complete with respect to the class  $\mathcal{F}_g$  of general frames.

LogiCCC, Berlin 2011

31/36

# Soundness and completeness

Proven for the background logic being distributive relevant logic R of Belnap and Anderson

Theorem (Soundness)

Any formula provable in RK is valid in all general frames.

Theorem (Strong Completeness)

The axiomatization RK is strongly complete with respect to the class  $\mathcal{F}_g$  of general frames.

LogiCCC, Berlin 2011

31/36

### Outline

#### Introduction

- 2 Framework
- 3 Relevant epistemic frames
- Properties
- 5 Axiomatics, soundness, completeness
- Further modalities

э

# Implicit knowledge

a 'forward looking' modality I adjoint to K.

 $\psi$  is implicitly known in a state s iff  $\psi$  is true in all the states, for which s is a source

 $x \Vdash I\psi$  iff  $y \Vdash \psi$  for all y such that xSy

$$\frac{\varphi \to I\psi}{K\varphi \to \psi}$$

Ondrej Majer Marta Bílková, Michal Peliš, Gre

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Implicit knowledge

a 'forward looking' modality I adjoint to K.

 $\psi$  is implicitly known in a state *s* iff  $\psi$  is true in all the states, for which *s* is a source

 $x \Vdash I\psi$  iff  $y \Vdash \psi$  for all y such that xSy

 $\frac{\varphi \to I\psi}{K\varphi \to \psi}$ 

LogiCCC, Berlin 2011

3

33/36

# Implicit knowledge

a 'forward looking' modality I adjoint to K.

 $\psi$  is implicitly known in a state *s* iff  $\psi$  is true in all the states, for which *s* is a source

 $x \Vdash I\psi$  iff  $y \Vdash \psi$  for all y such that xSy

$$\frac{\varphi \to I\psi}{K\varphi \to \psi}$$

Ondrej Majer Marta Bílková, Michal Peliš, Gre

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Properties of *I*

 $\varphi \to I \varphi$ 

(everything what is true in the current state is implicitly known) hence

 $I\varphi 
ightarrow II\varphi$ 

(positive introspection)

 $\varphi 
ightarrow I\!K \varphi$ 

(all that holds in a state is at least implicitly known there)

 $\mathsf{KI}arphi o arphi$ 

(nothing else can be known to be implicit then facts true in the state)

#### Properties of *I*

 $\varphi \to I \varphi$ 

(everything what is true in the current state is implicitly known) hence

$$I\varphi \to II\varphi$$

(positive introspection)

 $\varphi \to \textit{IK}\varphi$ 

(all that holds in a state is at least implicitly known there)

 $\mathsf{K}\mathsf{I}arphi
ightarrow arphi$ 

(nothing else can be known to be implicit then facts true in the state)

#### Properties of *I*

 $\varphi \to I \varphi$ 

(everything what is true in the current state is implicitly known) hence

$$I\varphi \to II\varphi$$

(positive introspection)

 $\varphi \to \textit{IK}\varphi$ 

(all that holds in a state is at least implicitly known there)

$$KI\varphi 
ightarrow \varphi$$

(nothing else can be known to be implicit then facts true in the state)

### Strong knowledge

dual of (diamond-like) K - box-like backwards looking modality .

 $\varphi$  is strongly confirmed in  $\varphi$  iff it is true in all its source states (if any).  $x \Vdash \blacksquare \varphi$  iff for any *s* if *sSx* then  $s \Vdash \varphi$ 

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

#### Further research

- proof system
- motivation for weaker systems
- non-distributive frames

★ ∃ > < ∃ >