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Computational Social Choice

• Core Topics/Research Highlights:
1. Computational aspects of evaluating voting rules

- efficient algorithms, approximation, complexity, etc.

2. Computational hardness of manipulation
- typical case analysis, heuristics, bribery, control

3. Computational aspects of fair division
- cake cutting, indivisible goods, efficient algorithms

4. Social choice in combinatorial domains
- multiple referenda, committees, pref. representation

5. Computational aspects of coalitional formation
- weighted voting games, power indices, matching

6. Epistemic issues
- incomplete information, communication complexity, privacy
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Publication Impact

• AI: 19 IJCAI-2011 papers by seven CFSC members!
‣ AP Conitzer received IJCAI Computers & Thought Award
‣ IJCAI Workshop on Social Choice and Artificial Intelligence

- organized by CFSC members Elkind, Endriss, & Lang

• CS Theory: Papers in Information and Computation, Theoretical 
Computer Science, Information Processing Letters, SODA, etc.

• Social Sciences: Papers in Journal of Economic Theory, Social Choice 
and Welfare, Theory and Decision, Mathematical Social Sciences, 
Mathematical Logic Quarterly, Synthese, etc.

• Handbook on Approval Voting, edited by AP Laslier and 
PI Sanver with chapter co-authored by CFSC members 
E. Hemaspaandra, L. Hemaspaandra and Rothe
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Dagstuhl Seminar

• Organized by CFSC members Brandt, Conitzer, Hemaspaandra, 
Laslier, and mathematician William S. Zwicker in March 2010

• 44 participants (including ten of twelve CFSC members)

• Special issue of Mathematical Social Sciences
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COMSOC 2010

• Organized by CFSC members Conitzer and Rothe in 
September 2010

• 93 participants (including nine of twelve CFSC members)

• Invited speakers:
‣ Gabrielle Demange
‣ Matthew O. Jackson
‣ Bettina Klaus
‣ Herve Moulin, and 
‣ Hannu Nurmi

• Tutorial by Agnieszka Rusinowska (from LogICCC CRP on Social 
Software)
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Fig. 5 Partial representation of the tournament T used in the proof of Proposition 7, illustrating that B

is CO-retentive. The case shown is the one where b
k

i
= b

1
2. The dotted and dashed edges indicate the

dominators of b
1
2. The dashed edges also represent (part of) the dominance relation inside D(b1

2). All
missing edges in (D(b1

2),�) point downward. It is easy to see that the Copeland winners in (D(b1
2),�) are

exactly the alternatives in T5.

other alternatives in D(bk

i
) have a score of at most 19. It follows that B is CO-retentive

in T . ��

Remark 8 The same construction can also be used to show that C̊O is not monotonic,
which establishes that monotonicity is not inherited in general. To see this, first ob-
serve that both A and B are minimal retentive sets in T , i.e., C̊O(T ) = A∪ B. Now fix
k ∈ {0, . . . , 6} and i ∈ {0, . . . , 8} arbitrarily and consider b

k

i
∈ Bk. Let T

� be the tour-
nament that is identical to T except that b

k

i
is strengthened against all alternatives in

Bk+4. For example, let k = 1. Then T
� = (A ∪ B,��) with T

�|A∪B\{b1
i
} = T |A∪B\{b1

i
} and

The Tournament 
Equilibrium Set
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Rational Choice Theory

• Let    be a universe of alternatives.

• Alternatives are chosen from feasible subsets.
‣ Throughout this talk, the set of feasible sets          contains all finite and 

non-empty subsets of    .

• A choice function is a function                             s.t.               .

• Two typical consistency conditions
Let         be feasible sets and               .
‣ Contraction (   ):
‣ Expansion (   ):

• Sen (1971) proved that the conjunction of both properties is 
equivalent to the fundamental economic notion of rationalizability.
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S : F(U)→ F(U) S (A) ⊆ A

U

F(U)
U

Amartya K. Sen

x ∈ A ∩ BA, B
α if x ∈ S (A ∪ B) then x ∈ S (A) ∩ S (B)
γ if x ∈ S (A) ∩ S (B) then x ∈ S (A ∪ B)

A B        x
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From Choice to Social Choice

• Let     be a finite set of voters and          the set of all transitive 
and complete relations over   .

• A social choice function (SCF) is a function                
                                         such that                   .
‣ For a given preference profile, every SCF induces a choice function and 

all consistency conditions can be readily applied.

• Useful conditions on SCFs
‣ IIA (Independence of Irrelevant Alternatives): Choice only depends on 

preferences over alternatives in the feasible set.
‣ Pareto-optimality: If a is unanimously strictly preferred to b, then b is 

not chosen.
‣ Non-dictatorship: There should be no voter whose most preferred 

alternative is always uniquely chosen.
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f (R, A) ⊆ Af : R(U)N × F(U)→ F(U)

R(U)
U
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Arrow’s Impossibility

• Theorem (Arrow, 1951; Sen, 1971): There exists no SCF that 
simultaneously satisfies IIA, Pareto-optimality, non-dictatorship, 
α, and γ whenever there are more than two alternatives.
‣ In the context of SCFs, IIA is only a mild framework requirement  

(Bordes and Tideman, 1991) and dropping it offers little relief (Banks, 
1995).

‣ Dropping Pareto-optimality offers little relief (Wilson, 1972).
‣ Dropping non-dictatorship is unacceptable.
‣ Dropping γ offers little relief (Sen, 1977).

• Dropping α allows for reasonable SCFs!
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Majoritarian SCFs

• An SCF is majoritarian if its outcome only depends on the 
pairwise majority relation ≻ within the feasible set.
‣ Majoritarianism implies all Arrovian conditions except α and γ.
‣ We assume for convenience that individual preferences are strict and 

there is an odd number of voters.
‣ Hence, the pairwise majority relation is asymmetric and complete, i.e., 

it can be represented by a tournament graph.
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Positive Results

• Theorem (Moulin, 1986): The uncovered set, proposed 
independently by Fishburn (1977) and Miller (1980), is the 
smallest majoritarian SCF satisfying γ.

• γ can be weakened to strong retentiveness.

• Theorem (B., 2011): The Banks set, proposed by Banks (1985), is 
the smallest majoritarian SCF satisfying strong retentiveness.

• Strong retentiveness can be further weakened to retentiveness.

• Conjecture (Schwartz, 1990): The tournament equilibrium set 
(TEQ) is the smallest majoritarian SCF satisfying retentiveness.
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Tournament Equilibrium Set

• Let S be an arbitrary SCF.
‣ A non-empty set of alternatives B is S-retentive, if 

S({b | b≻a}) ⊆ B for all a∈B.
‣ Idea: No alternative in the set should be “properly” 

dominated by an outside alternative.

•    is a new SCF that yields the union of all 
minimal S-retentive sets.
‣   

- recursive definition
- unique fixed point of ring-operator
- Schwartz’s conjecture states that every tournament 

contains a unique minimal TEQ-retentive set.
- Example: TEQ = {a,b,c}
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The Mystery of TEQ

• Theorem (Laffond, Laslier, Le Breton, 1993; Houy, 2009): TEQ 
satisfies monotonicity (and a host of other desirable properties) iff 
Schwartz’s conjecture holds.

• Theorem (B., Harrenstein; 2011): TEQ satisfies α̂ and γ̂ (and thus is 
set-rationalizable and self-stable) iff Schwartz’s conjecture holds.

• Theorem (B., 2011): TEQ is group-strategyproof (according to 
Kelly’s preference extension) iff Schwartz’s conjecture holds.

• All or nothing: Either TEQ is a most appealing SCF or it is severely 
flawed.
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Computing TEQ

• Theorem (B., Fischer, Harrenstein, Mair; 2010): 
Deciding whether an alternative is contained in 
TEQ is NP-hard.
‣ best known upper bound is PSPACE!
‣ simple heuristic relying on Schwartz’s conjecture (B. et al., 2010)
‣ fixed-parameter tractable with respect to decomposition degree 

(B., Brill, Seedig; 2011)

• We defined an infinite hierarchy of efficiently computable SCFs 
that “converge” towards TEQ and share most of its conjectured 
desirable properties (B., Brill, Fischer, Harrenstein; 2010)
‣ yields an infinite number of weaker versions of Schwartz’s conjecture; 

we proved the second one
‣ anytime algorithm for computing TEQ (based on Schwartz’s conjecture)
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Lemma 1 Let T = (C ∪U,�) be a tournament in T ∗ and let B ⊆ C ∪U such that d ∈ B.
Then, for each u ∈ U ∩B there exists some c ∈ C ∩B such that c →∗

B u.

Proof: Let ci ∈ C ∩B be such that DB(ci) ∩C = ∅, i.e., ci is the alternative in C with the

highest index among those included in B. Then,

ci →B c for all c ∈ B ∩ C with c �= ci. (1)

For this, merely observe that by construction ci is the Condorcet winner in DB(c). Hence,

ci ∈ TEQ(DB(c)) and ci →B c.
The lemma itself then follows from the stronger claim that for each u ∈ U ∩ B there is

some c ∈ C ∩ B with both c →∗
B u and c ∈ TEQ(B). This claim we prove by structural

induction on supersets B of {d}.
If B = {d}, U ∩B = ∅ and the claim is satisfied trivially. So let {d} be a proper subset

of B. Again, if U ∩ B = ∅, the claim holds trivially. So we may assume there be some

u ∈ U ∩B. Then, d ∈ DB(u) by construction of T . If DB(u)∩U = ∅, DB(u) is a non-empty

subset of C ∩B, and so is TEQ(DB(u)). It follows that for some c ∈ TEQ(DB(u)) ∩ C we

have c →B u. If, on the other hand, DB(u)∩U �= ∅, the induction hypothesis is applicable

and we have c ∈ TEQ(DB(u)) for some c ∈ C ∩ B. Hence, c →B u. With u having been

chosen arbitrarily, we actually have that for all u ∈ U ∩ B, there is some c ∈ C ∩ B with

c →B u. It remains to be shown that there is some c ∈ C ∩ TEQ(B) with c →∗
B u.

To this end, again consider ci ∈ C ∩ B such that DB(ci) ∩ C = ∅. It suffices to show

that ci →∗
B b for all b ∈ B, as then both ci ∈ TEQ(B) ∩ C and ci →∗

B u. So, consider an

arbitrary b ∈ B. If b = ci, the case is trivial. If b ∈ C ∩ B but b �= ci, we are done by (1).
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Schwartz’s Conjecture

• There exists no counterexample with less than 13 alternatives; 
checked all 154 billion tournaments (B. et al., 2010). 
‣ TEQ satisfies all nice properties when there are less than 13 alternatives.

• We did not find a counterexample by searching billions of random 
tournaments with up to 50 alternatives.
‣ Checking significantly larger tournaments is computationally intractable.

• Over the years, we discarded various incorrect proof attempts of 
Schwartz’s conjecture by ourselves and other researchers.

• Many non-trivial weakenings of Schwartz’s conjecture are known 
to hold (Good, 1971; Dutta, 1988; B. et al, 2010; B., 2011)
‣ Recently, I proposed a weakening of Schwartz’s conjecture which is more 

accessible, but still highly non-trivial (B., 2008).
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• Non-constructive proof relying on probabilistic argument by 
Erdös and Moser (1964)
‣ Neither the counter-example nor its size can be deduced from proof.
‣ Smallest counter-example of this type requires about 10138 alternatives.
‣ Verifying whether a tournament of this size constitutes a counter-

example is not feasible.
- The number of atoms in the universe is approximately 1080.

• What does this mean?
‣ In principle, TEQ is severely flawed.
‣ If there does not exist a substantially smaller counter-example, this has 

no practical consequences.
‣ The 21-year-old conjecture of a political scientist has been refuted 

using extremal graph theory.
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Final Words

• In April 2011, during an extensive debate on whether plurality 
rule, which is known for various flaws, should be replaced with 
another somewhat more complicated voting rule (not TEQ!), 
British Prime Minister David Cameron responded to arguments 
from academics by saying:
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Politics shouldn't be some mind-bending exercise. 
It's about what you feel in your gut.


