Strategyproof Irresolute Social Choice Functions

Markus Brill

LogICCC Final Conference Berlin, September 2011

Brandt: Group-Strategyproof Irresolute Social Choice Functions (IJCAI 2011)
 Brandt, Brill: Necessary and Sufficient Conditions for the Strategyproofness
 of Irresolute Social Choice Functions (TARK 2011)

Preliminaries

- Finite set of at least three alternatives
 - Each voter *i* has complete preference relation R_i over alternatives
 - For most of this talk, we assume strict preferences (no ties)
- A social choice function (SCF) is a function that maps a preference profile to a non-empty subset of alternatives
 - An SCF f is *resolute* if |f(R)|=1 for all preference profiles R
 - A Condorcet extension is an SCF that uniquely chooses the Condorcet winner whenever one exists
- An SCF is strategyproof (or non-manipulable) if no voter can obtain a more preferred outcome by misrepresenting his preferences
 - An SCF is group-strategyproof if no group of voters can obtain an outcome that all of them prefer to the original one

Impossibility

- Theorem (Gibbard, 1973; Satterthwaite, 1975): Every non-imposed, non-dictatorial, resolute SCF is manipulable
 - "[resoluteness] is a rather restrictive and unnatural assumption" (Gärdenfors, 1976)
 - "If there is a weakness to the Gibbard-Satterthwaite theorem, it is the assumption that winners are unique" (Taylor, 2005)
- Problem: Resolute SCFs have to pick single alternatives based on the individual preferences only
 - incompatible with anonymity and neutrality
- Are there reasonable irresolute strategyproof SCFs?
 - How do voters compare sets of alternatives with each other?

Preference Extensions

- Kelly's extension (1977):
 - $X R_i^{K} Y$ iff $x R_i y$ for all $x \in X$ and $y \in Y$
 - Example: a $R_i b R_i c \Rightarrow \{a\} R_i^{K} \{b,c\}$
- Fishburn's extension (1972):
 - ► X R_i^F Y iff x R_i^F z R_i^F y for all x ∈ X, z ∈ X ∩ Y, and y ∈ Y
 - Example: a $R_i b R_i c \Rightarrow \{a,b\} R_i^F \{a,b,c\}$
- Gärdenfors' extension (1976):
 - If $X \subseteq Y$ or $Y \subseteq X$, same as Fishburn's extension
 - Otherwise, X R_i^G Y iff x R_i y for all $x \in X \setminus Y$ and $y \in Y \setminus X$
 - Example: a $R_i b R_i c \Rightarrow \{a,b\} R_i^G \{a,c\}$

Strategyproofness

 The relations R_i^K, R_i^F, and R_i^G are incomplete and ordered w.r.t. set inclusion:

- Given E ∈ {K, F, G}, an SCF is *E-strategyproof* if no voter can obtain a more preferred outcome (according to R_i^ε) by misrepresenting his preferences
 - G-strategyproofness ⇒ F-strategyproofness ⇒ K-strategyproofness

Kelly-Strategyproofness

- If individual preferences are not required to be strict, every Condorcet extension is K-manipulable
 - strengthening of results by G\u00e4rdenfors (1976) and Taylor (2005)
- New axiom: An SCF satisfies set-monotonicity if weakening unchosen alternatives has no effect on the choice set
- Theorem: Every SCF that satisfies set-monotonicity is K-strategyproof

Set-Monotonic SCFs

- Pareto rule (PAR)
 - all alternatives that are not Pareto-dominated
- Omninomination rule (OMNI)
 - all alternatives that are ranked first by some voter
- Condorcet rule (COND)
 - Condorcet winner if it exists; all alternatives otherwise
- Top Cycle (TC) [Good, 1971; Smith, 1973]
 - maximal elements of the transitive closure of the weak majority relation
- Minimal Covering Set (MC) [Dutta, 1988]
- Bipartisan Set (BP) [Laffond et al., 1993]

Strategyproof Irresolute Social Choice Functions

Pairwise SCFs

- An SCF is *pairwise* if it only depends on pairwise comparisons (Young, 1974)
 - Examples: Kemeny, Borda, Maximin, ranked pairs, all tournament solutions (Slater set, uncovered set, Banks set, TEQ etc.)
- Theorem: Every K-strategyproof, pairwise SCF satisfies setmonotonicity
 - most standard SCFs violate set-monotonicity
- Corollary: A pairwise SCF is K-strategyproof if and only if it satisfies set-monotonicity
 - generalization of Muller-Satterthwaite theorem to irresolute SCFs

Fishburn-Strategyproofness

- An SCF f satisfies *exclusive independence of chosen alternatives* (EICA) if $f(R') \subseteq f(R)$ for all pairs of preference profiles R and R' that differ only on alternatives in f(R)
 - ▶ f satisfies *weak EICA* if *f*(*R*') is not a strict superset of *f*(*R*)
- Theorem: Every SCF that satisfies set-monotonicity and EICA is F-strategyproof
 - Corollary: PAR, OMNI, COND, TC are F-strategyproof
- Theorem: Every pairwise SCF that is F-strategyproof satisfies set-monotonicity and weak EICA
 - Corollary: MC and BP are *not* F-strategyproof

	K-str.proof	F-str.proof	G-str.proof
Pareto rule	✓	Feldm	an 🗶
Omninomination rule	 Image: A second s	 Image: A second s	Gärdenfo
Condorcet rule	 Image: A set of the set of the		1976
Top cycle	✓	Sanver Zwick	ker
Minimal covering set	✓	★ 2010	•
Bipartisan set	 Image: A second s	×	×
"everything else"	*	*	×

Conclusion

- Irresolute SCFs circumvent the GS impossibility
 - strategyproofness depends on choice of preference extension
- Our axiomatic approach yields
 - new results and unified proofs of known results
 - ► error in the literature: COND∩PAR is not G-strategyproof
- All results extend to group-strategyproofness
- Future work
 - is there a Pareto-optimal pairwise SCF that is G-strategyproof?
 - other types of manipulation
 - Moulin's no-show paradox only applies to resolute SCFs
 - justification of Kelly's preference extension

