Proof systems for dependence and independence logic

Pietro Galliani

Institute for Logic, Language and Computation Universiteit van Amsterdam

LogiCCC Final Conference

Outline

Logics of imperfect information

Pietro Galliani Proof systems for dependence and independence logic

Hodges' Semantics for First Order Logic

Teams

A team X is a set of assignments over the same first order model and over a finite set Dom(X) of variables.

- If α literal, $M \models_X \alpha$ iff for all $s \in X$, $M \models_s \alpha$;
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$;
- $M \models_X \phi \lor \psi$ iff $X = Y \cup Z$, $M \models_Y \phi$ and $M \models_Z \psi$;
- $M \models_X \exists x \phi \text{ iff } \exists H : X \to \mathcal{P}(\mathsf{Dom}(M)) \text{ s.t. } M \models_{X[H/x]} \phi;$
- $M \models_X \forall x \phi$ iff $M \models_{X[M/x]} \phi$.

Aside: Hodges Semantics and Game Theoretic Semantics

Teams correspond to sets of possible states in the subgames of the semantic game.

Hodges' Semantics for First Order Logic

Teams

A team X is a set of assignments over the same first order model and over a finite set Dom(X) of variables.

- If α literal, $M \models_X \alpha$ iff for all $s \in X$, $M \models_s \alpha$;
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$;
- $M \models_X \phi \lor \psi$ iff $X = Y \cup Z$, $M \models_Y \phi$ and $M \models_Z \psi$;
- $M \models_X \exists x \phi \text{ iff } \exists H : X \to \mathcal{P}(\text{Dom}(M)) \text{ s.t. } M \models_{X[H/x]} \phi;$
- $M \models_X \forall x \phi \text{ iff } M \models_{X[M/x]} \phi.$

Aside: Hodges Semantics and Game Theoretic Semantics

Teams correspond to sets of possible states in the subgames of the semantic game.

Dependence Logic (Väänänen)

Dependence Atoms

 $M \models_X = (\vec{t}_1, t_2)$ if and only if for all $s, s' \in X$, if s and s' coincide over \vec{t}_1 then they coincide over t_2 too (t_2 is a function of \vec{t}_1 in X).

Dependence Logic

Dependence Logic = First Order Logic + Dependence Atoms.

"Equivalent" to IF Logic and Branching Quantifier Logic

There exists translations between these logics (wrt sentences).

ヘロト ヘアト ヘビト ヘビト

Independence Logic (Grädel and Väänänen)

Independence Atoms (Grädel, Väänänen)

 $M \models_X \vec{t}_2 \perp_{\vec{t}_1} \vec{t}_3$ if and only if, for all $s, s' \in X$ such that $\vec{t}_1 \langle s \rangle = \vec{t}_1 \langle s' \rangle$ there exists a $s'' \in X$ such that

$$\vec{t}_1 \langle s'' \rangle \vec{t}_2 \langle s'' \rangle = \vec{t}_1 \langle s \rangle \vec{t}_2 \langle s \rangle, \ \vec{t}_1 \langle s'' \rangle \vec{t}_3 \langle s'' \rangle = \vec{t}_1 \langle s' \rangle \vec{t}_3 \langle s' \rangle$$

Independence Logic (Grädel, Väänänen)

Independence Logic = First Order Logic + Independence Atoms.

ヘロト 人間 ト 人目 ト 人目 トー

Inclusion/Exclusion Logic (Galliani)

Inclusion Atoms

 $M \models_X \vec{t}_1 \subseteq \vec{t}_2$ if and only if for all $s \in X$ there exists a $s' \in X$ such that

$$\vec{t}_1 \langle s \rangle = \vec{t}_2 \langle s' \rangle;$$

Exclusion Atoms

 $M \models_X \vec{t}_1 \mid \vec{t}_2$ if and only if, for all $s, s' \in X$, $\vec{t}_1 \langle s \rangle \neq \vec{t}_2 \langle s' \rangle$.

イロト 不得 トイヨト イヨト

Proof theory for logics of imperfect information?

All of these logics are undecidable!

They are all equivalent to Σ_1^1 over sentences...

We can consider fragments, however...

Väänänen: Proof system for *first order* consequences of *dependence logic* formulas.

... or perhaps we can weaken the semantics?

Example: Second order logic with Henkin semantics.

Idea suggested by Väänänen.

Proof theory for logics of imperfect information?

All of these logics are undecidable!

They are all equivalent to Σ_1^1 over sentences...

We can consider fragments, however...

Väänänen: Proof system for *first order* consequences of dependence logic formulas.

... or perhaps we can weaken the semantics?

Example: Second order logic with Henkin semantics.

Idea suggested by Väänänen.

General premodels

General premodels

A general premodel of signature Σ is a pair (M, \mathcal{G}) , where *M* is a first order model and \mathcal{G} is a set of teams (relations).

Semantics over premodels

 $\mathbf{P} = (M, \mathcal{G})$ general premodel, and let $X \in \mathcal{G}$. Then

- Usual rules for atoms and literals;
- $\mathbf{P} \models_X \phi \land \psi$ iff $\mathbf{P} \models_X \phi$ and $\mathbf{P} \models_X \psi$;
- $\mathbf{P} \models_X \phi \lor \psi$ iff $X = Y \cup Z$, $Y, Z \in \mathcal{G}$, $\mathbf{P} \models_Y \phi$ and $\mathbf{P} \models_Z \psi$;
- $\mathbf{P} \models_X \exists x \phi \text{ iff } \exists H \text{ s.t. } X[H/x] \in \mathcal{G} \text{ and } \mathbf{P} \models_{X[H/x]} \phi;$
- $\mathbf{P} \models_X \forall x \phi \text{ iff } \mathbf{X}[M/x] \in \mathcal{G} \text{ and } \mathbf{P} \models_{\mathbf{X}[M/x]} \phi.$

イロト イポト イヨト イヨト

э

General models

General models

A general premodel (M, \mathcal{G}) is a *general model* if and only if \mathcal{G} contains all teams corresponding to relations definable in first order logic (with parameters) over $(M, \operatorname{Rel}(\mathcal{G}))$.

Least general models

 (M, \mathcal{L}) is a least general model if and only if

 $\mathcal{L} = \{ \| \theta(\vec{x}, \vec{m}) \|_{\mathcal{M}} : \theta \in \mathsf{FOL}, \vec{m} \in \mathsf{Dom}(\mathcal{M}) \}.$

イロト イ押ト イヨト イヨト

From least general model to general models

An easy (but useful) result

Let $\mathbf{P} = (M, \mathcal{G}), \mathbf{P}' = (M, \mathcal{G}')$, and $\mathcal{G} \subseteq \mathcal{G}'$. Then

$$X \in \mathcal{G}, \mathbf{P} \models_X \phi \Rightarrow \mathbf{P}' \models_X \phi$$

A consequence

 (M, \mathcal{G}) general model, (M, \mathcal{L}) least general model. Then

$$X \in \mathcal{L}, (M, \mathcal{L}) \models_X \phi \Rightarrow (M, \mathcal{G}) \models_X \phi.$$

イロト イポト イヨト イヨト

Validity

Validity

Let ϕ be a independence logic formula. Then

- FUL ⊨ φ if and only if M ⊨_X φ for all first-order models M, according the usual semantics.
- GEN $\models \phi$ if and only if **G** $\models_X \phi$ for all general models **G** = (*M*, *G*) and all *X* \in *G*.
- LEA ⊨ φ if and only if L ⊨_X φ for all least general models
 G = (M, G) and all X ∈ G.

A theorem

For all independence logic formulas ϕ ,

$$(\mathsf{LEA} \models \phi \Leftrightarrow \mathsf{GEN} \models \phi) \Rightarrow \mathsf{FUL} \models \phi.$$

3-sequents

3-sequents

A 3-sequent is an expression of the form $\Gamma(\vec{p}) \mid \theta(\vec{x}, \vec{p}) \vdash \phi(\vec{x})$, where

- $\Gamma(\vec{p})$ is a finite set of first order formulas;
- $\theta(\vec{x}, \vec{p})$ is a first order formula;
- $\phi(\vec{x})$ is an independence logic formula.

Valid 3-sequents

 $\Gamma(\vec{p}) \mid \theta(\vec{x}, \vec{p}) \vdash \phi(\vec{x})$ is *valid* if and only if, for all least general model $\mathbf{L} = (M, \mathcal{L})$ and for all \vec{m} ,

$$M \models \Gamma(\vec{m}) \Rightarrow \mathbf{L} \models_{\|\theta(\vec{x},\vec{m})\|_{M}} \phi.$$

The proof system: Axioms

Axioms for literals

PS-FO: For all first order literals $\alpha(\vec{x})$ and all first order $\theta(\vec{p}, \vec{x})$,

 $\forall \vec{x}(\theta(\vec{p}, \vec{x}) \rightarrow \alpha(\vec{x})) \mid \theta(\vec{p}, \vec{x}) \vdash \alpha(\vec{x});$

PS-dep: For all $\vec{t}(\vec{x})$, $t'(\vec{x})$ and for all first order $\theta(\vec{p}, \vec{x})$,

$$egin{aligned} &orall ec{x}_1ec{x}_2(heta(ec{
ho},ec{x}_1)\wedge heta(ec{
ho},ec{x}_2)\wedgeec{t}(ec{x}_1)=ec{t}(ec{x}_2)
ightarrow \ & o t'(ec{x}_1)=t'(ec{x}_2))\mid heta(ec{
ho},ec{x})dash=(ec{t},t'); \end{aligned}$$

Note: A similar rule was found earlier by Väänänen.

ヘロト ヘアト ヘリト・

The proof system: Axioms

Axioms for literals

PS-FO: For all first order literals $\alpha(\vec{x})$ and all first order $\theta(\vec{p}, \vec{x})$,

 $\forall \vec{x} (\theta(\vec{p}, \vec{x}) \rightarrow \alpha(\vec{x})) \mid \theta(\vec{p}, \vec{x}) \vdash \alpha(\vec{x});$

PS-indep: For all $\vec{t}_1(\vec{x})$, $\vec{t}_2(\vec{x})$ and $\vec{t}_3(\vec{x})$ and for all first order $\theta(\vec{p}, \vec{x})$,

 $\begin{array}{l} \forall \vec{x}_1 \vec{x}_2((\theta(\vec{p}, \vec{x}_1) \land \theta(\vec{p}, \vec{x}_2) \land \vec{t}_1(\vec{x}_1) = \vec{t}_1(\vec{x}_2)) \rightarrow \\ \rightarrow \exists \vec{x}_3(\theta(\vec{p}, \vec{x}_3) \land \vec{t}_1 \vec{t}_2(\vec{x}_3) = \vec{t}_1 \vec{t}_2(\vec{x}_1) \land \\ \land \vec{t}_1 \vec{t}_3(\vec{x}_3) = \vec{t}_1 \vec{t}_3(\vec{x}_2))) \mid \theta(\vec{p}, \vec{x}_3) \vdash \vec{t}_2 \perp_{\vec{t}_1} \vec{t}_3; \end{array}$

(日)

The proof system: Axioms

Axioms for literals

PS-FO: For all first order literals $\alpha(\vec{x})$ and all first order $\theta(\vec{p}, \vec{x})$,

$$\forall \vec{x}(\theta(\vec{p}, \vec{x}) \rightarrow \alpha(\vec{x})) \mid \theta(\vec{p}, \vec{x}) \vdash \alpha(\vec{x});$$

PS-inc: For all $\theta(\vec{p}, \vec{x})$, $\vec{t}_1(\vec{x})$ and $\vec{t}_2(\vec{x})$

 $\begin{array}{l} \forall \vec{x}_1(\theta(\vec{p},\vec{x}_1) \rightarrow \exists \vec{x}_2(\theta(\vec{p},\vec{x}_2) \wedge \vec{t}_1(\vec{x}_1) = \vec{t}_2(\vec{x}_2))) \mid \\ \mid \theta(\vec{p},\vec{x}) \vdash \vec{t}_1 \subseteq \vec{t}_2; \end{array}$

The proof system: Axioms

Axioms for literals

PS-FO: For all first order literals $\alpha(\vec{x})$ and all first order $\theta(\vec{p}, \vec{x})$,

 $\forall \vec{x}(\theta(\vec{p}, \vec{x}) \rightarrow \alpha(\vec{x})) \mid \theta(\vec{p}, \vec{x}) \vdash \alpha(\vec{x});$

PS-exc: For all $\theta(\vec{p}, \vec{x})$, $\vec{t}_1(\vec{x})$ and $\vec{t}_2(\vec{x})$ $\forall \vec{x}_1 \vec{x}_2((\theta(\vec{p}, \vec{x}_1) \land \theta(\vec{p}, \vec{x}_2)) \rightarrow \vec{t}_1(\vec{x}_1) \neq \vec{t}_2(\vec{x}_2)) \mid$ $\mid \theta(\vec{p}, \vec{x}) \vdash \vec{t}_1 \mid \vec{t}_2;$

イロト イボト イヨト イヨト

ъ

The proof system: Rules for connectives

Rules for connectives

PS- \lor : If $\Gamma_1 \mid \theta_1 \vdash \phi_1$ and $\Gamma_2 \mid \theta_2 \vdash \phi_2$ then, for all θ ,

 $\Gamma_1, \Gamma_2, \forall \vec{x} (\theta \leftrightarrow (\theta_1 \lor \theta_2)) \mid \theta \vdash \phi_1 \lor \phi_2;$

PS- \wedge : If $\Gamma_1 \mid \theta \vdash \phi_1$ and $\Gamma_2 \mid \theta \vdash \phi_2$ then $\Gamma_1, \Gamma_2 \mid \theta \vdash \phi_1 \land \phi_2;$ PS- \exists : If $\Gamma \mid \theta' \vdash \phi$ then, for all θ ,

 $\mathsf{\Gamma}, \forall \vec{x} (\exists y \theta' \leftrightarrow \exists y \theta) \mid \theta \vdash \exists y \phi;$

PS- \forall : If $\Gamma \mid \theta' \vdash \phi$ then, for all θ ,

 $\mathsf{\Gamma}, \forall \vec{x}(\theta' \leftrightarrow \exists y\theta) \mid \theta \vdash \forall y\phi.$

・ロト ・ 一 ト ・ ヨト・

ъ

The proof system: Additional rules

Additional rules

PS-ent: If $\Gamma \mid \theta \vdash \phi$ and $\bigwedge \Gamma' \models \bigwedge \Gamma$ holds in First Order Logic then $\Gamma' \mid \theta \vdash \phi$;

PS-depar: If $\Gamma \mid \theta \vdash \phi$ and *p* is a parameter variable which does not occur free in θ then $\exists p \land \Gamma \mid \theta \vdash \phi$;

PS-split: If
$$\Gamma_1 | \theta \vdash \phi$$
 and $\Gamma_2 | \theta \vdash \phi$ then $(\bigwedge \Gamma_1) \lor (\bigwedge \Gamma_2) | \theta \vdash \phi$.

The main result

The above axiom system is sound and complete for valid 3-sequents.

イロト 不得 トイヨト イヨト

The proof system: Additional rules

Additional rules

PS-ent: If $\Gamma \mid \theta \vdash \phi$ and $\bigwedge \Gamma' \models \bigwedge \Gamma$ holds in First Order Logic then $\Gamma' \mid \theta \vdash \phi$;

PS-depar: If $\Gamma \mid \theta \vdash \phi$ and *p* is a parameter variable which does not occur free in θ then $\exists p \land \Gamma \mid \theta \vdash \phi$;

PS-split: If
$$\Gamma_1 | \theta \vdash \phi$$
 and $\Gamma_2 | \theta \vdash \phi$ then $(\bigwedge \Gamma_1) \lor (\bigwedge \Gamma_2) | \theta \vdash \phi$.

The main result

The above axiom system is sound and complete for valid 3-sequents.

The proof system: Additional rules

A further result

Let $\phi(\vec{x})$ be an independence logic formula, and let *R* be a relation symbol not in it. Then

$$\mathsf{LEA} \models \phi(\vec{x}) \Leftrightarrow \emptyset \mid R(\vec{x}) \vdash \phi(\vec{x}) \text{ is valid.}$$

So, in conclusion...

We now have a proof system for independence logic (with respect to a weaker semantics).

The proof system: Additional rules

A further result

Let $\phi(\vec{x})$ be an independence logic formula, and let *R* be a relation symbol not in it. Then

$$\mathsf{LEA} \models \phi(\vec{x}) \Leftrightarrow \emptyset \mid R(\vec{x}) \vdash \phi(\vec{x}) \text{ is valid.}$$

So, in conclusion...

We now have a proof system for independence logic (with respect to a weaker semantics).

イロト イ押ト イヨト イヨト

The end

The end (for now...)

Pietro Galliani Proof systems for dependence and independence logic

Extra slides: Completeness

A lemma

Suppose that $\mathbf{L} = (M, \mathcal{L}) \models_{\|\theta(\vec{x}, \vec{m})\|_M} \phi(\vec{x})$. Then there exists a finite $\Gamma(\vec{p})$ such that $\Gamma(\vec{p}) \mid \theta(\vec{x}, \vec{p}) \vdash \phi$ is provable and $M \models \Gamma(\vec{m})$.

Proof.

By induction.

ヘロト 人間 とくほ とくほ とう

э

Extra slides: Completeness

Completeness

If $\Gamma(\vec{p}) \mid \theta(\vec{x}, \vec{p}) \vdash \phi(\vec{x})$ is valid, it is provable in our system.

Proof (1).

By the lemma, for any suitable first order model *M* and for every \vec{m} with $M \models \Gamma(\vec{m})$ there exists a $\Gamma_{M,\vec{m}}(\vec{p})$ s.t.

•
$$\Gamma_{M,\vec{m}}(\vec{p}) \mid \theta(\vec{x},\vec{p}) \vdash \phi(\vec{x})$$
 is provable;

$$M \models \Gamma_{M,\vec{m}}(\vec{m}).$$

Now consider the first order theory

$$T(\vec{p}) = \left\{ \bigwedge \Gamma(\vec{p}) \right\} \cup \left\{ \neg \bigwedge \Gamma_{M,\vec{m}}(\vec{p}) : M \text{ countable}, M \models \Gamma(\vec{m}) \right\}$$

Extra slides: Completeness

Proof (2).

$$\mathcal{T}(ec{
ho}) = \left\{ igwedge \Gamma(ec{
ho})
ight\} \cup \left\{ \neg igwedge \Gamma_{M,ec{m}}(ec{
ho}) : M ext{ countable}, M \models \Gamma(ec{m})
ight\}$$

 $T(\vec{p})$ is unsatisfiable: if $M \models T(\vec{m})$ then $\exists M_0 \subseteq M$ countable s.t. $M_0 \models T(\vec{m})$. Then $(M_0, \mathcal{L}) \models_{\parallel \theta(\vec{x}, \vec{m}) \parallel_{M_0}} \phi(\vec{x})$, and hence $M_0 \models \Gamma_{M_0, \vec{m}}$. Therefore, $\bigwedge \Gamma(\vec{p})$ implies $\bigvee_{i=1}^n (\bigwedge \Gamma_{M_i, \vec{m}_i}(\vec{p}))$; but on the other hand, by the split rule, $\bigvee_{i=1}^n (\bigwedge \Gamma_{M_i, \vec{m}_i}(\vec{p})) \mid \theta(\vec{x}, \vec{p}) \vdash \phi(\vec{x})$ is provable.

イロト 不得 トイヨト イヨト

Extra slides: Completeness

Proof (3).

•
$$\Gamma(\vec{p})$$
 implies $\bigvee_{i=1}^{n} (\bigwedge \Gamma_{M_{i},\vec{m}_{i}}(\vec{p}));$

•
$$\bigvee_{i=1}^{n} \left(\bigwedge \Gamma_{M_{i},\vec{m}_{i}}(\vec{p}) \right) \mid \theta(\vec{x},\vec{p}) \vdash \phi(\vec{x}) \text{ is provable.}$$

But then, by the entailment rule, $\Gamma(\vec{p}) \mid \theta(\vec{x}, \vec{p}) \vdash \phi(\vec{x})$ is provable.

イロト イポト イヨト イヨト