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X® challenges the appeal to intuitions
Topics:!

Causation

Consciousness
Cross-cultural intuitions
Epistemology

Folk morality/psychology
Free will

Intentional action
Metaphilosophy

» | Goal: Extending the domain of X® to uncertain reasoning
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Example I

Nonmonotonic reasoning



The Tweety problem
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and necessary grounding for the entire enterprise of formalizing default
reasoning” (Peltetier & Elio, 1997, p. 165).

“We have claimed in this paper that, unlike classical logic, default
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However, there are a priori rationality norms for nonmonotonic reasoning, e.g.,
System P (Kraus et al., 1990).

NMR fruitfully interacts between formal and empirical work (peifer, in press b):

» empirical data may stimulate new formal theories (e.. Ford, 2004)

» formal work provides rationality norms

» empirical validation provides external quality criteria beyond purely formal ones
(like consistency or completeness)



System P: Rationality postulates for nonmonotonic
reasonlng (Kraus et al., 1990)

Reflexivity (axiom): apva

Left logical equivalence:
from = a = 8 and al~y infer Sy
Right weakening:

from = a D  and ypa infer vy~
Or: from aj~y and By infer a V By
Cut: from a A By and a3 infer apey

Cautious monotonicity:

from aj~f and apey infer a A By
And (derived rule): from aj~f and apy infer a5 Ay



System P: Rationality postulates for nonmonotonic
reasonlng (Kraus et al., 1990)

Reflexivity (axiom): apva

Left logical equivalence:

from = a = 8 and al~y infer Sy
Right weakening:

from = a D  and ypa infer vy~
Or: from apy and S~y infer a Vv By
Cut: from a A B~y and ap g infer apey

Cautious monotonicity:

from af~f and apey infer a A By
And (derived rule): from aj~f and apy infer a5 Ay

ap B is read as If o, normally 3
————

?




Semantics for System P

v

Normal world semantics (kraus et al., 1990)
Possibility semantics: o~ 5 iff  TI(AA B) > (A A =B)

(e.g., Benferhat, Dubois, & Prade, 1997)

v

> Empirical SUppOI’t (Da Silva Neves, Bonnefon, & Raufaste, 2002; Benferhat, Bonnefon,
& Da Silva Neves, 2005)

v

Inhibition nets (Leitgeb, 2001, 2004)

v

Probability semantics
> Infinitesimal: o |~ 8 iff  P(B|a) = 1 — € (e.g.. Adams, 1975)
» Noninfinitesimal: o |~ 8 iff  P(8]a) > .5 (e.. Gilio, 2002; Biazzo,

Gilio, Lukasiewicz, & Sanfilippo, 2005)

» Empirical support (Pfeifer & Kleiter, 2003, 2005, 2006)



Coherence

» de Finetti, and {Coletti, Gilio, Lad, Regazzini, Scozzafava,
Walley, ...}

> degrees of belief

» complete algebra is not required

» conditional probability, P(B|A), is primitive

» zero probabilities are exploited to reduce the complexity

> imprecision

> bridges to possibility, DS-belief functions, fuzzy sets, default
reasoning, ...



Probabilistic version of System P (i, 2002

Name

Probability logical version

Left logical equivalence

Right weakening
Cut

And

Cautious monotonicity

'Z(El = EQ)7 P(E3|E1) =X .. P(E3|E2) =X
P(El‘Eg) = X, ':(E]_ D) E2) P(E2|E3) € [X7 1]
P(EQ‘El A\ E3) =X, P(El‘E3) =y

o P(B2|Es) € [xy, 1 — y + xy]

P(Es|E1) = x, P(E3|E1) = ¥

o P(Ex A E3|Ep) € [max{0,x + y — 1}, min{x, y}]

P(E|E) = x,P(E3|E1) =y

- P(Es|E1 A Ep) € [max{0, (x+y—1)/x}, min{y/x, 1}]

Or P(E3‘E1):X7 P(E3|E2):y
. P(B|ErVEB) € [xy /(x+y —xy), (x+y—2xy)/(1-xy)]
Transitivity P(Ey|E1) = x,P(E3|E2) =y . P(E3|E1) €]0,1]

Contraposition
Monotonicity

P(Ez|Er) = x . P(=E1|=E2) €[0,1]
P(E3‘E1) =X .. P(E3|E1 N E2) S [0, 1]

... where . is deductive



Example Il:

Aristotelean syllogisms

(joint work with G. Sanfilippo & A. Gilio)
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Syllogistic types of propositions and figures

Name of Proposition Type PL formula
Universal affirmative (A) Vx(Sx D Px) A 3x5x
Particular affirmative (I) Ix(Sx A Px)

Universal negative (E)
Particular negative (O)

Vx(S5x D =Px) A 3x5x
x(5x A =Px)
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Syllogistic types of propositions and figures

Name of Proposition Type PL formula
Universal affirmative (A) Vx(Sx D Px) A 3x5x
Particular affirmative (I) Ix(Sx A Px)
Universal negative (E) Vx(S5x D =Px) A 3x5x
Particular negative (O) Ix(Sx A =Px)

Figure name

1 2 3 4
Major premise M-P P-M M-P P-M
Minor premise _S5-M S5-M M-S M-S
Conclusion S5-P S5-P S5-P S-P

256 possible syllogisms, 24 Aristotelianly-valid, 9 require Ix5x



Example: Modus Barbara

All philosophers are mortal.
All members of the Vienna Circle are philosophers.

All members of the Vienna Circle are mortal.
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Vx(Mx D Px) A IxMx
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Vx(S5x D Px)



Example: Modus Barbari

All M are P
All S are M
At least one S is P

Vx(Mx D Px) A IxMx
Vx(Sx D Mx) A IxSx

Ix(Sx A Px)
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Acceptability conditions

Conj-Formalization:

All S are P: p(SA-P)=0 and El
Almost-all S are P p(S A P) > p(SA—=P)
Most S are P: p(SAP) > p(SA-P)
At least one S is P: p(SAP)>0

CondEv-Formalization:

All Sare P: p(P|S)=1 andEl
Almost-all S are P p(P|S) > .5 and El
Most S are P:  p(P|S) >.5 and El

At least one Sis P:  p(SAP)>0

p(SAP)>0 if andonlyif p(P|S)>0and p(S)>0



Traditional square of oppositions

All S are P contraries No Sis P
implies contradictories implies

N

At least one S is P At least one S is =P

subcontraries



Towards a probabilistic square of oppositions

All S are P E— e No Sis P
p(P|S) = 1&p(S) > p(=P|S) =1&p(S) >
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AN
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p(SAP)>0 p(SA-P)>0

At least one S is P

p(SAP)<1—p(SA=P)

constraining: —— At least one S is =P

>0



Towards a probabilistic square of oppositions

All S are P E— incoherent e No Sis P
p(P|S) =1&p(S) > p(—P|S) =1&p(S) >

implies

N

incoherent implies

N

p(SAP)>0 p(SA-P)>0

At least one S is P

p(SAP)<1—p(SA=P)

constraining: —— At least one S is =P

>0
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All M are P p(PIM) =1
All' S are M p(M|S) =1
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All M are P p(PIM) =1
( Existential import: M p(M) >0)
All S are M p(M|S) =1
Existential import: S p(S) >0
All' S are P p(P|S) =

If p(S) =~ and p(M|S) =1, then v < p(M) <1
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At least one S is P 0<p(SAP)<1
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Existential Import: Different options

» Replacing the first premise by a logical constraint, e.g.:
=(M>P)
p(M|S) =1
p(P|S) =1
» Strengthening the antecedent of the first premise, e.g.:
p(PISAM) =1
p(M|S) =1
p(PIS) =1
» Positive probability of the conditioning event, e.g.:
All S are P: p(S) >0

» Positive probability of each conditioning event, given the
disjunction of all conditioning events (“conditional event EI"):
p(PIM)=1
p(M|S) =1
p(S|SVv M) >0
(
(

p(M|S Vv M) > 0 (irrelevant)
p(P|S) =1
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Example: Figure 1, conditional event El

Premises E.l Conclusion
b(PIM)  p(MIS) p(SISV M) p(PIS)
X y t [z, 2"]
X y 0 [0, 1]
1 1 t>0 [1, 1]
1 y t>0 ly, 1]
9 1 1 [9, .9]
9 1 5 .8, 1]
9 1 2 [5, 1]
(major)  (minor)

Z = max{O,xy — W

Z"=min{1,(1-x)(1—y)+ %}



Example IlI:

Conditionals
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How people interpret indicative conditionals

» Material conditional A D B; explicit mental model (Johnson-Laird &

Byrne, 2002)

A B
-A B
-A -B
> ConjunCtion A A\ B, Imp|ICIt mental mOde| (Johnson-Laird & Byrne, 2002)
A B

> Cond|t|0na| eVent B|A (e.g., Evans & Over, 2004; Oaksford & Chater, 2009; Pfeifer &

Kleiter, 2009)
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A priori arguments against the material conditional
interpretation of A — B

Paradoxes of the material conditional, e.g.,

(Paradox 1) (Paradox 2)
P(B) = x P(—A) = x
0<PBJAY<1 0<P(BA<1

probabilistically non-informative

Special case not covered in the standard approach to probability:
If P(B) =1, then P(AA B) = P(A). Thus,

P(B|A) = PG5 = pal=1,if P(A) > 0.




Negating conditionals
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Aristotle’s Theses

AT #1: =(—A = A)

—(-AD A)

AT #2: =(A — —A)

—(A D —A)

—AA-A

ANA

—A



Aristotle’s Theses: Probability logical predictions (i, in press 2)

AT #1: =(—A = A)
> P(—(~A D A)) = P(-A)
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> P(+(=ANA))

P(=A)
1
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Aristotle’s Theses: Probability logical predictions rer, i press 2

AT #1: =(-A— A)
» P(=(=A D A)) = P(—A)
» P(-(mANA) =1
» P(A|-A) =0, its negation: P(—A|-A) =1

AT #2: —\(A — —\A)
» P(=(A D -A)) = P(A)
> P(=(AA-A)) =1
» P(—AJA) = 0, its negation: P(——A|A) = P(A|A) = 1

Complete uncertainty of A: 0 < P(A) < 1 is coherent. ‘




Experiment 1: Abstract version, Aristotle’s Thesis #1

The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

» “A and not-A" is guaranteed to be false.
» “Aor not-A" is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A" (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If not-A, then A.|

The sentence in the box is guaranteed to be false O
The sentence in the box is guaranteed to be true O
One cannot infer whether the sentence is true or false O



Experiment 1: Abstract version, Aristotle’s Thesis #2

The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

» “A and not-A" is guaranteed to be false.
» “Aor not-A" is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A" (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If A, then not—A.|

The sentence in the box is guaranteed to be false O
The sentence in the box is guaranteed to be true O
One cannot infer whether the sentence is true or false O



EXperIment ]. Sample (Pfeifer, in press a)

» N =141

all psychology students

91% third semester

78% female

median age: 21 (1st Qu. = 20, 3rd Qu. =23)

v

v

v

v



Frequency

60

50

40

30

20

10

FALSE

Concrete (n=71) versus abstract (n=71) task material

abstract O concrete

TRUE CANNOT INFER




Scope ambiguities

(W) Negating the conditional: = (A — —A)
~———
wide scope

(N) Negating the consequent: (A — — —A)

~—~
narrow scope



Scope ambiguities
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~———
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(N) Negating the consequent: (A — — —A)

~—~
narrow scope

(W) and (N) are well defined for A and D.



Scope ambiguities

(W) Negating the conditional: = (A — —A)
~———
wide scope

(N) Negating the consequent: (A — — —A)

~—~
narrow scope

(W) and (N) are well defined for A and D. Conditional events,
B|A, are usually negated by (N), P(—BJA).



Scope ambiguities

(W) Negating the conditional: = (A — —A)
~———
wide scope

(N) Negating the consequent: (A — — —A)

~—~
narrow scope

(W) and (N) are well defined for A and D. Conditional events,
B|A, are usually negated by (N), P(—BJA).

—(—A|A) could mean that —A|A is completely rejected.



Scope ambiguities

(W) Negating the conditional: = (A — —A)
~———
wide scope

(N) Negating the consequent: (A — — —A)

~—~
narrow scope

(W) and (N) are well defined for A and D. Conditional events,
B|A, are usually negated by (N), P(—BJA).

—(—A|A) could mean that —A|A is completely rejected.

~(B|A) iff 0<P(B|A)<1



EXperlment 2 DeSIgn (Pfeifer, in press a)

Between participants: Explicit (n; = 20) vs. implicit negation
(n2 = 20)
Within participants: 12 Tasks

Task Name Argument form

1 Aristotle’s Thesis 1 -(A — —-A)

2 Negated Reflexivity -(A— A)

3 Aristotle’s Thesis 2 —(-A— A)

4 Reflexivity A—A

5 Contingent Arg. 1 A— B

6 Contingent Arg. 2 -(A— B)
7-10 4 Probabilistic truth-table tasks

11 Paradox 1 from B infer A— B

12 Neg. Paradox 1 from B infer A — —B




Experiment 2: Predictions

Argument form Scope
wide narrow
| D .. A -
—(A — —A) T CT T T
-(A— A) F F CcT CT
—(-A — A) T CT T T
A— A T T T CT
A— B CT CT CT CT
-(A— B) CT CT CT CcT
from B infer A— B U H U
from B infer A— =B U H L

Note: CT=can't tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Predictions -|- against wide vs. narrow
scope of - D -

Argument form Scope
wide narrow
| - .- A -
—(A — —A) T CT T T
-(A— A) F F CT CT
—(-A — A) T CT T T
A— A T T T CT
A— B CT CT CcT CT
-(A— B) CT CT CT CT
from B infer A— B U H U
from B infer A— =B U H L

Note: CT=can't tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Aristotle’s Thesis #1, implicit version

L]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.



Experiment 2: Aristotle’s Thesis #1, implicit version

L]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one
alternative):

‘It is not the case, that: If Ida knocks, then Thea knocks.

The sentence in the box is guaranteed to be false O
The sentence in the box is guaranteed to be true O
One cannot infer whether the sentence is true or false O



Experiment 2: Aristotle’s Thesis #1, explicit version

L]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one
alternative):

‘It is not the case, that: If Ida knocks, then lda does not knock.

The sentence in the box is guaranteed to be false O
The sentence in the box is guaranteed to be true O
One cannot infer whether the sentence is true or false O



EXperIment 2 Sample (Pfeifer, in press a)

» N =140
no psychology students

v

v

individual tested, 5 € for participation
50% female
median age: 22 (1st Qu. = 21, 3rd Qu. =23)

v

v



EXperlment 2 ReSU|tS (Pfeifer, in press a)

Argument form Scope Responses
wide narrow in percent
‘ D .- A - T F CT
—(A — —-A) T CT T T 78 18 5
-(A— A) F F cT CT 10 88 2
—(-A— A) T CT T T 80 13 8
A— A T T T CT 93 3 5
A— B CcT CT CcT cT 0 13 88
-(A — B) CT CT cT CT 20 3 78
from B infer A— B U H U 40 0 60
from B infer A— -B U H L 5 30 65

Note: CT=can't tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



EXperIment 2 ReSU|tS (Pfeifer, in press a)

Argument form Scope Responses
wide narrow in percent
‘ D .- AT F CT
—(A — —-A) T CT T T 78 18 5
-(A— A) F F cT CT 10 88 2
—(-A— A) T CT T T 80 13 38
A=A T T T CT 93 3 5
A—B CT CT cT CcT 0 13 88
-(A — B) CT CT cT CT 20 3 78
from B infer A— B U H U 40 0 60
from B infer A—-B U H L 5 30 65

Note: CT=can't tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Outline

» Introduction

» Example I: Nonmonotonic reasoning
» Example Il: Aristotelian syllogisms
» Example IlI: Conditionals



Interaction of formal and empirical work (preiter, in press b)

Formal work Empirical work
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stimulates new empirical hypotheses

provides rationality norms .
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empirical validation beyond
soundness & completeness

stimulates new formal systems

stimulates new empirical hypotheses

provides rationality norms .
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Interaction of formal and empirical work (preiter, in press b)

empirical validation beyond
soundness & completeness

stimulates new formal systems

arbitration

stimulates new empirical hypotheses

provides rationality norms .
Formal work Empirical work
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