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◮ Positive connotation
◮ right application of psychological techniques to philosophical

problems



Experimental philosophy, XΦ

◮ New philosophical movement (Knobe & Nichols, 2008; Alexander, Mallon, &

Weinberg, 2010)

◮ XΦ supplements traditional tools of analytic philosophy with
empirical methods
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Experimental philosophy, XΦ

◮ New philosophical movement (Knobe & Nichols, 2008; Alexander et al., 2010)

◮ XΦ supplements traditional tools of analytic philosophy with
empirical methods

◮ XΦ challenges the appeal to intuitions

◮ Topics:1

◮ Causation
◮ Consciousness
◮ Cross-cultural intuitions
◮ Epistemology
◮ Folk morality/psychology
◮ Free will
◮ Intentional action
◮ Metaphilosophy

◮ Goal: Extending the domain of XΦ to uncertain reasoning

1http://pantheon.yale.edu/~jk762/ExperimentalPhilosophy.html
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Example I:

Nonmonotonic reasoning



The Tweety problem



The Tweety problem (picture c© by L. Ewing, S. Budig, A. Gerwinski; http://commons.wikimedia.org)
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reasoning” (Pelletier & Elio, 1997, p. 165).

“We have claimed in this paper that, unlike classical logic, default

reasoning is basically a psychologistic enterprise” (Pelletier & Elio, 1997, p. 177).

However, there are a priori rationality norms for nonmonotonic reasoning, e.g.,
System P (Kraus et al., 1990).

NMR fruitfully interacts between formal and empirical work (Pfeifer, in press b):

◮ empirical data may stimulate new formal theories (e.g., Ford, 2004)

◮ formal work provides rationality norms
◮ empirical validation provides external quality criteria beyond purely formal ones

(like consistency or completeness)



System P: Rationality postulates for nonmonotonic

reasoning (Kraus et al., 1990)

Reflexivity (axiom): α|∼α

Left logical equivalence:
from |= α ≡ β and α|∼γ infer β|∼γ

Right weakening:
from |= α ⊃ β and γ|∼α infer γ|∼β

Or: from α|∼γ and β|∼γ infer α ∨ β|∼γ

Cut: from α ∧ β|∼γ and α|∼β infer α|∼γ

Cautious monotonicity:
from α|∼β and α|∼γ infer α ∧ β|∼γ

And (derived rule): from α|∼β and α|∼γ infer α|∼β ∧ γ
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from |= α ≡ β and α|∼γ infer β|∼γ

Right weakening:
from |= α ⊃ β and γ|∼α infer γ|∼β

Or: from α|∼γ and β|∼γ infer α ∨ β|∼γ
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Cautious monotonicity:
from α|∼β and α|∼γ infer α ∧ β|∼γ

And (derived rule): from α|∼β and α|∼γ infer α|∼β ∧ γ

α |∼ β is read as If α, normally
︸ ︷︷ ︸

?

β



Semantics for System P

◮ Normal world semantics (Kraus et al., 1990)

◮ Possibility semantics: α |∼ β iff Π(A ∧ B) > Π(A ∧ ¬B)
(e.g., Benferhat, Dubois, & Prade, 1997)

◮ Empirical support (Da Silva Neves, Bonnefon, & Raufaste, 2002; Benferhat, Bonnefon,

& Da Silva Neves, 2005)

◮ Inhibition nets (Leitgeb, 2001, 2004)

◮ Probability semantics
◮ Infinitesimal: α |∼ β iff P(β|α) = 1− ǫ (e.g., Adams, 1975)

◮ Noninfinitesimal: α |∼ β iff P(β|α) > .5 (e.g., Gilio, 2002; Biazzo,

Gilio, Lukasiewicz, & Sanfilippo, 2005)

◮ Empirical support (Pfeifer & Kleiter, 2003, 2005, 2006)

◮ . . .



Coherence

◮ de Finetti, and {Coletti, Gilio, Lad, Regazzini, Scozzafava,
Walley, . . . }

◮ degrees of belief

◮ complete algebra is not required

◮ conditional probability, P(B |A), is primitive

◮ zero probabilities are exploited to reduce the complexity

◮ imprecision

◮ bridges to possibility, DS-belief functions, fuzzy sets, default
reasoning, . . .



Probabilistic version of System P (Gilio, 2002)

Name Probability logical version

Left logical equivalence |=(E1 ≡ E2),P(E3|E1) = x ∴ P(E3|E2) = x

Right weakening P(E1|E3) = x , |=(E1 ⊃ E2) ∴ P(E2|E3) ∈ [x , 1]
Cut P(E2|E1 ∧ E3) = x ,P(E1|E3) = y

∴ P(E2|E3) ∈ [xy , 1− y + xy ]
And P(E2|E1) = x ,P(E3|E1) = y

∴ P(E2 ∧ E3|E1) ∈ [max{0, x + y − 1},min{x , y}]
Cautious monotonicity P(E2|E1) = x ,P(E3|E1) = y

∴ P(E3|E1 ∧ E2) ∈ [max{0, (x+y−1)/x},min{y/x , 1}]
Or P(E3|E1)=x ,P(E3|E2)=y

∴ P(E3|E1∨E2)∈ [xy/(x+y−xy), (x+y−2xy)/(1−xy)]

Transitivity P(E2|E1) = x ,P(E3|E2) = y ∴ P(E3|E1) ∈ [0, 1]
Contraposition P(E2|E1) = x ∴ P(¬E1|¬E2) ∈ [0, 1]
Monotonicity P(E3|E1) = x ∴ P(E3|E1 ∧ E2) ∈ [0, 1]

. . . where ∴ is deductive



Example II:

Aristotelean syllogisms

(joint work with G. Sanfilippo & A. Gilio)



Motivation



Syllogistic types of propositions and figures

Name of Proposition Type PL formula

Universal affirmative (A) ∀x(Sx ⊃ Px) ∧ ∃xSx
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Universal negative (E) ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
Particular negative (O) ∃x(Sx ∧ ¬Px)
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Name of Proposition Type PL formula

Universal affirmative (A) ∀x(Sx ⊃ Px) ∧ ∃xSx
Particular affirmative (I) ∃x(Sx ∧ Px)
Universal negative (E) ∀x(Sx ⊃ ¬Px) ∧ ∃xSx
Particular negative (O) ∃x(Sx ∧ ¬Px)

Figure name

1 2 3 4

Major premise M–P P–M M–P P–M
Minor premise S–M S–M M–S M–S
Conclusion S–P S–P S–P S–P

256 possible syllogisms, 24 Aristotelianly-valid, 9 require ∃xSx
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Example: Modus Barbari
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Acceptability conditions

Conj-Formalization:

All S are P : p(S ∧ ¬P) = 0 and EI
Almost-all S are P : p(S ∧ P) ≫ p(S ∧ ¬P)

Most S are P : p(S ∧ P) > p(S ∧ ¬P)
At least one S is P : p(S ∧ P) > 0

CondEv-Formalization:

All S are P : p(P |S) = 1 and EI
Almost-all S are P : p(P |S) ≫ .5 and EI

Most S are P : p(P |S) > .5 and EI
At least one S is P : p(S ∧ P) > 0

p(S ∧ P) > 0 if, and only if p(P |S) > 0 and p(S) > 0



Traditional square of oppositions

All S are P

At least one S is P At least one S is ¬P

No S is P

implies impliescontradictories

subcontraries

contraries
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If p(S) = γ and p(M|S) = 1, then γ ≤ p(M) ≤ 1
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Existential Import: Different options
◮ Replacing the first premise by a logical constraint, e.g.:

|= (M ⊃ P)
p(M|S) = 1

p(P |S) = 1
◮ Strengthening the antecedent of the first premise, e.g.:

p(P |S∧M) = 1
p(M|S) = 1

p(P |S) = 1
◮ Positive probability of the conditioning event, e.g.:

All S are P : p(S) > 0

◮ Positive probability of each conditioning event, given the
disjunction of all conditioning events (“conditional event EI”):

p(P |M) = 1
p(M|S) = 1
p(S |S ∨M) > 0
p(M|S ∨M) > 0 (irrelevant)

p(P |S) = 1
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Example: Figure 1, conditional event EI

Premises E.I. Conclusion
p(P |M) p(M|S) p(S |S ∨M) p(P |S)
x y t [z ′, z ′′]

x y 0 [0, 1]
1 1 t > 0 [1, 1]
1 y t > 0 [y , 1]
.9 1 1 [.9, .9]
.9 1 .5 [.8, 1]
.9 1 .2 [.5, 1]

(major) (minor)

z ′ = max
{

0, xy − (1−t)(1−x)
t

}

z ′′ = min
{
1, (1 − x)(1 − y) + x

t

}



Example III:

Conditionals
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How people interpret indicative conditionals

◮ Material conditional A ⊃ B ; explicit mental model (Johnson-Laird &

Byrne, 2002)

A B

¬A B

¬A ¬B

◮ Conjunction A ∧ B ; implicit mental model (Johnson-Laird & Byrne, 2002)

A B

. . .

◮ Conditional event B |A (e.g., Evans & Over, 2004; Oaksford & Chater, 2009; Pfeifer &

Kleiter, 2009)
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A priori arguments against the material conditional

interpretation of A → B

Paradoxes of the material conditional, e.g.,

(Paradox 1) (Paradox 2)
P(B) = x P(¬A) = x

0 ≤ P(B |A) ≤ 1 0 ≤ P(B |A) ≤ 1

probabilistically non-informative

Special case not covered in the standard approach to probability:
If P(B) = 1, then P(A ∧ B) = P(A). Thus,

P(B |A) = P(A∧B)
P(A) = P(A)

P(A)= 1, if P(A) > 0.



Negating conditionals
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Aristotle’s Theses

AT #1: ¬(¬A → A)

¬(¬A ⊃ A) ≡ ¬A ∧ ¬A ≡ ¬A

AT #2: ¬(A → ¬A)

¬(A ⊃ ¬A) ≡ A ∧ A ≡ A
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Aristotle’s Theses: Probability logical predictions (Pfeifer, in press a)

AT #1: ¬(¬A → A)
◮ P(¬(¬A ⊃ A)) = P(¬A)
◮ P(¬(¬A ∧ A)) = 1
◮ P(A|¬A) = 0, its negation: P(¬A|¬A) = 1

AT #2: ¬(A → ¬A)
◮ P(¬(A ⊃ ¬A)) = P(A)
◮ P(¬(A ∧ ¬A)) = 1
◮ P(¬A|A) = 0, its negation: P(¬¬A|A) = P(A|A) = 1

Complete uncertainty of A: 0 ≤ P(A) ≤ 1 is coherent.



Experiment 1: Abstract version, Aristotle’s Thesis #1
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

◮ “A and not-A” is guaranteed to be false.
◮ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A” (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If not-A, then A.

The sentence in the box is guaranteed to be false �

The sentence in the box is guaranteed to be true �

One cannot infer whether the sentence is true or false �



Experiment 1: Abstract version, Aristotle’s Thesis #2
The letter “A” denotes a sentence, like “It is raining”.

There are sentences, where you can infer only on the basis of their logical form,
whether they are guaranteed to be false or guaranteed to be true. For example:

◮ “A and not-A” is guaranteed to be false.
◮ “A or not-A” is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical
form, whether they are true or false. The sentence “A” (“It is raining.”), for
example, can be true but it can just as well be false: this depends upon
whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If A, then not-A.

The sentence in the box is guaranteed to be false �

The sentence in the box is guaranteed to be true �

One cannot infer whether the sentence is true or false �



Experiment 1: Sample (Pfeifer, in press a)

◮ N = 141

◮ all psychology students

◮ 91% third semester

◮ 78% female

◮ median age: 21 (1st Qu. = 20, 3rd Qu. =23)
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Scope ambiguities

(W) Negating the conditional: ¬ (A → ¬A)
︸ ︷︷ ︸

wide scope

(N) Negating the consequent: (A → ¬ ¬A)
︸︷︷︸

narrow scope



Scope ambiguities

(W) Negating the conditional: ¬ (A → ¬A)
︸ ︷︷ ︸

wide scope

(N) Negating the consequent: (A → ¬ ¬A)
︸︷︷︸

narrow scope

(W) and (N) are well defined for ∧ and ⊃.
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B |A, are usually negated by (N), P(¬B |A).
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︸ ︷︷ ︸

wide scope

(N) Negating the consequent: (A → ¬ ¬A)
︸︷︷︸

narrow scope

(W) and (N) are well defined for ∧ and ⊃. Conditional events,
B |A, are usually negated by (N), P(¬B |A).

¬(¬A|A) could mean that ¬A|A is completely rejected.



Scope ambiguities

(W) Negating the conditional: ¬ (A → ¬A)
︸ ︷︷ ︸

wide scope

(N) Negating the consequent: (A → ¬ ¬A)
︸︷︷︸

narrow scope

(W) and (N) are well defined for ∧ and ⊃. Conditional events,
B |A, are usually negated by (N), P(¬B |A).

¬(¬A|A) could mean that ¬A|A is completely rejected.

¬(B |A) iff 0 ≤ P(B |A) ≤ 1



Experiment 2: Design (Pfeifer, in press a)

Between participants: Explicit (n1 = 20) vs. implicit negation
(n2 = 20)
Within participants: 12 Tasks

Task Name Argument form

1 Aristotle’s Thesis 1 ¬(A → ¬A)
2 Negated Reflexivity ¬(A → A)
3 Aristotle’s Thesis 2 ¬(¬A → A)
4 Reflexivity A → A

5 Contingent Arg. 1 A → B

6 Contingent Arg. 2 ¬(A → B)
7-10 4 Probabilistic truth-table tasks
11 Paradox 1 from B infer A → B

12 Neg. Paradox 1 from B infer A → ¬B



Experiment 2: Predictions

Argument form Scope
wide narrow

·|· · ⊃ · · ⊃ · · ∧ ·

¬(A → ¬A) T CT T T
¬(A → A) F F CT CT
¬(¬A → A) T CT T T

A → A T T T CT
A → B CT CT CT CT

¬(A → B) CT CT CT CT
from B infer A → B U H U
from B infer A → ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Predictions ·|· against wide vs. narrow

scope of · ⊃ ·

Argument form Scope
wide narrow

·|· · ⊃ · · ⊃ · · ∧ ·

¬(A → ¬A) T CT T T
¬(A → A) F F CT CT
¬(¬A → A) T CT T T

A → A T T T CT
A → B CT CT CT CT

¬(A → B) CT CT CT CT
from B infer A → B U H U
from B infer A → ¬B U H L

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Aristotle’s Thesis #1, implicit version

[. . . ]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.



Experiment 2: Aristotle’s Thesis #1, implicit version

[. . . ]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one
alternative):

It is not the case, that: If Ida knocks, then Thea knocks.

The sentence in the box is guaranteed to be false �

The sentence in the box is guaranteed to be true �

One cannot infer whether the sentence is true or false �



Experiment 2: Aristotle’s Thesis #1, explicit version

[. . . ]

Hans expects to be visited by Thea and Ida. He is sitting in his
room. Suddenly someone knocks at the door. Hans is absolutely
certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one
alternative):

It is not the case, that: If Ida knocks, then Ida does not knock.

The sentence in the box is guaranteed to be false �

The sentence in the box is guaranteed to be true �

One cannot infer whether the sentence is true or false �



Experiment 2: Sample (Pfeifer, in press a)

◮ N = 40

◮ no psychology students

◮ individual tested, 5 ¤ for participation

◮ 50% female

◮ median age: 22 (1st Qu. = 21, 3rd Qu. =23)



Experiment 2: Results (Pfeifer, in press a)

Argument form Scope Responses
wide narrow in percent

·|· · ⊃ · · ⊃ · · ∧ · T F CT

¬(A → ¬A) T CT T T 78 18 5
¬(A → A) F F CT CT 10 88 2
¬(¬A → A) T CT T T 80 13 8

A → A T T T CT 93 3 5
A → B CT CT CT CT 0 13 88

¬(A → B) CT CT CT CT 20 3 78
from B infer A → B U H U 40 0 60
from B infer A → ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Experiment 2: Results (Pfeifer, in press a)

Argument form Scope Responses
wide narrow in percent

·|· · ⊃ · · ⊃ · · ∧ · T F CT

¬(A → ¬A) T CT T T 78 18 5
¬(A → A) F F CT CT 10 88 2
¬(¬A → A) T CT T T 80 13 8

A → A T T T CT 93 3 5
A → B CT CT CT CT 0 13 88

¬(A → B) CT CT CT CT 20 3 78
from B infer A → B U H U 40 0 60
from B infer A → ¬B U H L 5 30 65

Note: CT=can’t tell, T=true, F=false,

U=uninformative conclusion probability, H=high conclusion probability, L=low conclusion probability



Outline

◮ Introduction

◮ Example I: Nonmonotonic reasoning

◮ Example II: Aristotelian syllogisms

◮ Example III: Conditionals
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Interaction of formal and empirical work (Pfeifer, in press b)

Formal work Empirical work

stimulates new empirical hypotheses

provides rationality norms

empirical validation beyond
soundness & completeness

stimulates new formal systems

arbitration
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