Probability and logic in psychology: a new form of psychologism?

Niki Pfeifer

Munich Center for Mathematical Philosophy
Ludwig-Maximilians-Universität München

Outline

- Introduction
- Example I: Nonmonotonic reasoning
- Example II: Aristotelian syllogisms
- Example III: Conditionals

What is psychologism? (Kusch, 2007)

- Negative connotation:
- wrong identification of non-psychological entities with psychological entities

What is psychologism? (Kusch, 2007)

- Negative connotation:
- wrong identification of non-psychological entities with psychological entities
- Neutral connotation
- application of psychological techniques to philosophical problems

What is psychologism? (Kusch, 2007)

- Negative connotation:
- wrong identification of non-psychological entities with psychological entities
- Neutral connotation
- application of psychological techniques to philosophical problems
- Positive connotation
- right application of psychological techniques to philosophical problems

Experimental philosophy, $\mathrm{X} \Phi$

- New philosophical movement (Knobe \& Nichols, 2008; Alexander, Mallon, \& Weinberg, 2010)
- XФ supplements traditional tools of analytic philosophy with empirical methods

[^0]
Experimental philosophy, $\mathrm{X} \Phi$

- New philosophical movement (Knobe \& Nichols, 2008; Alexander et al., 2010)
- XФ supplements traditional tools of analytic philosophy with empirical methods
- XФ challenges the appeal to intuitions

[^1]
Experimental philosophy, $\mathrm{X} \Phi$

- New philosophical movement (Knobe \& Nichols, 2008; Alexander et al., 2010)
- XФ supplements traditional tools of analytic philosophy with empirical methods
- XФ challenges the appeal to intuitions
- Topics: ${ }^{1}$
- Causation
- Consciousness
- Cross-cultural intuitions
- Epistemology
- Folk morality/psychology
- Free will
- Intentional action
- Metaphilosophy

[^2]
Experimental philosophy, $\mathrm{X} \Phi$

- New philosophical movement (Knobe \& Nichols, 2008; Alexander et al., 2010)
- XФ supplements traditional tools of analytic philosophy with empirical methods
- XФ challenges the appeal to intuitions
- Topics: ${ }^{1}$
- Causation
- Consciousness
- Cross-cultural intuitions
- Epistemology
- Folk morality/psychology
- Free will
- Intentional action
- Metaphilosophy
- Goal: Extending the domain of $X \Phi$ to uncertain reasoning

[^3]Motivation

Motivation

Motivation

Motivation

Example I:

Nonmonotonic reasoning

The Tweety problem

The Tweety problem (picturee by L. Ewing, s. Buidg, A. Geminski; http://commons. vikinediaia org)

The Tweety problem (picture ${ }^{\complement}$ by ytse19; http://mi9.com/flying-tux_35453.html)

The place of empirical work in nonmonotonic reasoning

Pelletier and Elio (1997) seem to argue, that nonmonotonic reasoning is a genuinely psychologistic endeavor:

The place of empirical work in nonmonotonic reasoning

Pelletier and Elio (1997) seem to argue, that nonmonotonic reasoning is a genuinely psychologistic endeavor:
". . . considering how people actually do default reasoning is an important and necessary grounding for the entire enterprise of formalizing default reasoning" (Pelletier \& Elio, 1997, p. 165).
"We have claimed in this paper that, unlike classical logic, default reasoning is basically a psychologistic enterprise" (Pelletier \& Elio, 1997, p. 177).

The place of empirical work in nonmonotonic reasoning

Pelletier and Elio (1997) seem to argue, that nonmonotonic reasoning is a genuinely psychologistic endeavor:
". . . considering how people actually do default reasoning is an important and necessary grounding for the entire enterprise of formalizing default reasoning" (Pelletier \& Elio, 1997, p. 165).
"We have claimed in this paper that, unlike classical logic, default reasoning is basically a psychologistic enterprise" (Pelletier \& Elio, 1997, p. 177).

However, there are a priori rationality norms for nonmonotonic reasoning, e.g., System P (Kraus et al., 1990).

The place of empirical work in nonmonotonic reasoning

Pelletier and Elio (1997) seem to argue, that nonmonotonic reasoning is a genuinely psychologistic endeavor:
". . . considering how people actually do default reasoning is an important and necessary grounding for the entire enterprise of formalizing default reasoning" (Pelletier \& Elio, 1997, p. 165).
"We have claimed in this paper that, unlike classical logic, default reasoning is basically a psychologistic enterprise" (Pelletier \& Elio, 1997, p. 177).

However, there are a priori rationality norms for nonmonotonic reasoning, e.g., System P (Kraus et al., 1990).

NMR fruitfully interacts between formal and empirical work (Pfeifer, in press b):

- empirical data may stimulate new formal theories (e.g., Ford, 2004)
- formal work provides rationality norms
- empirical validation provides external quality criteria beyond purely formal ones (like consistency or completeness)

System P: Rationality postulates for nonmonotonic reasoning (Kraus et al., 1990)

Reflexivity (axiom): $\alpha \sim \alpha$
Left logical equivalence:

$$
\text { from } \models \alpha \equiv \beta \text { and } \alpha \sim \gamma \text { infer } \beta \nsim \gamma
$$

Right weakening:
from $\models \alpha \supset \beta$ and $\gamma \sim \alpha$ infer $\gamma \sim \beta$
Or: \quad from $\alpha \nsim \gamma$ and $\beta \nsim \gamma$ infer $\alpha \vee \beta \nsim \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \sim \beta$ infer $\alpha \sim \gamma$
Cautious monotonicity:
from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \sim \beta \wedge \gamma$

System P: Rationality postulates for nonmonotonic

 reasoning (Kraus et al., 1990)Reflexivity (axiom): $\alpha \nsim \alpha$
Left logical equivalence:
from $\models \alpha \equiv \beta$ and $\alpha \sim \gamma$ infer $\beta \downarrow \gamma$
Right weakening:
from $\models \alpha \supset \beta$ and $\gamma \sim \alpha$ infer $\gamma \sim \beta$
Or: \quad from $\alpha \nsim \gamma$ and $\beta \nsim \gamma$ infer $\alpha \vee \beta \nsim \gamma$
Cut: \quad from $\alpha \wedge \beta \sim \gamma$ and $\alpha \sim \beta$ infer $\alpha \sim \gamma$
Cautious monotonicity:
from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \wedge \beta \sim \gamma$
And (derived rule): from $\alpha \sim \beta$ and $\alpha \sim \gamma$ infer $\alpha \sim \beta \wedge \gamma$

Semantics for System P

- Normal world semantics (Kraus et al., 1990)
- Possibility semantics: $\alpha \sim \beta$ iff $\Pi(A \wedge B)>\Pi(A \wedge \neg B)$
(e.g., Benferhat, Dubois, \& Prade, 1997)
- Empirical support (Da Silva Neves, Bonnefon, \& Raufaste, 2002; Benferhat, Bonnefon, \& Da Silva Neves, 2005)
- Inhibition nets (Leitgeb, 2001, 2004)
- Probability semantics
- Infinitesimal: $\alpha \sim \beta$ iff $P(\beta \mid \alpha)=1-\epsilon$ (e.g., Adams, 1975)
- Noninfinitesimal: $\alpha \sim \beta$ iff $P(\beta \mid \alpha)>.5$ (e.g., Gilio, 2002; Biazzo, Gilio, Lukasiewicz, \& Sanfilippo, 2005)
- Empirical support (Pfeifer \& Kleiter, 2003, 2005, 2006)
- ...

Coherence

- de Finetti, and \{Coletti, Gilio, Lad, Regazzini, Scozzafava, Walley, ...\}
- degrees of belief
- complete algebra is not required
- conditional probability, $P(B \mid A)$, is primitive
- zero probabilities are exploited to reduce the complexity
- imprecision
- bridges to possibility, DS-belief functions, fuzzy sets, default reasoning, ...

Probabilistic version of System $\mathrm{P}_{\text {(Giiio, 2002) }}$

Name	Probability logical version
Left logical equivalence	$\models\left(E_{1} \equiv E_{2}\right), P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{2}\right)=x$
Right weakening	$P\left(E_{1} \mid E_{3}\right)=x, \models\left(E_{1} \supset E_{2}\right) \therefore P\left(E_{2} \mid E_{3}\right) \in[x, 1]$
Cut	$P\left(E_{2} \mid E_{1} \wedge E_{3}\right)=x, P\left(E_{1} \mid E_{3}\right)=y$
	$\therefore P\left(E_{2} \mid E_{3}\right) \in[x y, 1-y+x y]$
And	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{2} \wedge E_{3} \mid E_{1}\right) \in[\max \{0, x+y-1\}, \min \{x, y\}]$
Cautious monotonicity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{1}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[\max \{0,(x+y-1) / x\}, \min \{y / x, 1\}]$
Or	$P\left(E_{3} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y$
	$\therefore P\left(E_{3} \mid E_{1} \vee E_{2}\right) \in[x y /(x+y-x y),(x+y-2 x y) /(1-x y)]$
Transitivity	$P\left(E_{2} \mid E_{1}\right)=x, P\left(E_{3} \mid E_{2}\right)=y \therefore P\left(E_{3} \mid E_{1}\right) \in[0,1]$
Contraposition	$P\left(E_{2} \mid E_{1}\right)=x \therefore P\left(\neg E_{1} \mid \neg E_{2}\right) \in[0,1]$
Monotonicity	$P\left(E_{3} \mid E_{1}\right)=x \therefore P\left(E_{3} \mid E_{1} \wedge E_{2}\right) \in[0,1]$

\ldots where \therefore is deductive

Example II:

Aristotelean syllogisms
(joint work with G. Sanfilippo \& A. Gilio)

Motivation

Ergänzungshefte zu den Stimmen der Zeit
Zweite Reihe: Forschungen. 1. Heft

Contents lists avalable at ScienceDirect
Intelligence

Das schlußfolgernde Denken

Experimentell-psychologische Untersuchungen
von
Johannes Lindworsky S. J.

A simple syllogism-solving test: Empirical findings and implications for g research
Chizuru Shikishima ${ }^{\text {a,* }, 1}$, Shinji Yamagata ${ }^{a}$, Kai Hiraishi ${ }^{\text {b }}$, Yutaro Sugimoto ${ }^{\text {a }}$, Kou Murayama ${ }^{\text {c }}$.Juko Ando ${ }^{\text {d }}$

${ }^{2}$ foculy of lexm Kebl liverity, Tolys / / $/ \mathrm{om}$

ARTICLE INFO	ABSTRACT
Atide Hisloy: Received 19 Octabar 2010 Received in vevised form 18 /fmary 2011 Acceped 19 Janany 2011 Availble orline 1 March 2011	It has been reported that the ability to sodve ayllogians is liggly g - baded in the presest stady. using a self-adnanistered stortesed version of a syllogisn-solving test, the AMROCO Shart we examined whether mburt findings generated by previous research regading to, soves were ako applable to hatroco Short scares. five sylagism-solving probiems were induded in a questionsaire aspart of a postal survey condacted by the Keio Twin Reseach Centec. Buta were
Requorde Syliogion-wolking 5 intrlligence tect Twin staly Behuvicral genetio	school sudents (ages 13-18) and fran 595 unthers and 431 fathers. Far findings elated to 10 were replikzed: 1) The mean kevelincreased grafually daing adolescence, stayed unctunged from the 30s to the early 50k, and subsequently declined after the bae 50s. 2) The scores for both cilidren and parents were predicted by the socheerononac status of the fanily. 3) The genebic effect iscreased, although the shared anvimomental effect decreased duting progression from adolescence to adathood 4) Childents scares were geneically correlated with school achievenent These finding further subrantize the chow assochan between syllogitik reasoeing alility and g. © 2011 Elevier inc All rights reserved

1. Introduction

If all humans are mortal, and all Greds are humans,

Freiburg im Breisgau 1916
Herdersche Verlagshandlung
Berlin, Karlsrahe, Muncleen, Strallburg, Wien, London und St. Louls, Mo.

First book on experiments on reasoning (1916)
a conclusion in arkient and medieval Europe, the ability oxprossed in syllogism salving wasconsidened tobe at the hean of human logical thinkinge (Bochenski, 1970; Kneale A Kneake, 1962). Before the devesopment of the arithmetical methods necessary lor quantiative science, the syllogism was a required tool for man "s a means to undestanding in whatever field
of human intellectual endeavor he had chosen" (Wetherick.
Paper on syllogisms (2011)

Syllogistic types of propositions and figures

Name of Proposition Type	$P L$ formula
Universal affirmative (A)	$\forall x(S x \supset P x) \wedge \exists x S x$
Particular affirmative (I)	$\exists x(S x \wedge P x)$
Universal negative (E)	$\forall x(S x \supset \neg P x) \wedge \exists x S x$
Particular negative (O)	$\exists x(S x \wedge \neg P x)$

Syllogistic types of propositions and figures

Name of Proposition Type	$P L$ formula
Universal affirmative (A)	$\forall x(S x \supset P x) \wedge \exists x S x$
Particular affirmative (I)	$\exists x(S x \wedge P x)$
Universal negative (E)	$\forall x(S x \supset \neg P x) \wedge \exists x S x$
Particular negative (O)	$\exists x(S x \wedge \neg P x)$

	Figure name				
	1	2	3	4	
Major premise	$M-P$	$P-M$	$M-P$	$P-M$	
Minor premise	$S-M$	$S-M$	$M-S$	$M-S$	
	$S-P$	$S-P$		$S-P$	

Syllogistic types of propositions and figures

Name of Proposition Type	$P L$ formula
Universal affirmative (A)	$\forall x(S x \supset P x) \wedge \exists x S x$
Particular affirmative (I)	$\exists x(S x \wedge P x)$
Universal negative (E)	$\forall x(S x \supset \neg P x) \wedge \exists x S x$
Particular negative (O)	$\exists x(S x \wedge \neg P x)$

	Figure name				
	1	2	3	4	
Major premise	$M-P$	$P-M$	$M-P$	$P-M$	
Minor premise	$S-M$	$S-M$	$M-S$	$M-S$	
	$S-P$	$S-P$		$S-P$	
Conclusion	$S-P$	$S-P$			

256 possible syllogisms, 24 Aristotelianly-valid, 9 require $\exists x S x$

Example: Modus Barbara

All philosophers are mortal.
All members of the Vienna Circle are philosophers.
All members of the Vienna Circle are mortal.

Example: Modus Barbara

> | All M are P |
| :--- |
| All S are M |
| All S are P |

Example: Modus Barbara

> | All M are P |
| :--- |
| All S are M |
| All S are P |

$$
\begin{array}{lc}
\forall x(M x \supset P x) & \wedge \exists x M x \\
\forall x(S x \supset M x) \wedge \exists x S x \\
\hline \forall x(S x \supset P x) &
\end{array}
$$

Example: Modus Barbarí

All M are P
All S are M
At least one S is P

$$
\begin{array}{lll}
\forall x(M x \supset P x) & \wedge & \exists x M x \\
\forall x(S x \supset M x) & \wedge & \exists x S x \\
\hline \exists x(S x \wedge P x) &
\end{array}
$$

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El
Almost-all S are $P: \quad p(S \wedge P) \gg p(S \wedge \neg P)$

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El
Almost-all S are $P: \quad p(S \wedge P) \gg p(S \wedge \neg P)$
Most S are $P: \quad p(S \wedge P)>p(S \wedge \neg P)$

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El
Almost-all S are $P: \quad p(S \wedge P) \gg p(S \wedge \neg P)$
Most S are $P: \quad p(S \wedge P)>p(S \wedge \neg P)$
At least one S is $P: \quad p(S \wedge P)>0$

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El
Almost-all S are $P: \quad p(S \wedge P) \gg p(S \wedge \neg P)$
Most S are $P: \quad p(S \wedge P)>p(S \wedge \neg P)$
At least one S is $P: \quad p(S \wedge P)>0$

CondEv-Formalization:
All S are $P: \quad p(P \mid S)=1 \quad$ and El
Almost-all S are $P: \quad p(P \mid S) \gg .5 \quad$ and El
Most S are $P: \quad p(P \mid S)>.5$ and El
At least one S is $P: \quad p(S \wedge P)>0$

Acceptability conditions

Conj-Formalization:
All S are $P: \quad p(S \wedge \neg P)=0 \quad$ and El
Almost-all S are $P: \quad p(S \wedge P) \gg p(S \wedge \neg P)$
Most S are $P: \quad p(S \wedge P)>p(S \wedge \neg P)$
At least one S is $P: \quad p(S \wedge P)>0$

CondEv-Formalization:
All S are $P: \quad p(P \mid S)=1 \quad$ and El
Almost-all S are $P: \quad p(P \mid S) \gg .5$ and El
Most S are $P: \quad p(P \mid S)>.5$ and El
At least one S is $P: \quad p(S \wedge P)>0$

$$
p(S \wedge P)>0 \quad \text { if, and only if } \quad p(P \mid S)>0 \text { and } p(S)>0
$$

Traditional square of oppositions

At least one S is P _ subcontraries —— At least one S is $\neg P$

Towards a probabilistic square of oppositions

implies

$$
p(S \wedge P)>0
$$

At least one S is P

——At least one S is $\neg P$

Towards a probabilistic square of oppositions

$$
\begin{gathered}
\text { All } S \text { are } P \\
p(P \mid S)=1 \& p(S)>0
\end{gathered} \text { incoherent No } S \text { is } P
$$

Towards a probabilistic square of oppositions

$$
\begin{gathered}
\text { All } S \text { are } P \\
p(P \mid S)=1 \& p(S)>0
\end{gathered} \text { incoherent No } S \text { is } P
$$

Towards a probabilistic square of oppositions

$$
\begin{gathered}
\text { All } S \text { are } P \\
p(P \mid S)=1 \& p(S)>0
\end{gathered} \text { incoherent } \begin{gathered}
\text { No } S \text { is } P \\
p(\neg P \mid S)=1 \& p(S)>0
\end{gathered}
$$

At least one S is P _ constraining: - At least one S is $\neg P$

$$
p(S \wedge P) \leq 1-p(S \wedge \neg P)
$$

Example 1 (CondEv): Probabilistic Modus Barbara

$$
\begin{array}{ll}
\text { All } M \text { are } P & \\
\text { All } S \text { are } M & \\
\cline { 1 - 1 } & \\
\hline \text { All } S \text { are } P & p(M \mid S)=1 \\
0 \leq p(P \mid S) \leq 1
\end{array}
$$

Example 1 (CondEv): Probabilistic Modus Barbara

$$
\begin{array}{lll}
\text { All } M \text { are } P & & p(P \mid M)=1 \\
\text { All } S \text { are } M & & p(M \mid S)=1 \\
\cline { 1 - 1 } & \text { All } S \text { are } P & \\
0 \leq p(P \mid S) \leq 1
\end{array}
$$

All M are P
$p(P \mid M)=1$
(Existential import: M

$$
p(M)>0)
$$

All S are M

$$
p(M \mid S)=1
$$

$\frac{\text { Existential import: } S}{\text { All } S \text { are } P}$

$$
\frac{p(S)>0}{p(P \mid S)=1}
$$

Example 1 (CondEv): Probabilistic Modus Barbara

$$
\begin{array}{lll}
\text { All } M \text { are } P & & p(P \mid M)=1 \\
\text { All } S \text { are } M & & p(M \mid S)=1 \\
\cline { 1 - 1 } & \text { All } S \text { are } P & \\
0 \leq p(P \mid S) \leq 1
\end{array}
$$

$$
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { (Existential import: } M & p(M)>0) \\
\text { All } S \text { are } M & p(M \mid S)=1 \\
\text { Existential import: } S & p(S)>0 \\
\cline { 1 - 1 } \text { All } S \text { are } P & p(P \mid S)=1
\end{array}
$$

If $p(S)=\gamma$ and $p(M \mid S)=1$, then $\gamma \leq p(M) \leq 1$

Example 2 (CondEv): Probabilistic Modus Barbarí

$$
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { All } S \text { are } M & \\
\cline { 1 - 1 } & \text { At least one } S \text { is } P \\
& p(M \mid S)=1 \\
0 \leq p(S \wedge P) \leq 1
\end{array}
$$

Example 2 (CondEv): Probabilistic Modus Barbari

$$
\begin{array}{ll}
\text { All } M \text { are } P & p(P \mid M)=1 \\
\text { All } S \text { are } M & \begin{array}{l}
p(M \mid S)=1 \\
\hline \text { At least one } S \text { is } P
\end{array}
\end{array}
$$

All M are P

$$
p(P \mid M)=1
$$

(Existential import: M

$$
p(M)>0)
$$

All S are $M \quad p(M \mid S)=1$
$\frac{\text { Existential import: } S}{\text { At least one } S \text { is } P} \frac{p(S)>0}{0<p(S \wedge P) \leq 1}$

Existential Import: Different options

- Replacing the first premise by a logical constraint, e.g.:

$$
\begin{aligned}
& \models(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

Existential Import: Different options

- Replacing the first premise by a logical constraint, e.g.:

$$
\begin{aligned}
& \models(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

- Strengthening the antecedent of the first premise, e.g.:

$$
\begin{aligned}
& p(P \mid S \wedge M)=1 \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

Existential Import: Different options

- Replacing the first premise by a logical constraint, e.g.:

$$
\begin{aligned}
& \models(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

- Strengthening the antecedent of the first premise, e.g.:

$$
\begin{aligned}
& p(P \mid S \wedge M)=1 \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

- Positive probability of the conditioning event, e.g.:

All S are $P: p(S)>0$

Existential Import: Different options

- Replacing the first premise by a logical constraint, e.g.:

$$
\begin{aligned}
& \models(M \supset P) \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

- Strengthening the antecedent of the first premise, e.g.:

$$
\begin{aligned}
& p(P \mid S \wedge M)=1 \\
& p(M \mid S)=1 \\
& \hline p(P \mid S)=1
\end{aligned}
$$

- Positive probability of the conditioning event, e.g.:

All S are $P: p(S)>0$

- Positive probability of each conditioning event, given the disjunction of all conditioning events ("conditional event El"):

$$
\begin{aligned}
& p(P \mid M)=1 \\
& p(M \mid S)=1 \\
& p(S \mid S \vee M)>0 \\
& p(M \mid S \vee M)>0 \text { (irrelevant) } \\
& \hline p(P \mid S)=1
\end{aligned}
$$

Example: Figure 1, conditional event El

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$

Example: Figure 1, conditional event El

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$
1	1	$t>0$	$[1,1]$

Example: Figure 1, conditional event El

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$
1	1	$t>0$	$[1,1]$
1	y	$t>0$	$[y, 1]$

Example: Figure 1, conditional event EI

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$
1	1	$t>0$	$[1,1]$
1	y	$t>0$	$[y, 1]$
.9	1	1	$[.9, .9]$
.9	1	.5	$[.8,1]$
.9	1	.2	$[.5,1]$

Example: Figure 1, conditional event EI

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$
1	1	$t>0$	$[1,1]$
1	y	$t>0$	$[y, 1]$
.9	1	1	$[.9, .9]$
.	1	.5	$[.8,1]$
.9	1	.2	$[.5,1]$
(major)	(minor)		

Example: Figure 1, conditional event EI

Premises		E.I.	Conclusion
$p(P \mid M)$	$p(M \mid S)$	$p(S \mid S \vee M)$	$p(P \mid S)$
x	y	t	$\left[z^{\prime}, z^{\prime \prime}\right]$
x	y	0	$[0,1]$
1	1	$t>0$	$[1,1]$
1	y	$t>0$	$[y, 1]$
.9	1	1	$[.9, .9]$
.	1	.5	$[.8,1]$
.9	1	.2	$[.5,1]$
(major)	(minor)		

$$
\begin{aligned}
& z^{\prime}=\max \left\{0, x y-\frac{(1-t)(1-x)}{t}\right\} \\
& z^{\prime \prime}=\min \left\{1,(1-x)(1-y)+\frac{x}{t}\right\}
\end{aligned}
$$

Example III:

Conditionals

How people interpret indicative conditionals

- Material conditional $A \supset B$; explicit mental model (Johnson-Laird \& Byrne, 2002)

$$
\begin{array}{rr}
A & B \\
\neg A & B \\
\neg A & \neg B
\end{array}
$$

How people interpret indicative conditionals

- Material conditional $A \supset B$; explicit mental model (Johnson-Laird \& Byrne, 2002)

$$
\begin{array}{rr}
A & B \\
\neg A & B \\
\neg A & \neg B
\end{array}
$$

- Conjunction $A \wedge B$; implicit mental model (Johnson-Laird \& Byrne, 2002)
\square

How people interpret indicative conditionals

- Material conditional $A \supset B$; explicit mental model (Johnson-Laird \& Byrne, 2002)

$$
\begin{array}{rr}
A & B \\
\neg A & B \\
\neg A & \neg B
\end{array}
$$

- Conjunction $A \wedge B$; implicit mental model (Johnson-Laird \& Byrne, 2002)

- Conditional event $B \mid A_{\text {(e.g., Evans \& Over, 2004; Oaksford \& Chater, 2009; Pfeifer \& }}$ Kleiter, 2009)

A priori arguments against the material conditional interpretation of $A \rightarrow B$

Paradoxes of the material conditional, e.g.,

$$
\begin{array}{cc}
\text { (Paradox 1) } & \begin{array}{c}
\text { (Paradox 2) } \\
\\
\end{array} \frac{\neg A}{A \supset B} \quad \frac{\neg}{}
\end{array}
$$

A priori arguments against the material conditional interpretation of $A \rightarrow B$

Paradoxes of the material conditional, e.g.,

$$
\begin{gathered}
\text { (Paradox 1) } \\
P(B)=x
\end{gathered} \begin{gathered}
(\text { Paradox 2) } \\
P(\neg A)=x \\
\hline x \leq P(A \supset B) \leq 1
\end{gathered} \begin{gathered}
1-x \leq P(A \supset B) \leq 1
\end{gathered}
$$

probabilistically informative

A priori arguments against the material conditional interpretation of $A \rightarrow B$

Paradoxes of the material conditional, e.g.,

> (Paradox 1)
> $P(B)=x$$\quad \begin{gathered}\text { (Paradox 2) } \\ P(\neg A)=x \\ \quad\end{gathered}$
probabilistically non-informative

A priori arguments against the material conditional interpretation of $A \rightarrow B$

Paradoxes of the material conditional, e.g.,

$$
\begin{array}{cc}
\text { (Paradox 1) } & (\text { Paradox 2) } \\
P(B)=x & P(\neg A)=x \\
\hline 0 \leq P(B \mid A) \leq 1 & 0 \leq P(B \mid A) \leq 1
\end{array}
$$

probabilistically non-informative

Special case not covered in the standard approach to probability:
If $P(B)=1$, then $P(A \wedge B)=P(A)$.

A priori arguments against the material conditional interpretation of $A \rightarrow B$

Paradoxes of the material conditional, e.g.,

$$
\begin{array}{cc}
\text { (Paradox 1) } & (\text { Paradox 2) } \\
P(B)=x & P(\neg A)=x \\
\hline 0 \leq P(B \mid A) \leq 1 &
\end{array}
$$

probabilistically non-informative

Special case not covered in the standard approach to probability:
If $P(B)=1$, then $P(A \wedge B)=P(A)$. Thus,

$$
P(B \mid A)=\frac{P(A \wedge B)}{P(A)}=\frac{P(A)}{P(A)}=1, \text { if } P(A)>0
$$

Negating conditionals

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

AT \#2: $\neg(A \rightarrow \neg A)$

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

$$
\neg(\neg A \supset A)
$$

AT \#2: $\neg(A \rightarrow \neg A)$

$$
\neg(A \supset \neg A)
$$

Aristotle's Theses

AT \#1: $\neg(\neg A \rightarrow A)$

$$
\neg(\neg A \supset A) \equiv \neg A \wedge \neg A \equiv \neg A
$$

AT \#2: $\neg(A \rightarrow \neg A)$

$$
\neg(A \supset \neg A) \equiv A \wedge A \equiv A
$$

Aristotle's Theses: Probability logical predictions (Pfeferer, in press a)

$$
\text { AT \#1: } \begin{aligned}
& \neg(\neg A \rightarrow A) \\
& \bullet P(\neg(\neg A \supset A))=P(\neg A)
\end{aligned}
$$

Aristotle's Theses: Probability logical predictions (Pfefier, in press a)

$$
\text { AT \#1: } \begin{aligned}
\neg & \neg \neg A \rightarrow A) \\
& \bullet P(\neg(\neg A \supset A))=P(\neg A) \\
& \bullet P(\neg(\neg A \wedge A))=1
\end{aligned}
$$

Aristotle's Theses: Probability logical predictions (Pfeferer, in press a)

$$
\text { AT \#1: } \begin{aligned}
\neg & (\neg A \rightarrow A) \\
& \cdot P(\neg(\neg A \supset A))=P(\neg A) \\
& P P(\neg(\neg A \wedge A))=1 \\
& \cdot P(A \mid \neg A)=0, \text { its negation: } P(\neg A \mid \neg A)=1
\end{aligned}
$$

Aristotle's Theses: Probability logical predictions (Pfeferer, in press a)

```
AT \#1: \(\neg(\neg A \rightarrow A)\)
                            - \(P(\neg(\neg A \supset A))=P(\neg A)\)
    - \(P(\neg(\neg A \wedge A))=1\)
    - \(P(A \mid \neg A)=0\), its negation: \(P(\neg A \mid \neg A)=1\)
```

AT \#2: $\neg(A \rightarrow \neg A)$
- $P(\neg(A \supset \neg A))=P(A)$
- $P(\neg(A \wedge \neg A))=1$
- $P(\neg A \mid A)=0$, its negation: $P(\neg \neg A \mid A)=P(A \mid A)=1$

Aristotle's Theses: Probability logical predictions (Pfeferer, in press a)

$$
\begin{aligned}
& \text { AT \#1: } \neg(\neg A \rightarrow A) \\
& \rightarrow P(\neg(\neg A \supset A))=P(\neg A) \\
& \bullet P(\neg(\neg A \wedge A))=1 \\
&-P(A \mid \neg A)=0, \text { its negation: } P(\neg A \mid \neg A)=1 \\
& \text { AT \#2: } \neg(A \rightarrow \neg A) \\
& \rightarrow P(\neg(A \supset \neg A))=P(A) \\
&-P(\neg(A \wedge \neg A))=1 \\
& \bullet P(\neg A \mid A)=0, \text { its negation: } P(\neg \neg A \mid A)=P(A \mid A)=1
\end{aligned}
$$

Complete uncertainty of A : $0 \leq P(A) \leq 1$ is coherent.

Experiment 1: Abstract version, Aristotle's Thesis \#1

The letter " A " denotes a sentence, like "It is raining".
There are sentences, where you can infer only on the basis of their logical form, whether they are guaranteed to be false or guaranteed to be true. For example:

- " A and not- A " is guaranteed to be false.
- " A or not- A " is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form, whether they are true or false. The sentence " A " ("It is raining."), for example, can be true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

$$
\text { It is not the case, that: If not- } A \text {, then } A \text {. }
$$

The sentence in the box is guaranteed to be false \square
The sentence in the box is guaranteed to be true
One cannot infer whether the sentence is true or false

Experiment 1: Abstract version, Aristotle's Thesis \#2

The letter " A " denotes a sentence, like "It is raining".
There are sentences, where you can infer only on the basis of their logical form, whether they are guaranteed to be false or guaranteed to be true. For example:

- " A and not- A " is guaranteed to be false.
- " A or not- A " is guaranteed to be true.

There are sentences, where you cannot infer only on the basis of their logical form, whether they are true or false. The sentence " A " ("It is raining."), for example, can be true but it can just as well be false: this depends upon whether it is actually raining.

Evaluate the following sentence (please tick exactly one alternative):

$$
\text { It is not the case, that: If } A \text {, then not- } A \text {. }
$$

The sentence in the box is guaranteed to be false
The sentence in the box is guaranteed to be true
One cannot infer whether the sentence is true or false

Experiment 1: Sample (Pfefiere, in press a)

- $N=141$
- all psychology students
- 91% third semester
- 78\% female
- median age: 21 (1st $\mathrm{Qu} .=20$, 3rd $\mathrm{Qu} .=23)$

Concrete ($\mathrm{n}=71$) versus abstract ($\mathrm{n}=71$) task material

Scope ambiguities

(W) Negating the conditional: $\neg \underbrace{(A \rightarrow \neg A)}_{\text {wide scope }}$
(N) Negating the consequent: $(A \rightarrow \neg \underbrace{\neg A)}$
narrow scope

Scope ambiguities

(W) Negating the conditional: $\neg \underbrace{(A \rightarrow \neg A)}_{\text {wide scope }}$
(N) Negating the consequent: $(A \rightarrow \neg \underbrace{\neg A)}$
narrow scope
(W) and (N) are well defined for \wedge and \supset.

Scope ambiguities

(W) Negating the conditional: $\neg \underbrace{(A \rightarrow \neg A)}_{\text {wide scope }}$
(N) Negating the consequent: $(A \rightarrow \neg \underbrace{\neg A)}$
narrow scope
(W) and (N) are well defined for \wedge and \supset. Conditional events, $B \mid A$, are usually negated by $(\mathrm{N}), P(\neg B \mid A)$.

Scope ambiguities

(W) Negating the conditional: $\neg \underbrace{(A \rightarrow \neg A)}_{\text {wide scope }}$
(N) Negating the consequent: $(A \rightarrow \neg \underbrace{\neg A)}$
narrow scope
(W) and (N) are well defined for \wedge and \supset. Conditional events, $B \mid A$, are usually negated by $(\mathrm{N}), P(\neg B \mid A)$.
$\neg(\neg A \mid A)$ could mean that $\neg A \mid A$ is completely rejected.

Scope ambiguities

(W) Negating the conditional: $\neg \underbrace{(A \rightarrow \neg A)}_{\text {wide scope }}$
(N) Negating the consequent: $(A \rightarrow \neg \underbrace{\neg A)}$
narrow scope
(W) and (N) are well defined for \wedge and \supset. Conditional events, $B \mid A$, are usually negated by $(\mathrm{N}), P(\neg B \mid A)$.
$\neg(\neg A \mid A)$ could mean that $\neg A \mid A$ is completely rejected.

$$
\neg(B \mid A) \quad \text { iff } \quad 0 \leq P(B \mid A) \leq 1
$$

Experiment 2: Design (Pfeifer, in press a)

Between participants: Explicit ($n_{1}=20$) vs. implicit negation ($n_{2}=20$)
Within participants: 12 Tasks

Task	Name	Argument form
1	Aristotle's Thesis 1	$\neg(A \rightarrow \neg A)$
2	Negated Reflexivity	$\neg(A \rightarrow A)$
3	Aristotle's Thesis 2	$\neg(\neg A \rightarrow A)$
4	Reflexivity	$A \rightarrow A$
5	Contingent Arg. 1	$A \rightarrow B$
6	Contingent Arg. 2	$\neg(A \rightarrow B)$
$7-10$	4 Probabilistic truth-table tasks	
11	Paradox 1	from B infer $A \rightarrow B$
12	Neg. Paradox 1	from B infer $A \rightarrow \neg B$

Experiment 2: Predictions

Argument form	Scope			
		wide	narrow	
	$\cdot \mid$	\cdot •	\bigcirc	- \wedge.
$\neg(A \rightarrow \neg A)$	T	CT	T	T
$\neg(A \rightarrow A)$	F	F	CT	CT
$\neg(\neg A \rightarrow A)$	T	CT	T	T
$A \rightarrow A$	T	T	T	CT
$A \rightarrow B$	CT	CT	CT	CT
$\neg(A \rightarrow B)$	CT	CT	CT	CT
from B infer $A \rightarrow B$	U		H	U
from B infer $A \rightarrow \neg B$	U		H	L

Note: $\mathrm{CT}=$ can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Predictions $\cdot \mid$. against wide vs. narrow scope of $\cdot \supset$.

Argument form	Scope			
		wide	narrow	
	$\cdot 1$.	$\cdot \supset$	- ${ }^{\text {P }}$	$\cdot \wedge \cdot$
$\neg(A \rightarrow \neg A)$	T	CT	T	T
$\neg(A \rightarrow A)$	F	F	CT	CT
$\neg(\neg A \rightarrow A)$	T	CT	T	T
$A \rightarrow A$	T	T	T	CT
$A \rightarrow B$	CT	CT	CT	CT
$\neg(A \rightarrow B)$	CT	CT	CT	CT
from B infer $A \rightarrow B$	U		H	U
from B infer $A \rightarrow \neg B$	U		H	L

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Aristotle's Thesis \#1, implicit version

[...]
Hans expects to be visited by Thea and Ida. He is sitting in his room. Suddenly someone knocks at the door. Hans is absolutely certain, that either Thea or Ida is knocking.

Experiment 2: Aristotle's Thesis \#1, implicit version

[...]
Hans expects to be visited by Thea and Ida. He is sitting in his room. Suddenly someone knocks at the door. Hans is absolutely certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If Ida knocks, then Thea knocks.
The sentence in the box is guaranteed to be false The sentence in the box is guaranteed to be true
One cannot infer whether the sentence is true or false

Experiment 2: Aristotle's Thesis \#1, explicit version

[...]
Hans expects to be visited by Thea and Ida. He is sitting in his room. Suddenly someone knocks at the door. Hans is absolutely certain, that either Thea or Ida is knocking.

Evaluate the following sentence (please tick exactly one alternative):

It is not the case, that: If Ida knocks, then Ida does not knock.

The sentence in the box is guaranteed to be false The sentence in the box is guaranteed to be true One cannot infer whether the sentence is true or false

Experiment 2: Sample (Pfefier, in press a)

- $N=40$
- no psychology students
- individual tested, $5 €$ for participation
- 50% female
- median age: $22(1$ st $\mathrm{Qu} .=21,3 \mathrm{rd} \mathrm{Qu} .=23)$

Experiment 2: Results (Pfefere in press)

Argument form	Scope			$\cdot \wedge \cdot$	Responses in percent		
	$\cdot \mid$	wide	narrow				
			- ${ }^{\text {P }}$		T	F	CT
$\neg(A \rightarrow \neg A)$	T	CT	T	T	78	18	5
$\neg(A \rightarrow A)$	F	F	CT	CT	10	88	2
$\neg(\neg A \rightarrow A)$	T	CT	T	T	80	13	8
$A \rightarrow A$	T	T	T	CT	93	3	5
$A \rightarrow B$	CT	CT	CT	CT	0	13	88
$\neg(A \rightarrow B)$	CT	CT	CT	CT	20	3	78
from B infer $A \rightarrow B$	U		H	U	40	0	60
from B infer $A \rightarrow \neg B$	U		H	L	5	30	65

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Experiment 2: Results (Pfefere in press)

Argument form	Scope			$\cdot \wedge \cdot$	Responses in percent		
	$\cdot \mid \cdot$	wide	narrow				
		\cdot • .	- \supset.		T	F	CT
$\neg(A \rightarrow \neg A)$	T	CT	T	T	78	18	5
$\neg(A \rightarrow A)$	F	F	CT	CT	10	88	2
$\neg(\neg A \rightarrow A)$	T	CT	T	T	80	13	8
$A \rightarrow A$	T	T	T	CT	93	3	5
$A \rightarrow B$	CT	CT	CT	CT	0	13	88
$\neg(A \rightarrow B)$	CT	CT	CT	CT	20	3	78
from B infer $A \rightarrow B$	U		H	U	40	0	60
from B infer $A \rightarrow \neg B$	U		H	L	5	30	65

Note: CT=can't tell, $\mathrm{T}=$ true, $\mathrm{F}=$ false,
$\mathrm{U}=$ uninformative conclusion probability, $\mathrm{H}=$ high conclusion probability, $\mathrm{L}=$ low conclusion probability

Outline

- Introduction
- Example I: Nonmonotonic reasoning
- Example II: Aristotelian syllogisms
- Example III: Conditionals

Interaction of formal and empirical work (Pfeifer, in press b)

Formal work

Empirical work

Interaction of formal and empirical work (Pfefere, in press b)

Interaction of formal and empirical work (Pfefere, in press b)

empirical validation beyond soundness \& completeness

Formal work
stimulates new empirical hypotheses provides rationality norms

Empirical work

Interaction of formal and empirical work (Pfefere, in press b)

Interaction of formal and empirical work (Pfefere, in press b)

empirical validation beyond soundness \& completeness

Formal work

stimulates new empirical hypotheses

 provides rationality norms

Interaction of formal and empirical work (Pfefere, in press b)

empirical validation beyond soundness \& completeness

Formal work

stimulates new empirical hypotheses

 provides rationality norms

References I

Adams, E. W. (1975). The logic of conditionals. Dordrecht:
Reidel.
Alexander, J., Mallon, R., \& Weinberg, J. M. (2010). Accentuate the negative. Review of Philosophy and Psycholoy, 1, 297-314.
Benferhat, S., Bonnefon, J.-F., \& Da Silva Neves, R. (2005). An overview of possibilistic handling of default reasoning, with experimental studies. Synthese, 1-2, 53-70.
Benferhat, S., Dubois, D., \& Prade, H. (1997). Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence, 92, 259-276.
Biazzo, V., Gilio, A., Lukasiewicz, T., \& Sanfilippo, G. (2005).
Probabilistic logic under coherence: Complexity and algorithms. Annals of Mathematics and Artificial Intelligence, 45(1-2), 35-81.

References II

Da Silva Neves, R., Bonnefon, J.-F., \& Raufaste, E. (2002). An empirical test of patterns for nonmonotonic inference. Annals of Mathematics and Artificial Intelligence, 34, 107-130.
Evans, J. St. B. T., \& Over, D. E. (2004). If. Oxford: Oxford University Press.
Ford, M. (2004). System LS: A three-tiered nonmonotonic reasoning system. Computational Intelligence, 20(1), 89-108.

Gilio, A. (2002). Probabilistic reasoning under coherence in System P. Annals of Mathematics and Artificial Intelligence, 34, 5-34.
Johnson-Laird, P. N., \& Byrne, R. M. J. (2002). Conditionals: A theory of meaning, pragmatics, and inference. Psychological Review, 109(4), 646-678.
Knobe, J., \& Nichols, S. (Eds.). (2008). Experimental philosophy. Oxford: Oxford University Press.

References III

Kraus, S., Lehmann, D., \& Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics.
Artificial Intelligence, 44, 167-207.
Kusch, M. (2007). Psychologism. Stanford Encyclopedia of
Philosophy.
Leitgeb, H. (2001). Nonmonotonic reasoning by inhibition nets. Artificial Intelligence, 128, 161-201.
Leitgeb, H. (2004). Inference on the low level. An investigation into deduction, nonmonotonic reasoning, and the philosophy of cognition. Dordrecht: Kluwer Academic Publishers.
Oaksford, M., \& Chater, N. (2009). Précis of "Bayesian rationality: The probabilistic approach to human reasoning". Behavioral and Brain Sciences, 32, 69-84.
Pelletier, F. J., \& Elio, R. (1997). What should default reasoning be, by default? Computational Intelligence, 13, 165-187.

References IV

Pfeifer, N. (2006). Contemporary syllogistics: Comparative and quantitative syllogisms. In G. Kreuzbauer \& G. J. W. Dorn (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens (p. 57-71). Wien: LIT.
Pfeifer, N. (in press a). Experiments on Aristotle's thesis: Towards an experimental philosophy of conditionals. The Monist.
Pfeifer, N. (in press b). Systematic rationality norms provide research roadmaps and clarity. Commentary on Elqayam \& Evans: Subtracting "ought" from "is": Descriptivism versus normativism in the study of human thinking. Behavioral and Brain Sciences.
Pfeifer, N., \& Kleiter, G. D. (2003). Nonmonotonicity and human probabilistic reasoning. In Proceedings of the $6^{\text {th }}$ workshop on uncertainty processing (p. 221-234). Hejnice: September $24-27^{\text {th }}, 2003$.

References V

Pfeifer, N., \& Kleiter, G. D. (2005). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1-2), 93-109.
Pfeifer, N., \& Kleiter, G. D. (2006). Is human reasoning about nonmonotonic conditionals probabilistically coherent? In Proceedings of the $7^{\text {th }}$ workshop on uncertainty processing (p. 138-150). Mikulov: September 16-20 ${ }^{\text {th }}, 2006$.

Pfeifer, N., \& Kleiter, G. D. (2009). Framing human inference by coherence based probability logic. Journal of Applied Logic, 7(2), 206-217.

[^0]: ${ }^{1}$ http://pantheon.yale.edu/~jk762/ExperimentalPhilosophy.html

[^1]: ${ }^{1}$ http://pantheon.yale.edu/~jk762/ExperimentalPhilosophy.html

[^2]: ${ }^{1}$ http://pantheon.yale.edu/~jk762/ExperimentalPhilosophy.html

[^3]: ${ }^{1}$ http://pantheon.yale.edu/~jk762/ExperimentalPhilosophy.html

