# THE INTERPRETATION OF VAGUE PREDICATES -EXPERIMENTAL INSIGHTS

Nicole Gotzner, Marijan Palmovic & Stephanie Solt LOGICCC Final Conference September 15-18 2011

# Vague Predicates

### Borderline Cases

These jeans are expensive



#### Sorites Paradox

Jeans that cost 120€ are expensive ✓

Jeans that cost 0,01 $\in$  less than an expensive pair of jeans are expensive  $\checkmark$ 

∴ Jeans that cost 5€ are expensive ×

### Challenges to semantic analysis

What is required of a formal model to capture intuitions of 'borderline' truth?
 E.g. multivalued logic?

 How should truth conditions of a sentence containing a vague predicate be stated?
 [[ These jeans are expensive ]] = 1 iff ......

### **Overall research questions**

How do 'real' speakers behave when presented with borderline cases of a vague predicate?

On what basis do speakers judge applicability of a vague predicate?

> Ultimate goal: input towards formal analyses of vagueness

### **Experiment series 1**

Vague adjectives and Sorites series

## **Research Questions**

- How do speakers behave when presented with a vague adjective (e.g. *large*) in the context of a set of stimuli representing a Sorites series?
  - Do they allow a 'gap' between positive and negative extensions of a vague adjective? (cf. Bonini et al. 1999)

### The suitcase is large





### Stimuli based on gradable adjectives

- **3 adjectives:** groß (large), teuer (expensive) and weit weg (far)
- **their negations:** nicht groß, nicht teuer, nicht weit weg



- Sentence-picture matching task (adjective vs. negation judged in succession)
- 14 native German students (mean age: 21)

### Results



## Conclusions

- Respondents leave an extension gap: neither adjective nor its negation are applied to borderline individuals
  - Pattern replicated in online follow-up study
  - Speakers acknowledge a gap when judging adjective and negation against the same picture set (pilot results)
- Compatible with multiple theories of vagueness

### **Experiment series 2**

Online processing of borderline cases

### **Research Questions**

- What are the neural correlates of vagueness?
- □ How are borderline cases processed?
  - Compared to clear cases of 'true'?
  - Compared to clear cases of 'false'?



- Event-related brain potential (ERP) study: color adjectives paired with color patches
- □ 4 conditions (example of color word RED)
  - Congruent
  - Borderline (close)
  - Borderline (distant)
  - Incongruent
- No overt task
- Two orders
  - color word -> color patch (Exp 1a)
  - color patch -> color word (Exp 1b)
- 17 native Croatian subjects (age 20)

## Experiment 1a



## Rough sketch of components



Adapted from Birbaumer & Schmidt (2006)

# Results (Exp 1a)



- congruent
- incongruent
- Borderline (close)
- Borderline (far)

## Experiment 1b



# Results (Exp 1b)



no early mismatch effect for borderline stimuli

## Conclusions

- Processing of borderline cases is distinct from both clear cases of true and false
- Borderline cases do not elicit an early mismatch effect
- Color word -> color patch
  - Early prototypicality effect (differentiation of clear cases of true vs. false vs. borderline cases)
  - Additional processing costs for (distant) borderline cases
- Color patch -> color word
  - Effect on word recognition (again graded pattern)
- Potential next step: overt classification task

### **Experiment series 3**

Role of comparison classes

## **Comparison Classes**

 Gradable adjectives in positive form are interpreted relative to comparison class (C) which provides a standard of comparison

(Bartsch & Vennemann 1972; Klein 1980; Bale 2008; van Rooij 2011; Solt 2011)



## Impact of comparison class

### Impact of comparison class could potentially be stated in various ways:



72 eggs / 18 sizes

The blue egg is **big** iff....

- ... it is among the biggest n% of the eggs
- ... its size is among the top n% of egg sizes
- ... its size is greater than the mean egg size

... Etc.

- Different partitions of C
- Different requirements on model

## **Research questions**

- What information does the comparison class provide?
- How should the truth conditions for the adjective be expressed?
- Strategy:
  - Adjective evaluated in context of comparison classes varying in distribution
  - Identify factors which impact extension of adjective

## Experiment 1

### Check all of the **big** eggs



- Online experiment with 1 adjective pair (big/small)
- 4 symmetrical distributions (72 eggs / 18 sizes)
- Classification task
  - big and small judgments made in succession
- 77 native German speakers (mean age: 26)

## **Comparison Class Distributions**









### Average Number of Items Classified as...



*Big* does **not** mean 'biggest n% of the comparison class' (similarly for *small*)

# Average Cutoff Points

| Adjective/<br>Condition | small | big  |
|-------------------------|-------|------|
| linear                  | 6,6   | 13,5 |
| Gaussian<br>shallow     | 7,1   | 12,5 |
| Gaussian<br>steep       | 6,6   | 13,0 |
| bimodal                 | 7,2   | 12,2 |

Does *big* simply mean 'top n% of the egg sizes' (e.g. sizes 13-18 out of 18)?

# Follow-Up Study (Mturk)

#### The blue egg is one of the big eggs.



□true □false □ can`t decide

- Online experiment (MTurk)
- 4 distributions (1/participant)
- Truth-value judgment task
- 342 native English speakers with
   U.S. IP addresses (mean age: 34)

## Results



<u>Chi-squared test</u>  $X^2 = 28.3$ , df= 4 p < 0.0001

*Big* doesn't simply mean 'top n% of the egg sizes' – distribution of items across sizes matters

## Experiment 2

Extend previous findings

to additional adjectives

to different types of distributions

Better understanding of relevant factors



- Online experiment (MTurk)
- 4 Adjectives (36 picture stimuli each)
  - big
  - tall
    dark
    pointy
- 4 distributions (4/participant, rotated across stimuli)
- 192 native English speakers (mean age: 36)

## Distributions



### Results



Significant difference in average cutoff points

□ F(3,754)= 194,96; p < 0.0001

And significant difference in # items classified as dark/tall/big/pointy

□ F(3,756)= 23.9; p < 0.0001

# Summary

- In judging which items a gradable adjective (e.g. large) can be applied to, speakers make use of statistical properties of comparison class
- Threshold cannot be stated in simple terms:
  - E.g. large does not mean "in the largest 1/3 of the comparison class
- Rather, judgments apparently based on multiple factors, e.g.
  - range of sizes represented
  - distribution of items across sizes
- Next step: modelling of results

# Overall summary

### Exp. series 1

speakers allow an extension gap when they are supposed to apply a predicate to borderline individuals

### □ Exp. series 2

- In online processing, a speakers` brain differentiates borderline cases from clear cases of true and false
- Borderline cases are associated with processing costs at later stages, neither elicited by clear cases of false and true

### Exp. series 3

An interaction of multiple factors determines how speakers interpret vague predicates

### References

- Bale, A. C. 2008. A universal scale of comparison. Linguistics and Philosophy 31:1–55.
- Bartsch, R. & Vennemann, T. 1973. Semantic structures: A study in the relation between syntax and semantics. Frankfurt: Athaenum Verlag.
- Birbaumer, N. & Schmidt, R. F. 2006. Biologische Psychologie, Heidelberg: Springer.
- Bonini, N., Osherson, D., Viale, R. & Williamson, T. 1999. On the Psychology of vague predicates. Mind & Language, 14, 377-393.
- Klein, E. 1980. A semantics for positive and comparative adjectives. Linguistics and Philosophy, 4, 1-45.
- van Rooij, R. 2011. Implicit versus explicit comparatives. In Vagueness and language use, ed. Paul Égré and Nathan Klinedinst. New York: Palgrave Macmillan.
- Solt, S. 2011. Notes on the comparison class. In Rick Nouwen, Robert van Rooij, Uli Sauerland and Hans-Christian Schmitz (eds.), Vagueness in Communication (ViC2009), Revised Selected Papers (LNAI 6517), 189-206. Berlin, Heidelberg: Springer.