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Independence-Friendly Logic (IF logic)

Quantifiers and connectives of the form

(∃x/W ), (∀x/W ), (∨/{W }), (∧/W )

Interpretation by 2-player, 1-sum, win-loss extensive games
G (M, s, ϕ) of imperfect information

M, s �+
GTS ϕ iff there is a winning strategy for Eloise in G (M, s, ϕ)

M, s �−GTS ϕ iff there is a winning strategy for Abelard in G (M, s, ϕ)

When W = ∅, we recover classical first-order logic

Failure of determinacy (bivalence)
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Failure of bivalence

Matching Pennies ϕMP

∀x(∃y/{x})x = y

is undeterminate on all structures

Inverted Matching Pennies ϕIMP

∀x(∃y/{x})x 6= y

is undeterminate on all structures

The sentence ϕinf

∃w∀x(∃y/{w})(∃z/{w , x})(x = z ∧ w 6= y)

which defines (Dedekind) infinity is undeterminate on all finite structures
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Beyond Undeterminacy: the methodology

Suggestion by Aitaj (Blass and Gurevich, 1986)

M. Sevenster (2006), doctoral dissertation (ILLC)

M. Sevenster and G. Sandu (2010), Equilibrium semantics of
languages with perfect information, APAL

A. Mann & G. Sandu & M. Sevenster, 2011, Independence-Friendly
Logic: A Game-theoretic Approach, CUP
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Beyond Undeterminacy: the methodology

Only finite structures

Semantical games =⇒ Strategic games

Pure strategies =⇒ Mixed strategies (probabilistic distributions)

Winning strategies =⇒ strategies in equilibrium

Equilibrium semantics in mixed strategies

Such an equilibrium always exists (von Neumann’s Minimax Theorem)

The expected utilities returned to the players by all the equilibria in
the game is unique

Truth in a structure =⇒ probabilistic value in a structure

The probabilistic value in a structure is Eloise’s expected utility
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Example: Matching Pennies

The strategic game in a two element structure:

a1 a2

a1 (1, 0) (0, 1)

a2 (0, 1) (1, 0)

The pair of mixed strategies (σ, τ) such that σ = τ and

σ(a1) = σ(a2) = 1
2

is an equilibrium in the game.

Eloise’s expected utility is 1
2 .
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Example: Matching Pennies

The probabilistic values of Matching Pennies and the Inverted
Matching Pennies:

Cardinality of M ϕMP ϕIMP

1 1 0

2 1
2

1
2

3 1
3

2
3

...
...

...

n 1
n

n−1
n
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Example: Infinity

The probabilistic value of ϕinf

∃w∀x(∃y/{w})(∃z/{w , x})(x = z ∧ w 6= y)

on a structure M of cardinality n is n−1
n .

Thus as M grows to infinity, the probabilistic value of
ϕinf approaches 1.

The probabilistic values of ϕinf and ϕIMP = ∀x(∃y/{x})x 6= y
coincide on all finite structures.
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Lewis’ coordination problems (Conventions, 1969, 1975)

A communication situation involves a communicator (C ) and an
audience (A).

C observes one of several states m which he tries to communicate or
”signal” to A, who does not see m.

After receiving the signal, A performs one of several alternative
actions, called responses.

Every situation m has a corresponding response b(m) that C and A
agree is the best response to take when m holds.

Lewis argues that a word acquires its meaning in virtue of its role in
the solution to various signaling problems.
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Signaling systems (Lewis, Parikh, Skirms, van Rooij)

S is a set of situations or states of affairs, Σ a set of signals, and R a
set of responses.

b : S → R is function that maps each situation to its best response.

C employs an encoding f : S → Σ to choose a signal for every
situation.

A employs a function g : Σ→ R to decide which action to perform in
response to the signal it receives.

A signaling system is a pair (f , g) of encoding and decoding functions
such that their composition g • f = b.
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Example

A driver who is trying to back into a parking space. She has an assistant
who gets out of the car and stands in a location where she can
simultaneously see how much space there is behind the car and be seen by
the driver. There are two states of affairs the assistant wishes to
communicate, i.e., whether there is enough space behind the car for the
driver to continue to back up. The assistant has two signals at her
disposal: she can stands palms facing in or palms facing out. The driver
has two possible responses: she can back up or she can stop.
There are two solutions (signaling systems) for this signaling problem.
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Signaling systems in IF logic

(Hodges’) IF sentence ∀x∃z(∃y/{x})x = y can be modified to
express a Lewisian signaling system:

∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = b(x))].

We slightly modify Lewis’ signaling games and take A’s taks to
decode the situation the message was sent from:

ϕsig = ∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = x)]

We consider structures

M = (D,SM ,ΣM ,RM)

such that D = {s1, ..., sn, t1, ..., tm},
SM = RM = {s1, ..., sn},ΣM = {t1, ..., tm}.

Gabriel Sandu (University of Helsinki) Signaling games and Independence-Friendly Logic 2011, September 12 / 17



Signaling systems in IF logic

(Hodges’) IF sentence ∀x∃z(∃y/{x})x = y can be modified to
express a Lewisian signaling system:

∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = b(x))].

We slightly modify Lewis’ signaling games and take A’s taks to
decode the situation the message was sent from:

ϕsig = ∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = x)]

We consider structures

M = (D,SM ,ΣM ,RM)

such that D = {s1, ..., sn, t1, ..., tm},
SM = RM = {s1, ..., sn},ΣM = {t1, ..., tm}.

Gabriel Sandu (University of Helsinki) Signaling games and Independence-Friendly Logic 2011, September 12 / 17



Signaling systems in IF logic

(Hodges’) IF sentence ∀x∃z(∃y/{x})x = y can be modified to
express a Lewisian signaling system:

∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = b(x))].

We slightly modify Lewis’ signaling games and take A’s taks to
decode the situation the message was sent from:

ϕsig = ∀x∃z(∃y/{x})[S(x)→ (Σ(z) ∧ R(y) ∧ y = x)]

We consider structures

M = (D, SM ,ΣM ,RM)

such that D = {s1, ..., sn, t1, ..., tm},
SM = RM = {s1, ..., sn},ΣM = {t1, ..., tm}.

Gabriel Sandu (University of Helsinki) Signaling games and Independence-Friendly Logic 2011, September 12 / 17



Signaling systems in IF logic

Lewis considered only signaling systems in which the number m of
signals equals the number n of states.

In this case the M �+ ϕsig and Eloise’s winning strategy forms a
signaling system.

B. Skirms asked: What happens when m < n?
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Signaling systems in IF logic

Proposition

Let m, n be natural numbers such that 0 ≤ m < n and M be a finite
structure

M = (D, SM ,ΣM ,RM)

such that
D = {s1, ..., sn, t1, ..., tm}
SM = RM = {s1, ..., sn}
ΣM = {t1, ..., tm}

Then M 2+ ϕsig and M 2− ϕsig .
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Signaling systems in IF logic

Proposition

Let 0 ≤ m < n. The probabilistic value of ϕsig on a structure
M = (D, SM ,ΣM ,RM) with n states and m signals is m

n .
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Signaling systems in IF logic

Theorem

There exists an IF sentence ϕ such that for every integers m, n,
0 ≤ m < n, there is a structure M = (D, SM ,ΣM ,RM) such that the value
of ϕ in M is m

n .

This result is to be compared with:

Theorem

(Sevenster & Sandu, Galiani) Let 0 ≤ m < n be integers and q = m
n .

There exists an IF sentence that has value q on every structure.
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Further applications of equilibrium semantics

Monty Hall (A. Mann)

Sleeping Beauty (A.Mann & V. Aarnio)
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