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Reactive Systems
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CAV of Reactive Systems
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CAV of Reactive Systems
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Basic Framework:
2-Player Zero-Sum Games
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Game Graphs for 
Synthesis

The Basic Framework
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A game is played as follows: in each round, the game is in a position, if 
the game is in a rounded position, Player I resolves the choice for the next 
state, if the game is in a square position, Play 2 resolves the choice. The 
game is played for an infinite number of rounds.
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Player 1 = Environment
Player 2 = Controller

☛ The choices of the controller are to be interpreted as decisions that are to 
be taken to control the environment.

☛  The choices of the environment are beyond the control of the designer of the 
system and they must be interpreted as adversarial.
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Game
=

Two-player game structure
+ 

Winning condition for Player 2
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Game
=

Two-player game structure
+ 

Winning condition for Player 2

The specification !
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Strategies

Players are playing according to strategies.

 λ1(0011 1001 1101 0011)=1110

prefix of play

Player I’s
position

Choice for 
the next position

λ1 : S*•S1 → S
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Strategies

Players are playing according to strategies.

 λ1(0011 1001 1101 0011)=1110

prefix of play

Player I’s
position

Choice for 
the next position

λ1 : S*•S1 → SSymmetrically for Player 2
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Winning strategies

=

Controllers that enforce 
winning plays

= 

Correct programs
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Extensions

2 Players zero-sum
games played on graphs 

with
Boolean objectives
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Richer
structures2 Players zero-sum

games played on graphs 
with

Boolean objectives
-Real-time and clocks
-Infinite state spaces

-Observations (imperfect information)
-Quantitative information (weight/probabilities)
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Extensions

Richer
structures

Richer solution 
concepts

-Nash equilibria
-Regret minimization

-Observation based strategies
-Stutter-invariant strategies

-Real-time and clocks
-Infinite state spaces

-Observations (imperfect information)
-Quantitative information (weight/probabilities)

-Quantitative objectives
-LTL objectives
-ATL objectives

2 Players zero-sum
games played on graphs 

with
Boolean objectives

Richer objectives
Richer spec. languages
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Energy Games [UAA-LSV-ULB]
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• Inter-reducibility (log-space) of EG and mean-payoff games (MP)

• Simple fixed-point algorithm for solving them

• Improvement on known pseudo-polynomial time algorithms 
(open problem: existence of polynomial time solution ?)

• From O( E V3 W log E/V ) to O( E V W ) for strategy synthesis

• Other important progresses on algorithms and theoretical 
understanding of Discounted-MP-Parity games [Warwick]:

• Relation with the linear complementarity problem

• Better understanding of strategy improvement 
algorithms

Energy Games [UAA-LSV-ULB]
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• Applications: useful for modeling embedded systems

• AAU+LSV studied real-time extensions, see more

in “UppAal Tiga” by Prof. Kim Larsen
Session 4 - Saturday 18:05

• Further theoretical questions triggered by a case-study from 
another European project Quasimodo [AAU-ULB]

• Extensions: 

• Lower/Upper bounds [UAA-LSV]

• Multi-dimensions [UAA-ULB].

Energy Games [UAA-LSV-ULB]
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More on Sunday !

Talk by Prof. Wolfgang Thomas (RWTH)

“Logic and infinite games: 
results and perspectives”

Sunday 9:40
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LTL Games

Highlights of 
Contributions
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Emmanuel Filiot et al.: Exploiting Structure in LTL Synthesis 13

The idea is to start from the initial position of the
whole gameG(φ1∧φ2, k) and to explore the arena from it
in a forward fashion. When an unsafe position is reached,
i.e. a position (f1, f2) such that f1 "∈ W1 or f2 "∈ W2,
this information is back-propagated to the predecessors
of this position as follows. If an environment’s position
has some unsafe successor, it becomes unsafe as well,
and if all the successors of a system’s position are un-
safe, this position becomes unsafe. The method is exis-
tential in the sense that we do not need to explore all
possible successors of a node as we want to compute one
winning strategy and not a representation of all winning
strategies. Moreover, we can benefit from the order on
game positions of G(φ, k) by visiting only the minimal
successors (not necessarily all) of the system’s position
and only the maximal successors of the environment’s
positions. At the end of the algorithm, the nodes that
have been reached from the initial position that are not
unsafe are the reachable winning positions of the game.
Let W be this set. If W is non-empty, the system has a
winning strategy, which is represented by the subgraph
of G(φ, k) induced by W .

7 Experiments

We first describe the benchmarks we use for experiment-
ing our new algorithms. Then we report on experimen-
tal results for the exhaustive methods described in this
paper, namely the SAT-based and critical signals ap-
proaches, which can be used for the compositional back-
ward approaches of [11]. Finally, we show how those
methods can improve the existential compositional ap-
proach of [11] (which computes only a single strategy),
on a scalable general buffer specification as well as on the
load-balancing specification of [8]. As we show, a strong
advantage of our methods is that they produce small
strategies.

We have implemented the new methods in Perl in the
tool Acacia [1]. We borrowWring for automata construc-
tion [5,20] and Lily [13,2] for automata optimization. We
carried out our tests under a Linux platform with CPUs
at 3.20GHz and 12GB of RAM.

7.1 Benchmarks

Lily’s examples Lily’s examples are provided with the
tool Lily [2,13]. It consists mainly of specifications of ar-
biters and traffic light controllers. For instance, example
15 of Lily specifies a mutual exclusion protocol for two
processes:

∧2
i=1 !(reqi → ♦ acki) ∧∧
1≤i≤j≤2 !(¬acki ∨ ¬ackj) ∧∧2
i=1(¬acki U reqi) ∨!(¬acki)

where (reqi)i=1,2 are input signals and (acki)i=1,2 are
output signals. Each time a process request the critical
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B 2 R _ R e q 1 

R 2 B _ A c k 1 

G e n e r a l i z e d   B u f f e r 
C o n t r o l l e r 

Fig. 3. Diagram of a buffer controller connected with 2 senders
and 2 receivers

section, the arbiter must eventually acknowledge. The
arbiter cannot acknowledge two different requests at the
same time, and it cannot acknowledge until there is a
first request. Lily’s specifications are small, ten lines long
at most.

Generalized buffer controller We recall the generalized
buffer controller specification of [11], which originates
from IBM RuleBase tutorial 4 and has been used by Anzu
as a case study [7]. However in Anzu, the requirements
are given by deterministic Büchi or co-Büchi automata.
Such specifications are more likely to contain errors com-
pared to specifications given in full LTL syntax as for
Acacia.

The case study is a reactive module that controls
communications between senders and readers. The senders
send requests to the module when they want to send
some data to the buffer. Those signals are therefore un-
controllable. The module can acknowledge the request
by some controllable output signal. On the reader side,
the module can send a request to some reader when a
data has to be transmitted, by sending some controllable
signal. The reader may acknowledge the request by send-
ing some signal, which is therefore uncontrollable.

Fig. 3 illustrates the interface of a controller. To focus
on its control flow, we abstract away the data buses that
are present in RuleBase. We do not use a FIFO policy
for scheduling the request, while it is done in the Anzu
model. Except those restrictions, our controller shares
with RuleBase and Anzu the same interface and require-
ments.

The interface between GenBuf and the senders is a
4-phase handshaking protocol described below:

1. When a sender, say sender i, has some data to send,
it initiates a transfer by asserting the input signal
s2b reqi (Server to Buffer Request). One cycle later,
the sender puts the data on its data bus.

2. When GenBuf can service the sender, it reads the
data from the data bus and asserts the output signal
b2s acki.

3. In the cycle following the assertion of b2s acki, the
sender should deassert the signal s2b reqi. From this

4 See http://www.haifa.ibm.com/projects/
verification/RB Homepage/tutorial3
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point onwards, the data on the data bus is considered
invalid.

4. The end of the transaction is marked by GenBuf de-
asserting b2s acki. A new transaction may begin one
cycle after the deassertion of b2s acki. GenBuf may
hold b2s acki asserted for several cycles before even-
tually deasserting it.

The protocol between GenBuf and the receivers is
similar, except that the GenBuf initiates the data trans-
fer and it guarantees round-robin scheduling on the re-
quests to the receivers. Therefore request to servers are
represented by some output signals b2r reqi and acknowl-
edgments from servers are represented by some input
signals r2b acki.

Fig. 4 lists the behavior properties of GenBuf and
its environment and Fig. 5 gives the specification in
Wring/Acacia syntax for two senders and two receivers.
The spec is parametric and as shown later we can han-
dle specification with as much as 7 receivers. In this ex-
ample, we define 4 components in terms of spec unit.
When applying the compositional algorithm, if all of
them are realizable locally, the clause directed by group order
instructs Acacia to continue along the parenthesized groups
compositionally, like (sb 0 br 1) and (sb 1 br 0). The
process halts whenever an unrealizable subgroup is en-
countered. The final step is checking the group that in-
cludes all the components. In this syntax, ∗ stands for
∧, + for ∨, G for !, F for ♦, and X for X . The key-
word assume is used to declare assumptions, and the
semicolon symbol stands for a conjunction.

Load Balancing System We experiment Acacia on the
load balancing example5 provided with Unbeast [4,8].

The setting of Unbeast is different from Acacia, as
for Unbeast the environment plays first. Specifications of
Unbeast can be automatically translated into equivalent
specifications of Acacia by adding the X temporal opera-
tor to the output signals. For instance, the formula i ↔ o
(which is realizable in the Unbeast setting but not in the
Acacia setting) is automatically translated into i ↔ X o.
This results in a slightly bigger formula.

The load balancing example specifies a controller that
distributes jobs to a fixed number n of servers. The in-
put signals are {r1, . . . , rn, job} and the output signals
are {g1, . . . , gn}. When ri is asserted, it means that the
server i is ready to execute a job. When gi is asserted, it
means that the job can be executed on server i. When a
job request is asserted, it has to be eventually executed
on a server. This example is parametric in the number of
servers n. We give the specification in Acacia syntax in
Fig. 6 for n = 2. While the load balancing specification
used in Unbeast is monolithic, we turned it into a com-

5 There are several variants of the load balancing example in
[8] that correspond to the several stages of specification design
process. We use only the final specification (10th specification of
Table 2 of [8])

## interface ##

.inputs s2b_req0 s2b_req1 s2b_ack0 s2b_ack1

.outputs b2s_ack0 b2s_ack1 b2s_req0 b2s_req1

################################################
[spec_unit sb_0]
################################################
assume s2b_req0=0;
assume G((s2b_req0=1 * b2s_ack0=0) -> X(s2b_req0=1));
assume G(b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;
G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G((b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit sb_1]
################################################
assume s2b_req1=0;
assume G((s2b_req1=1 * b2s_ack1=0) -> X(s2b_req1=1));
assume G(b2s_ack1=1 -> X(s2b_req1=0));

b2s_ack1=0;
G((s2b_req1=0 * X(s2b_req1=1)) -> X(b2s_ack1=0 * X(F(b2s_ack1=1))));
G((b2s_ack1=0 * X(s2b_req1=0)) -> X(b2s_ack1=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit br_0]
################################################
assume r2b_ack0=0;
assume G(b2r_req0=0 -> X(r2b_ack0=0));
assume G(b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r_req0=0;
G(r2b_ack0=1 -> X(b2r_req0=0));
G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));
G((b2r_req0=1 * X(b2r_req0=0)) ->

X(b2r_req0=0 U (b2r_req0=0 * b2r_req1=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

################################################
[spec_unit br_1]
################################################
assume r2b_ack1=0;
assume G(b2r_req1=0 -> X(r2b_ack1=0));
assume G(b2r_req1=1 -> X(F(r2b_ack1=1)));

b2r_req1=0;
G(r2b_ack1=1 -> X(b2r_req1=0));
G((b2r_req1=1 * r2b_ack1=0) -> X(b2r_req1=1));
G((b2r_req1=1 * X(b2r_req1=0)) ->

X(b2r_req1=0 U (b2r_req1=0 * b2r_req0=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

group_order = (sb_0 br_1) (sb_1 br_0);

Fig. 5. Example of the buffer controller Acacia specification for
two senders and two receivers

positional specification for Acacia. We refer the reader
to [8] for a full description of the specification.

7.2 Experiments on Exhaustive Methods

In this section, we report on experimental results for
exhaustive methods, i.e. methods which output a com-
pact representation of the set of all winning strategies of
Gφ,k. Compositional algorithms are built on top of such
exhaustive methods.

We report experiments on the realizable tests pro-
vided in Lily [13,2] and Acacia’09 [10], as well as on the
generalized buffer controller. We use the solver MiniSat

Specification:

LTL Formula ∧ψi
Synthesis of anImplementation

Theory: Pnueli-Rosner89 
2ExpTimeC problem

LTL Games - New algorithms [CFV-ULB]
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The idea is to start from the initial position of the
whole gameG(φ1∧φ2, k) and to explore the arena from it
in a forward fashion. When an unsafe position is reached,
i.e. a position (f1, f2) such that f1 "∈ W1 or f2 "∈ W2,
this information is back-propagated to the predecessors
of this position as follows. If an environment’s position
has some unsafe successor, it becomes unsafe as well,
and if all the successors of a system’s position are un-
safe, this position becomes unsafe. The method is exis-
tential in the sense that we do not need to explore all
possible successors of a node as we want to compute one
winning strategy and not a representation of all winning
strategies. Moreover, we can benefit from the order on
game positions of G(φ, k) by visiting only the minimal
successors (not necessarily all) of the system’s position
and only the maximal successors of the environment’s
positions. At the end of the algorithm, the nodes that
have been reached from the initial position that are not
unsafe are the reachable winning positions of the game.
Let W be this set. If W is non-empty, the system has a
winning strategy, which is represented by the subgraph
of G(φ, k) induced by W .

7 Experiments

We first describe the benchmarks we use for experiment-
ing our new algorithms. Then we report on experimen-
tal results for the exhaustive methods described in this
paper, namely the SAT-based and critical signals ap-
proaches, which can be used for the compositional back-
ward approaches of [11]. Finally, we show how those
methods can improve the existential compositional ap-
proach of [11] (which computes only a single strategy),
on a scalable general buffer specification as well as on the
load-balancing specification of [8]. As we show, a strong
advantage of our methods is that they produce small
strategies.

We have implemented the new methods in Perl in the
tool Acacia [1]. We borrowWring for automata construc-
tion [5,20] and Lily [13,2] for automata optimization. We
carried out our tests under a Linux platform with CPUs
at 3.20GHz and 12GB of RAM.

7.1 Benchmarks

Lily’s examples Lily’s examples are provided with the
tool Lily [2,13]. It consists mainly of specifications of ar-
biters and traffic light controllers. For instance, example
15 of Lily specifies a mutual exclusion protocol for two
processes:

∧2
i=1 !(reqi → ♦ acki) ∧∧
1≤i≤j≤2 !(¬acki ∨ ¬ackj) ∧∧2
i=1(¬acki U reqi) ∨!(¬acki)

where (reqi)i=1,2 are input signals and (acki)i=1,2 are
output signals. Each time a process request the critical
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Fig. 3. Diagram of a buffer controller connected with 2 senders
and 2 receivers

section, the arbiter must eventually acknowledge. The
arbiter cannot acknowledge two different requests at the
same time, and it cannot acknowledge until there is a
first request. Lily’s specifications are small, ten lines long
at most.

Generalized buffer controller We recall the generalized
buffer controller specification of [11], which originates
from IBM RuleBase tutorial 4 and has been used by Anzu
as a case study [7]. However in Anzu, the requirements
are given by deterministic Büchi or co-Büchi automata.
Such specifications are more likely to contain errors com-
pared to specifications given in full LTL syntax as for
Acacia.

The case study is a reactive module that controls
communications between senders and readers. The senders
send requests to the module when they want to send
some data to the buffer. Those signals are therefore un-
controllable. The module can acknowledge the request
by some controllable output signal. On the reader side,
the module can send a request to some reader when a
data has to be transmitted, by sending some controllable
signal. The reader may acknowledge the request by send-
ing some signal, which is therefore uncontrollable.

Fig. 3 illustrates the interface of a controller. To focus
on its control flow, we abstract away the data buses that
are present in RuleBase. We do not use a FIFO policy
for scheduling the request, while it is done in the Anzu
model. Except those restrictions, our controller shares
with RuleBase and Anzu the same interface and require-
ments.

The interface between GenBuf and the senders is a
4-phase handshaking protocol described below:

1. When a sender, say sender i, has some data to send,
it initiates a transfer by asserting the input signal
s2b reqi (Server to Buffer Request). One cycle later,
the sender puts the data on its data bus.

2. When GenBuf can service the sender, it reads the
data from the data bus and asserts the output signal
b2s acki.

3. In the cycle following the assertion of b2s acki, the
sender should deassert the signal s2b reqi. From this

4 See http://www.haifa.ibm.com/projects/
verification/RB Homepage/tutorial3
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point onwards, the data on the data bus is considered
invalid.

4. The end of the transaction is marked by GenBuf de-
asserting b2s acki. A new transaction may begin one
cycle after the deassertion of b2s acki. GenBuf may
hold b2s acki asserted for several cycles before even-
tually deasserting it.

The protocol between GenBuf and the receivers is
similar, except that the GenBuf initiates the data trans-
fer and it guarantees round-robin scheduling on the re-
quests to the receivers. Therefore request to servers are
represented by some output signals b2r reqi and acknowl-
edgments from servers are represented by some input
signals r2b acki.

Fig. 4 lists the behavior properties of GenBuf and
its environment and Fig. 5 gives the specification in
Wring/Acacia syntax for two senders and two receivers.
The spec is parametric and as shown later we can han-
dle specification with as much as 7 receivers. In this ex-
ample, we define 4 components in terms of spec unit.
When applying the compositional algorithm, if all of
them are realizable locally, the clause directed by group order
instructs Acacia to continue along the parenthesized groups
compositionally, like (sb 0 br 1) and (sb 1 br 0). The
process halts whenever an unrealizable subgroup is en-
countered. The final step is checking the group that in-
cludes all the components. In this syntax, ∗ stands for
∧, + for ∨, G for !, F for ♦, and X for X . The key-
word assume is used to declare assumptions, and the
semicolon symbol stands for a conjunction.

Load Balancing System We experiment Acacia on the
load balancing example5 provided with Unbeast [4,8].

The setting of Unbeast is different from Acacia, as
for Unbeast the environment plays first. Specifications of
Unbeast can be automatically translated into equivalent
specifications of Acacia by adding the X temporal opera-
tor to the output signals. For instance, the formula i ↔ o
(which is realizable in the Unbeast setting but not in the
Acacia setting) is automatically translated into i ↔ X o.
This results in a slightly bigger formula.

The load balancing example specifies a controller that
distributes jobs to a fixed number n of servers. The in-
put signals are {r1, . . . , rn, job} and the output signals
are {g1, . . . , gn}. When ri is asserted, it means that the
server i is ready to execute a job. When gi is asserted, it
means that the job can be executed on server i. When a
job request is asserted, it has to be eventually executed
on a server. This example is parametric in the number of
servers n. We give the specification in Acacia syntax in
Fig. 6 for n = 2. While the load balancing specification
used in Unbeast is monolithic, we turned it into a com-

5 There are several variants of the load balancing example in
[8] that correspond to the several stages of specification design
process. We use only the final specification (10th specification of
Table 2 of [8])

## interface ##

.inputs s2b_req0 s2b_req1 s2b_ack0 s2b_ack1

.outputs b2s_ack0 b2s_ack1 b2s_req0 b2s_req1

################################################
[spec_unit sb_0]
################################################
assume s2b_req0=0;
assume G((s2b_req0=1 * b2s_ack0=0) -> X(s2b_req0=1));
assume G(b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;
G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G((b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit sb_1]
################################################
assume s2b_req1=0;
assume G((s2b_req1=1 * b2s_ack1=0) -> X(s2b_req1=1));
assume G(b2s_ack1=1 -> X(s2b_req1=0));

b2s_ack1=0;
G((s2b_req1=0 * X(s2b_req1=1)) -> X(b2s_ack1=0 * X(F(b2s_ack1=1))));
G((b2s_ack1=0 * X(s2b_req1=0)) -> X(b2s_ack1=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit br_0]
################################################
assume r2b_ack0=0;
assume G(b2r_req0=0 -> X(r2b_ack0=0));
assume G(b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r_req0=0;
G(r2b_ack0=1 -> X(b2r_req0=0));
G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));
G((b2r_req0=1 * X(b2r_req0=0)) ->

X(b2r_req0=0 U (b2r_req0=0 * b2r_req1=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

################################################
[spec_unit br_1]
################################################
assume r2b_ack1=0;
assume G(b2r_req1=0 -> X(r2b_ack1=0));
assume G(b2r_req1=1 -> X(F(r2b_ack1=1)));

b2r_req1=0;
G(r2b_ack1=1 -> X(b2r_req1=0));
G((b2r_req1=1 * r2b_ack1=0) -> X(b2r_req1=1));
G((b2r_req1=1 * X(b2r_req1=0)) ->

X(b2r_req1=0 U (b2r_req1=0 * b2r_req0=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

group_order = (sb_0 br_1) (sb_1 br_0);

Fig. 5. Example of the buffer controller Acacia specification for
two senders and two receivers

positional specification for Acacia. We refer the reader
to [8] for a full description of the specification.

7.2 Experiments on Exhaustive Methods

In this section, we report on experimental results for
exhaustive methods, i.e. methods which output a com-
pact representation of the set of all winning strategies of
Gφ,k. Compositional algorithms are built on top of such
exhaustive methods.

We report experiments on the realizable tests pro-
vided in Lily [13,2] and Acacia’09 [10], as well as on the
generalized buffer controller. We use the solver MiniSat

Specification:

LTL Formula ∧ψi
Synthesis of anImplementation

Theory: Pnueli-Rosner89 
2ExpTimeC problem

LTL Games - New algorithms [CFV-ULB]

Theoretical bound 
on size of solutions:

2^(2^50)=2^1125899906842624

Friday 16 September 2011
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point onwards, the data on the data bus is considered
invalid.

4. The end of the transaction is marked by GenBuf de-
asserting b2s acki. A new transaction may begin one
cycle after the deassertion of b2s acki. GenBuf may
hold b2s acki asserted for several cycles before even-
tually deasserting it.

The protocol between GenBuf and the receivers is
similar, except that the GenBuf initiates the data trans-
fer and it guarantees round-robin scheduling on the re-
quests to the receivers. Therefore request to servers are
represented by some output signals b2r reqi and acknowl-
edgments from servers are represented by some input
signals r2b acki.

Fig. 4 lists the behavior properties of GenBuf and
its environment and Fig. 5 gives the specification in
Wring/Acacia syntax for two senders and two receivers.
The spec is parametric and as shown later we can han-
dle specification with as much as 7 receivers. In this ex-
ample, we define 4 components in terms of spec unit.
When applying the compositional algorithm, if all of
them are realizable locally, the clause directed by group order
instructs Acacia to continue along the parenthesized groups
compositionally, like (sb 0 br 1) and (sb 1 br 0). The
process halts whenever an unrealizable subgroup is en-
countered. The final step is checking the group that in-
cludes all the components. In this syntax, ∗ stands for
∧, + for ∨, G for !, F for ♦, and X for X . The key-
word assume is used to declare assumptions, and the
semicolon symbol stands for a conjunction.

Load Balancing System We experiment Acacia on the
load balancing example5 provided with Unbeast [4,8].

The setting of Unbeast is different from Acacia, as
for Unbeast the environment plays first. Specifications of
Unbeast can be automatically translated into equivalent
specifications of Acacia by adding the X temporal opera-
tor to the output signals. For instance, the formula i ↔ o
(which is realizable in the Unbeast setting but not in the
Acacia setting) is automatically translated into i ↔ X o.
This results in a slightly bigger formula.

The load balancing example specifies a controller that
distributes jobs to a fixed number n of servers. The in-
put signals are {r1, . . . , rn, job} and the output signals
are {g1, . . . , gn}. When ri is asserted, it means that the
server i is ready to execute a job. When gi is asserted, it
means that the job can be executed on server i. When a
job request is asserted, it has to be eventually executed
on a server. This example is parametric in the number of
servers n. We give the specification in Acacia syntax in
Fig. 6 for n = 2. While the load balancing specification
used in Unbeast is monolithic, we turned it into a com-

5 There are several variants of the load balancing example in
[8] that correspond to the several stages of specification design
process. We use only the final specification (10th specification of
Table 2 of [8])

## interface ##

.inputs s2b_req0 s2b_req1 s2b_ack0 s2b_ack1

.outputs b2s_ack0 b2s_ack1 b2s_req0 b2s_req1

################################################
[spec_unit sb_0]
################################################
assume s2b_req0=0;
assume G((s2b_req0=1 * b2s_ack0=0) -> X(s2b_req0=1));
assume G(b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;
G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G((b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit sb_1]
################################################
assume s2b_req1=0;
assume G((s2b_req1=1 * b2s_ack1=0) -> X(s2b_req1=1));
assume G(b2s_ack1=1 -> X(s2b_req1=0));

b2s_ack1=0;
G((s2b_req1=0 * X(s2b_req1=1)) -> X(b2s_ack1=0 * X(F(b2s_ack1=1))));
G((b2s_ack1=0 * X(s2b_req1=0)) -> X(b2s_ack1=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit br_0]
################################################
assume r2b_ack0=0;
assume G(b2r_req0=0 -> X(r2b_ack0=0));
assume G(b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r_req0=0;
G(r2b_ack0=1 -> X(b2r_req0=0));
G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));
G((b2r_req0=1 * X(b2r_req0=0)) ->

X(b2r_req0=0 U (b2r_req0=0 * b2r_req1=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

################################################
[spec_unit br_1]
################################################
assume r2b_ack1=0;
assume G(b2r_req1=0 -> X(r2b_ack1=0));
assume G(b2r_req1=1 -> X(F(r2b_ack1=1)));

b2r_req1=0;
G(r2b_ack1=1 -> X(b2r_req1=0));
G((b2r_req1=1 * r2b_ack1=0) -> X(b2r_req1=1));
G((b2r_req1=1 * X(b2r_req1=0)) ->

X(b2r_req1=0 U (b2r_req1=0 * b2r_req0=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

group_order = (sb_0 br_1) (sb_1 br_0);

Fig. 5. Example of the buffer controller Acacia specification for
two senders and two receivers

positional specification for Acacia. We refer the reader
to [8] for a full description of the specification.

7.2 Experiments on Exhaustive Methods

In this section, we report on experimental results for
exhaustive methods, i.e. methods which output a com-
pact representation of the set of all winning strategies of
Gφ,k. Compositional algorithms are built on top of such
exhaustive methods.

We report experiments on the realizable tests pro-
vided in Lily [13,2] and Acacia’09 [10], as well as on the
generalized buffer controller. We use the solver MiniSat
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point onwards, the data on the data bus is considered
invalid.

4. The end of the transaction is marked by GenBuf de-
asserting b2s acki. A new transaction may begin one
cycle after the deassertion of b2s acki. GenBuf may
hold b2s acki asserted for several cycles before even-
tually deasserting it.

The protocol between GenBuf and the receivers is
similar, except that the GenBuf initiates the data trans-
fer and it guarantees round-robin scheduling on the re-
quests to the receivers. Therefore request to servers are
represented by some output signals b2r reqi and acknowl-
edgments from servers are represented by some input
signals r2b acki.

Fig. 4 lists the behavior properties of GenBuf and
its environment and Fig. 5 gives the specification in
Wring/Acacia syntax for two senders and two receivers.
The spec is parametric and as shown later we can han-
dle specification with as much as 7 receivers. In this ex-
ample, we define 4 components in terms of spec unit.
When applying the compositional algorithm, if all of
them are realizable locally, the clause directed by group order
instructs Acacia to continue along the parenthesized groups
compositionally, like (sb 0 br 1) and (sb 1 br 0). The
process halts whenever an unrealizable subgroup is en-
countered. The final step is checking the group that in-
cludes all the components. In this syntax, ∗ stands for
∧, + for ∨, G for !, F for ♦, and X for X . The key-
word assume is used to declare assumptions, and the
semicolon symbol stands for a conjunction.

Load Balancing System We experiment Acacia on the
load balancing example5 provided with Unbeast [4,8].

The setting of Unbeast is different from Acacia, as
for Unbeast the environment plays first. Specifications of
Unbeast can be automatically translated into equivalent
specifications of Acacia by adding the X temporal opera-
tor to the output signals. For instance, the formula i ↔ o
(which is realizable in the Unbeast setting but not in the
Acacia setting) is automatically translated into i ↔ X o.
This results in a slightly bigger formula.

The load balancing example specifies a controller that
distributes jobs to a fixed number n of servers. The in-
put signals are {r1, . . . , rn, job} and the output signals
are {g1, . . . , gn}. When ri is asserted, it means that the
server i is ready to execute a job. When gi is asserted, it
means that the job can be executed on server i. When a
job request is asserted, it has to be eventually executed
on a server. This example is parametric in the number of
servers n. We give the specification in Acacia syntax in
Fig. 6 for n = 2. While the load balancing specification
used in Unbeast is monolithic, we turned it into a com-

5 There are several variants of the load balancing example in
[8] that correspond to the several stages of specification design
process. We use only the final specification (10th specification of
Table 2 of [8])

## interface ##

.inputs s2b_req0 s2b_req1 s2b_ack0 s2b_ack1

.outputs b2s_ack0 b2s_ack1 b2s_req0 b2s_req1

################################################
[spec_unit sb_0]
################################################
assume s2b_req0=0;
assume G((s2b_req0=1 * b2s_ack0=0) -> X(s2b_req0=1));
assume G(b2s_ack0=1 -> X(s2b_req0=0));

b2s_ack0=0;
G((s2b_req0=0 * X(s2b_req0=1)) -> X(b2s_ack0=0 * X(F(b2s_ack0=1))));
G((b2s_ack0=0 * X(s2b_req0=0)) -> X(b2s_ack0=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit sb_1]
################################################
assume s2b_req1=0;
assume G((s2b_req1=1 * b2s_ack1=0) -> X(s2b_req1=1));
assume G(b2s_ack1=1 -> X(s2b_req1=0));

b2s_ack1=0;
G((s2b_req1=0 * X(s2b_req1=1)) -> X(b2s_ack1=0 * X(F(b2s_ack1=1))));
G((b2s_ack1=0 * X(s2b_req1=0)) -> X(b2s_ack1=0));
G(b2s_ack0=0 + b2s_ack1=0);

################################################
[spec_unit br_0]
################################################
assume r2b_ack0=0;
assume G(b2r_req0=0 -> X(r2b_ack0=0));
assume G(b2r_req0=1 -> X(F(r2b_ack0=1)));

b2r_req0=0;
G(r2b_ack0=1 -> X(b2r_req0=0));
G((b2r_req0=1 * r2b_ack0=0) -> X(b2r_req0=1));
G((b2r_req0=1 * X(b2r_req0=0)) ->

X(b2r_req0=0 U (b2r_req0=0 * b2r_req1=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

################################################
[spec_unit br_1]
################################################
assume r2b_ack1=0;
assume G(b2r_req1=0 -> X(r2b_ack1=0));
assume G(b2r_req1=1 -> X(F(r2b_ack1=1)));

b2r_req1=0;
G(r2b_ack1=1 -> X(b2r_req1=0));
G((b2r_req1=1 * r2b_ack1=0) -> X(b2r_req1=1));
G((b2r_req1=1 * X(b2r_req1=0)) ->

X(b2r_req1=0 U (b2r_req1=0 * b2r_req0=1)));
G((b2r_req0=0) + (b2r_req1=0) );
G((s2b_req0=1 + s2b_req1=1) -> X(F(b2r_req0=1 + b2r_req1=1)));

group_order = (sb_0 br_1) (sb_1 br_0);

Fig. 5. Example of the buffer controller Acacia specification for
two senders and two receivers

positional specification for Acacia. We refer the reader
to [8] for a full description of the specification.

7.2 Experiments on Exhaustive Methods

In this section, we report on experimental results for
exhaustive methods, i.e. methods which output a com-
pact representation of the set of all winning strategies of
Gφ,k. Compositional algorithms are built on top of such
exhaustive methods.

We report experiments on the realizable tests pro-
vided in Lily [13,2] and Acacia’09 [10], as well as on the
generalized buffer controller. We use the solver MiniSat
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LTL + Parameters [RWTH]

• LTL with parameters:

ψ ≡ ☐ ( req ⟹♢≤x grant )

• Question: 

Given a game structure G, for which values of the 
parameter x in objective ψ can Player I win the game ?

• Complexity: 

Surprisingly same complexity as plain LTL (2ExpTime)

Friday 16 September 2011



Alternating Time-Temporal Logic

• Logic to speak about strategic behavior of agents

• Introduced by Alur and Henzinger in the end of 90s

• Extensions studied in GASICS:

“ATL and extensions”
Nicolas Markey (LSV)

Session 4 - Saturday - 17:15

Friday 16 September 2011



Nash Equilibria 
in Game Graphs

Highlights of 
Contributions
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Non-Zero Sum Games - NE
Player 1 : ☐♢green 

Player 2 : ☐♢blue 
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Non-Zero Sum Games - NE
Player 1 : ☐♢green 

Player 2 : ☐♢blue 

Modern systems are made of components

Each components has its o
wn specification (objective)

>>> Need for Non-Zero Sum
Friday 16 September 2011



Non-Zero Sum Games - NE
Player 1 : ☐♢green 

Player 2 : ☐♢blue 

NE as (1,1)

Alternate

Friday 16 September 2011



Non-Zero Sum Games - NE
Player 1 : ☐♢green 

Player 2 : ☐♢blue 

A less interesting NE: (0,0)
No improvement by unilateral change

Friday 16 September 2011



• Do Nash Equilibria always exist in finite game graphs ? 
Yes for ω-regular objectives [GraëdelUmmels-LINT]

• Is it the case for quantitative reachability objectives ? 
Yes, more details in

“Nash equilibrium in quantitative games played on graphs” 
by Ms. Julie de Pril [CFV-UMons] - Session 4 - Saturday 17:40. 

• Finite memory is sufficient

• NE for timed games (∞-state systems) by [LSV-RWTH]

• Alternatives to NE: Regret minimization [CFV-ULB] 

Non-Zero Sum Games - NE

Friday 16 September 2011



Games with 
Imperfect Information

Highlights of 
Contributions
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q1 = {{1, 2, 3}a,b}

q2 = {{2}b, {1, 3}a}

q3 = {{1}a, {2}b, {3}a}

q4 = {{1}a, {2}b, {3}a}

Fixed point
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Need for memory:
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a, bo1
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Fig. 2. A game structure with imperfect information G.

effect of the uncertainty about the history of the play is formally captured by
the notion of observation-based strategy.

An observation-based strategy for Player 1 is a function α : L+ → Σ such that
α(ρ) = α(ρ′) for all histories ρ, ρ′ ∈ L+ with obs(ρ) = obs(ρ′). We often use the
notation αo to emphasize that α is observation-based. Outcome and consistent
plays are defined as in games with perfect information.

An objective ϕ in a game with imperfect information is a set of plays as
before, but we require that ϕ is observable by Player 1, i.e. for all π ∈ ϕ, for
all π′ such that obs(π′) = obs(π), we have π′ ∈ ϕ. In the sequel, we often view
objectives as sets of infinite sequences of observations, i.e. ϕ ∈ Oω , and we
also call them observable objectives. For example, we assume that reachability
and safety objectives are specified by a union of target observations, and parity
objectives are specified by priority functions of the form p : O → {0, . . . , d}.
The definition of surely-winning strategies is adapted accordingly, namely, a
deterministic observation-based strategy α for player 1 is surely-winning for an
objective ϕ ∈ Oω in G if obs(Outcome1(G, α)) ⊆ ϕ. Note that games with perfect
information can be obtained as the special case where O = {{&} | & ∈ L}.

Example Consider the game structure with imperfect information in Fig. 2. The
observations are o1 = {&1}, o2 = {&2, &

′
2}, o3 = {&3, &

′
3}, and o4 = {&4}. The

transitions are shown as labeled edges, and the initial state is &1. The objective
of Player 1 is ϕ = Reach(o4), i.e. to reach location &4. We argue that the game
is not surely-winning for Player 1. Let α be an arbitrary deterministic strategy
for Player 1. Consider the strategy β for Player 2 as follows: for all ρ ∈ L+ such
that Last(ρ) ∈ o2, if α(ρ) = a, then in the previous round β chooses the state
&2, and if α(ρ) = b, then in the previous round β chooses the state &′2. Given
α and β, the play outcome(G, α, β) never reaches &4. Similarly, Player 2 has no
strategy β to ensure that obs(outcome2(G, β)) ⊆ ϕ̄ where ϕ̄ = Safe({o1, o2, o3}),
is the complement of ϕ. Hence the game is not determined.

We briefly discuss the definition of games with imperfect information. In
traditional games with perfect information played on graphs, locations are par-
titioned into locations of Player 1 and locations of Player 2, and the players

9

Consider Player I playing this simple following randomized strategy: when 
receiving observation o2, play uniformly at random a and b. 

Clearly, each time that it enters o2, the probability to reach l3’ in the next round is 
1/2. In the long run, the probability to reach l3’, and thus l4, is 1. 

We say that Player 1 almost-surely wins the reachability game (probability 1).

Randomized strategies are more powerful than deterministic strategies for 
reachability.

Randomized Strategies

Objective:
Reach O4
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Games with Imperfect Information

• Memory and randomization are necessary for 
winning games with imperfect information 
(even for reachability objectives)

• Semantics: Player 2 perfectly informed or not [LIAFA]

• Symbolic fixed-point algorithms [CFV-ULB-LSV]

• Decidability/Undecidability frontier [LIAFA-CFV ULB-LSV]

• Relation with tree automata [LIAFA]
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Conclusion

• Progresses: 

• From basic model to richer models

• on theory, on algorithms, and 
towards applications

• More on http://www.ulb.ac.be/di/gasics/ 
(91 published papers)
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Future Works

• We need to better understand:

• which solution concepts are needed for 
synthesis of complex reactive systems

• how to import techniques from verification: 

• abstraction/approximation

• compositional reasoning

• ...
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Thanks for your attention!
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