Implications in team semantics setting

Fan Yang

University of Helsinki, Finland

LogICCC Final Conference Berlin, September 15-18, 2011

Independence Logic with implications

1 Dependence Logic with implications

- "Classical" implication
- Intuitionistic Implication
- Linear Implication

2 Independence Logic with implications

- Intuitionistic Implication and Linear Implication
- Maximal implication

Dependence Logic

$$\mathbf{D} = \mathbf{FO} + = (x_1, \dots, x_n, y)$$

Well-formed formulas of ${\rm D}$ (in negation normal form) are given by the following grammar

$$\phi ::= \alpha \mid = (\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}) \mid \neg = (\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}) \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall \mathbf{x} \phi \mid \exists \mathbf{x} \phi$$

where α is a first order literal.

Team Semantics

Let X be a team and M an L-structure.

- $M \models_X \alpha$ with α first-order literal iff $M \models_s \alpha$ for all $s \in X$
- $M \models_X = (x_1, \dots, x_n)$ iff for all $s, s' \in X$ such that $s(x_1) = s'(x_1), \dots, s(x_{n-1}) = s'(x_{n-1})$, we have $s(x_n) = s'(x_n)$

$$\blacksquare M \models_X \neg = (x_1, \cdots, x_n) \text{ iff } X = \emptyset$$

- $\blacksquare M \models_X \phi \land \psi \text{ iff } M \models_X \phi \text{ and } M \models_X \psi$
- $\blacksquare M \models_X \phi \otimes \psi \text{ iff } X = Y \cup Z \text{ s.t. } M \models_Y \phi \text{ and } M \models_Z \psi$
- $M \models_X \exists x \phi \text{ iff } M \models_{X(F/x)} \phi \text{ for some } F : X \to M$

 $\blacksquare M \models_X \forall x \phi \text{ iff } M \models_{X(M/x)} \phi$

Constancy dependence atom

$$M \models_X = (x)$$
 iff for all $s, s' \in X$ $s(x) = s'(x)$.

Important Properties of D

Theorem (Downwards Closure)

For any formula ϕ of **D**, if $M \models_X \phi$ and $Y \subseteq X$, then $M \models_Y \phi$.

Theorem (Empty Team Property)

Empty team satisfies every formula $\phi \in \mathbf{D}$ in every model M, i.e. $M \models_{\emptyset} \phi$ for every $\phi \in \mathbf{D}$ and every M.

Expressive power of **D**

On sentence level [Enderton, Walkoe, Väänänen]

Expressive power of **D**

On formula level

Theorem (Kontinen, Väänänen)

Restricted to nonempty teams, open formulas of **D** are equivalent to Σ_1^1 downwards monotone sentences with a new predicate R interpreting the teams.

$$\Sigma_1^1(R\downarrow) \ (\neq \emptyset)$$
 D

"Classical" implication

Independence Logic with implications

"Classical" implication

Classical implication in classical FO:

$$\phi \supset \psi =_{\mathsf{df}} \neg \phi \lor \psi$$

Similarly in **D**, we can define:

$$\phi \supset \psi =_{\mathsf{df}} \neg \phi \otimes \psi$$

 $\mathbf{D}^{\supset}=\mathbf{D}$

ndependence Logic with implications

"Classical" implication

"Classical" implication

Another possibility:

In **D**, we can define: $M \models_X \phi \sqsupset \psi$ iff $M \not\models_X \phi$ or $M \models_X \psi$

Consider a new disjunction \oslash , called classical disjunction: $M \models_X \phi \odot \psi$ iff $M \models_X \phi$ or $M \models_X \psi$ Consider also classical negation \sim , defined by: $M \models_X \sim \phi$ iff $M \not\models_X \phi$

Then

 $\phi \sqsupset \psi \equiv (\sim \phi) \otimes \psi$

$\mathbf{D}^{\square}=\mathbf{D}^{\sim}$

ndependence Logic with implications

"Classical" implication

D[∼] =Team logic [Väänänen 2007]

Theorem (Väänänen)

On the level of sentences, team logic is equivalent to SO.

Theorem (Kontinen, Nurmi)

Restricted to nonempty teams, open formulas of team logic are equivalent to **SO** sentences with a new predicate R interpreting the teams.

Intuitionistic Implication

[Abramsky, Väänänen]

We can define two implications which satisfy the following:

 $\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$

$$\phi\otimes\psi\models\chi\Longleftrightarrow\phi\models\psi\multimap\chi$$

Intuitionistic Implication:

 $M \models_X \phi \rightarrow \psi$ iff for all $Y \subseteq X$, if $M \models_Y \phi$ then $M \models_Y \psi$

Linear Implication:

 $M \models_X \phi \multimap \psi$ iff for all *Y*, if $M \models_Y \phi$ then $M \models_{X \cup Y} \psi$

Both implications preserve downwards closure. Hence, $\mathbf{D}^{[\rightarrow, -\circ]} \neq \text{Team logic.}$

ightarrow preserves empty team property, while ightarrow does not.

Intuitionistic Implication

[Abramsky, Väänänen]

We can define two implications which satisfy the following:

 $\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$

$$\phi\otimes\psi\models\chi\Longleftrightarrow\phi\models\psi\multimap\chi$$

Intuitionistic Implication:

 $M \models_X \phi \rightarrow \psi$ iff for all $Y \subseteq X$, if $M \models_Y \phi$ then $M \models_Y \psi$

Linear Implication:

 $M \models_X \phi \multimap \psi$ iff for all Y, if $M \models_Y \phi$ then $M \models_{X \cup Y} \psi$

Both implications preserve downwards closure. Hence, $\mathbf{D}^{[\rightarrow, \multimap]} \neq \text{Team logic.}$

ightarrow preserves empty team property, while ightarrow does not.

Intuitionistic Implication

[Abramsky, Väänänen]

We can define two implications which satisfy the following:

 $\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$

$$\phi\otimes\psi\models\chi\Longleftrightarrow\phi\models\psi\multimap\chi$$

Intuitionistic Implication:

 $M \models_X \phi \rightarrow \psi$ iff for all $Y \subseteq X$, if $M \models_Y \phi$ then $M \models_Y \psi$

Linear Implication:

 $M \models_X \phi \multimap \psi$ iff for all Y, if $M \models_Y \phi$ then $M \models_{X \cup Y} \psi$

Both implications preserve downwards closure. Hence, $\mathbf{D}^{[\rightarrow, \multimap]} \neq \text{Team logic.}$

ightarrow preserves empty team property, while ightarrow does not.

Intuitionistic Implication

[Abramsky, Väänänen]

We can define two implications which satisfy the following:

 $\phi \land \psi \models \chi \Longleftrightarrow \phi \models \psi \to \chi$

$$\phi\otimes\psi\models\chi\Longleftrightarrow\phi\models\psi\multimap\chi$$

Intuitionistic Implication:

 $M \models_X \phi \rightarrow \psi$ iff for all $Y \subseteq X$, if $M \models_Y \phi$ then $M \models_Y \psi$

Linear Implication:

 $M \models_X \phi \multimap \psi$ iff for all *Y*, if $M \models_Y \phi$ then $M \models_{X \cup Y} \psi$

Both implications preserve downwards closure. Hence, $\mathbf{D}^{[\rightarrow, \multimap]} \neq \text{Team logic.}$

 \rightarrow preserves empty team property, while \multimap does not.

Independence Logic with implications

Intuitionistic Implication

[Abramsky, Väänänen]

We can define two implications which satisfy the following:

$$\begin{split} \phi \wedge \psi &\models \chi \Longleftrightarrow \phi \models \psi \rightarrow \chi \\ \phi \otimes \psi &\models \chi \Longleftrightarrow \phi \models \psi \multimap \chi \end{split}$$

Intuitionistic Implication:

 $M \models_X \phi \to \psi$ iff for all $Y \subseteq X$, if $M \models_Y \phi$ then $M \models_Y \psi$

Linear Implication:

$$M \models_X \phi \multimap \psi$$
 iff for all *Y*, if $M \models_Y \phi$ then $M \models_{X \cup Y} \psi$

Both implications preserve downwards closure. Hence, $\mathbf{D}^{[\rightarrow, -\circ]} \neq$ Team logic.

 \rightarrow preserves empty team property, while $-\!\!\!\circ$ does not.

ndependence Logic with implications

Intuitionistic Implication

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

Intuitionistic Implication

Independence Logic with implications

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

$$M = \{a, b, c, d, e\}, \quad X = \{s_0, s_1, s_2, s_3, s_4, s_5\}$$
$$M \models_X = (x_1, x_2, y) \text{ iff } M \models_X (=(x_1) \land =(x_2)) \rightarrow =(y)$$

	<i>x</i> ₁	<i>x</i> ₂	у
s_0	а	b	С
s 1	а	b	С
s ₂	b	d	е
s 3	b	d	е
S 4	а	b	С
s 5	а	b	С

Intuitionistic Implication

Independence Logic with implications

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

$$M = \{a, b, c, d, e\}, \quad X = \{s_0, s_1, s_2, s_3, s_4, s_5\}$$
$$M \models_X = (x_1, x_2, y) \text{ iff } M \models_X (=(x_1) \land =(x_2)) \rightarrow =(y)$$

$$\begin{array}{|c|c|c|c|c|} \hline X_1 & X_2 & y \\ \hline S_0 & a & b & c \\ \hline S_1 & a & b & c \\ \hline S_2 & b & d & e \\ \hline S_3 & b & d & e \\ \hline S_4 & a & b & c \\ \hline S_5 & a & b & c \end{array}$$

Intuitionistic Implication

Independence Logic with implications

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

$$M = \{a, b, c, d, e\}, \quad X = \{s_0, s_1, s_2, s_3, s_4, s_5\}$$
$$M \models_X = (x_1, x_2, y) \text{ iff } M \models_X (=(x_1) \land =(x_2)) \rightarrow =(y)$$

Intuitionistic Implication

Independence Logic with implications

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

$$M = \{a, b, c, d, e\}, \quad X = \{s_0, s_1, s_2, s_3, s_4, s_5\}$$
$$M \models_X = (x_1, x_2, y) \text{ iff } M \models_X (=(x_1) \land =(x_2)) \rightarrow =(y)$$

Intuitionistic Implication

Armstrong's Axioms v.s. Heyting's axioms of Intuitionistic Logic [Abramsky, Väänänen]

Armstrong's Axioms	Heyting's Axioms of Intuitionistic Logic
=(x,x)	$=(x) \rightarrow =(x)$
If $=(x, y, z)$, then $=(y, x, z)$	$egin{array}{lll} { m If}=&(x)\wedge=&(y) ightarrow=&(z), \ { m then}=&(y)\wedge=&(x) ightarrow=&(z) \end{array}$
If $=(x, x, y)$, then $=(x, y)$	$egin{array}{lll} { m If}=&(x)\wedge=&(x) ightarrow=&(y),\ { m then}=&(x) ightarrow=&(y) \end{array}$
If $=(x, z)$, then $=(x, y, z)$	${f lf=}(x) ightarrow=(z),$ then $=(x)\wedge=(y) ightarrow=(z)$
If $=(x, y)$ and $=(y, z)$, then $=(x, z)$	If $=(x) \rightarrow =(y)$ and $=(y) \rightarrow =(z)$, then $=(x) \rightarrow =(z)$

Independence Logic with implications

Intuitionistic Implication

Expressive power of \mathbf{D}^{\rightarrow} sentences

Theorem

 D^{\rightarrow} is equivalent to SO, on the level of sentences.

Proof. For example, the **SO** sentence

 $\phi := \forall f \exists g \forall x (fx \neq gx),$

is equivalent to the \mathbf{D}^{\rightarrow} sentence

$$\phi^* := \forall x \forall u \big(= (x, u) \to \exists v (u \neq v) \big),$$

in the sense that for any model *M*,

$$M \models \phi \iff M \models_{\emptyset} \phi^*.$$

Intuitionistic Implication

Expressive power of \mathbf{D}^{\rightarrow} sentences

Theorem

 D^{\rightarrow} is equivalent to SO, on the level of sentences.

Proof. For example, the SO sentence

$$\phi := \forall f \exists g \forall x (fx \neq gx),$$

is equivalent to the \mathbf{D}^{\rightarrow} sentence

$$\phi^* := \forall x \forall u \big(= (x, u) \to \exists v (u \neq v) \big),$$

in the sense that for any model *M*,

$$\boldsymbol{M} \models \phi \iff \boldsymbol{M} \models_{\boldsymbol{\emptyset}} \phi^*.$$

Intuitionistic Implication

Expressive power of \mathbf{D}^{\rightarrow} sentences

Theorem

 \mathbf{D}^{\rightarrow} is equivalent to \mathbf{SO} , on the level of sentences.

Proof. For example, the **SO** sentence

 $\phi := \forall f \exists g \forall x (fx \neq gx),$

is equivalent to the \mathbf{D}^{\rightarrow} sentence

$$\phi^* := \forall x \forall u \big((=(x) \to =(u)) \to \exists v (u \neq v) \big),$$

in the sense that for any model M,

$$\boldsymbol{M} \models \phi \iff \boldsymbol{M} \models_{\emptyset} \phi^*. \quad \Box$$

In fact, "constancy $D^{\rightarrow} = SO$ ", although "constancy D = FO", on sentence level. [Gal

Intuitionistic Implication

Expressive power of \mathbf{D}^{\rightarrow} sentences

Theorem

 \mathbf{D}^{\rightarrow} is equivalent to \mathbf{SO} , on the level of sentences.

Proof. For example, the **SO** sentence

 $\phi := \forall f \exists g \forall x (fx \neq gx),$

is equivalent to the \mathbf{D}^{\rightarrow} sentence

$$\phi^* := \forall x \forall u ((=(x) \rightarrow =(u)) \rightarrow \exists v (u \neq v)),$$

in the sense that for any model M,

$$\boldsymbol{M} \models \phi \iff \boldsymbol{M} \models_{\emptyset} \phi^*. \quad \Box$$

In fact, "constancy $D^{\rightarrow} = SO$ ", although "constancy D = FO", on sentence level. [Galliani]

ndependence Logic with implications

Intuitionistic Implication

Expressive power of \mathbf{D}^{\rightarrow} , $\mathbf{D}^{[\rightarrow, -\infty]}$ sentences

On sentences level

Theorem

 \mathbf{D}^{\rightarrow} is equivalent to \mathbf{SO} .

Corollary

 $\mathbf{D}^{[\rightarrow, \multimap]}$ is equivalent to SO.

Definition

Let *R* be a *k*-ary relation symbol and $\phi(R)$ a second order L(R) sentence. We say that $\phi(R)$ is *downwards monotone* with respect to *R* if for any L(R) model (M, Q) and $Q' \subseteq Q$,

$$(\mathbf{M},\mathbf{Q})\models\phi(\mathbf{R})\implies(\mathbf{M},\mathbf{Q}')\models\phi(\mathbf{R}).$$

Independence Logic with implications

Expressive power of $\mathbf{D}^{[\rightarrow, \frown]}$ open formulas

Any team X of M with $dom(X) = \{x_1, \ldots, x_n\}$ corresponds to a relation on M:

$$\textit{rel}(X) = \{(\textit{s}(x_1), \ldots, \textit{s}(x_n)) \mid \textit{s} \in X\}$$

Theorem

For any $\mathbf{D}^{[\rightarrow, \multimap]}$ *L*-formula $\phi(\bar{x})$, there exists a **SO** L(R)-sentence $\psi(R)$ downwards monotone w.r.t. R such that for any *L*-model *M*, any team *X*,

$$M \models_X \phi(\bar{x}) \iff (M, \operatorname{rel}(X)) \models \psi(R).$$

Independence Logic with implications

Expressive power of $\mathbf{D}^{[\rightarrow, \frown]}$ open formulas

Any team X of M with $dom(X) = \{x_1, \ldots, x_n\}$ corresponds to a relation on M:

$$rel(X) = \{(s(x_1), \ldots, s(x_n)) \mid s \in X\}$$

Theorem

For any $\mathbf{D}^{[\to,\multimap]}$ *L*-formula $\phi(\bar{x})$, there exists a **SO** L(R)-sentence $\psi(R)$ downwards monotone w.r.t. R such that for any *L*-model *M*, any team *X*,

$$M \models_{\boldsymbol{X}} \phi(\bar{\boldsymbol{X}}) \iff (\boldsymbol{M}, \operatorname{rel}(\boldsymbol{X})) \models \psi(\boldsymbol{R}).$$

Independence Logic with implications

Expressive power of $\mathbf{D}^{[\rightarrow, \frown]}$ open formulas

Theorem

For any **SO** L(R)-sentence $\phi(R)$ downwards monotone w.r.t. R, there is a \mathbf{D}^{\rightarrow} L-formula $\psi(\bar{x})$ such that for any L-model M, any nonempty team X

$$(M, rel(X)) \models \phi(R) \iff M \models_X \psi(\bar{x}).$$

Proposition

For any **SO** L(R)-sentence $\phi(R)$ downwards monotone w.r.t. R, there is a $\mathbf{D}^{[\rightarrow, \multimap]}$ L-formula $\chi(\bar{x})$ such that for any L-model M,

 $(M, \operatorname{rel}(\emptyset)) \models \phi(R) \iff M \models_{\emptyset} \chi(\bar{x}).$

Independence Logic with implications

Expressive power of $\mathbf{D}^{[\rightarrow, \multimap]}$ open formulas

Theorem

For any **SO** L(R)-sentence $\phi(R)$ downwards monotone w.r.t. R, there is a \mathbf{D}^{\rightarrow} L-formula $\psi(\bar{x})$ such that for any L-model M, any nonempty team X

$$(M, rel(X)) \models \phi(R) \iff M \models_X \psi(\bar{x}).$$

Proposition

For any **SO** L(R)-sentence $\phi(R)$ downwards monotone w.r.t. R, there is a $\mathbf{D}^{[\rightarrow, \neg \neg]}$ L-formula $\chi(\bar{x})$ such that for any L-model M,

 $(M, \operatorname{rel}(\emptyset)) \models \phi(R) \iff M \models_{\emptyset} \chi(\bar{x}).$

Theorem

For any **SO** L(R)-sentence $\phi(R)$ downwards monotone w.r.t. R, there is a $\mathbf{D}^{[\to, \multimap]}$ L-formula $\theta(\bar{x}) := \psi \otimes (\bot \land \chi)$ such that for any L-model M, any team X

$$(M, \operatorname{rel}(X)) \models \phi(R) \iff M \models_X \theta(\bar{x}).$$

Linear Implication

Independence Logic with implications

Expressive power of $\mathbf{D}^{[\rightarrow, \frown]}$ open formulas

On formulas level

Theorem

Restricted to nonempty teams, \mathbf{D}^{\rightarrow} characterizes exactly second order downwards monotone properties.

Theorem

 $\mathbf{D}^{[\rightarrow, -\circ]}$ characterizes exactly second order downwards monotone properties.

SO($R \downarrow$) $D[\rightarrow, \multimap]$ SO($R \downarrow$) ($\neq \emptyset$) $D \rightarrow$ $\Sigma_1^1(R \downarrow)$ ($\neq \emptyset$)D

Independence logic, Inclusion/Exclusion logic

Well-formed formulas of **Ind** (in negation normal form) are given by the following grammar

 $\phi ::= \alpha \mid \bar{\mathbf{x}} \perp_{\bar{\mathbf{z}}} \bar{\mathbf{y}} \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall \mathbf{x} \phi \mid \exists \mathbf{x} \phi$

Well-formed formulas of I/E-logic (in negation normal form) are given by the following grammar

 $\phi ::= \alpha \mid \overline{\mathbf{x}} \subseteq \overline{\mathbf{y}} \mid \overline{\mathbf{x}} \mid \overline{\mathbf{y}} \mid \phi \land \phi \mid \phi \otimes \phi \mid \forall \mathbf{x} \phi \mid \exists \mathbf{x} \phi$

- $M \models_X \bar{x} \perp_{\bar{z}} \bar{y}$ iff for all $s, s' \in X$ such that $s(\bar{z}) = s'(\bar{z})$, there exists $s'' \in X$ such that $s''(\bar{z}) = s'(\bar{z}) = s(\bar{z})$, $s''(\bar{x}) = s(\bar{x})$ and $s''(\bar{y}) = s(\bar{y})$.
- $\blacksquare M \models_X \bar{x} | \bar{y} \text{ with } |\bar{x}| = |\bar{y}| \text{ iff } \forall s, s' \in X, \ s(\bar{x}) \neq s'(\bar{y}).$
- $M \models_X \bar{x} \subseteq \bar{y}$ with $|\bar{x}| = |\bar{y}|$ iff $\forall s \in X$, $\exists s' \in X$ such that $s'(\bar{y}) = s(\bar{x})$.
- (Lax semantics) $M \models_X \exists x \varphi$ iff there is a function $F : X \to \wp(M) \setminus \{\emptyset\}$ such that $M \models_{X \models F/X} \varphi$, where

$$X[F/x] = \{s(a/x) \mid s \in X, a \in F(s)\}.$$

Constancy independence atom

$$M \models_X x \perp_{\emptyset} x$$
 iff for all $s, s' \in X \ s(x) = s'(x)$.

Independence Logic with implications

Expressive power of Ind, I,E

On formulas level [Galliani]

Expressive power of Ind, I,E

On formula level [Galliani]

Expressive power of Ind, I,E

On formula level [Galliani]

Expressive power of Ind, I,E

FO

On sentence level [Väänänen, Grädel, Galliani]

. –	-	-	-	-	-							-	-	-	-	-	-	-	-
÷ .	_	^					,	、	-	`									. 1
1	-	()	- 1	Ť2	כב	۱n	n	۱.	(:1	۱n	e	t۵	٦r	ገ ሰ	٦١.	1	11	۱.,
			١.	ιc	-0			1,	~	2		0	ιc	וג	I.	∕y	r -		' I
			`					· ·											
_	_								_	_	_	_			_		_		_ 1

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Intuitionistic Implication and Linear Implication

In **Ind**

$$\phi \land \psi \models \chi \nleftrightarrow \phi \models \psi \to \chi$$
$$\phi \otimes \psi \models \chi \nleftrightarrow \phi \models \psi \multimap \chi$$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of Ind \rightarrow , Ind $[\rightarrow, -\infty]$

For sentences:

Theorem

 Ind^{\rightarrow} and $Ind^{[\rightarrow, \multimap]}$ are equivalent to SO on the level of sentences

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of
$$\mathsf{Ind}^{[o, \multimap]}$$

For open formulas:

• One direction:

Theorem

For any $\operatorname{Ind}^{[\to, \multimap]}$ *L*-formula $\phi(\bar{x})$, there exists a **SO** L(R)-sentence $\psi(R)$ downwards monotone w.r.t. R such that for any *L*-model *M*, any team *X*,

$$M \models_{X} \phi(\bar{X}) \iff (M, \operatorname{rel}(X)) \models \psi(R).$$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of $Ind^{[\rightarrow, \multimap]}$

For open formulas:

• The other direction:

Theorem

For any **SO** L(R)-sentence $\phi(R)$, there exists a **Ind** \rightarrow *L*-formula $\psi(\bar{x})$ such that for any L-model M, any nonempty team X

$$(M, \operatorname{rel}(X)) \models \phi(R) \iff M \models_X \psi(\bar{x}).$$

Proposition

For any **SO** L(R)-sentence $\phi(R)$, there exists a **Ind**^{$[\rightarrow, \rightarrow]$} L-formula $\chi(\bar{x})$ such that for any L-model M,

 $(M, \operatorname{rel}(\emptyset)) \models \phi(R) \iff M \models_{\emptyset} \chi(\bar{x}).$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of $Ind^{[\rightarrow, \multimap]}$

For open formulas:

• The other direction:

Theorem

For any **SO** L(R)-sentence $\phi(R)$, there exists a **Ind** \rightarrow *L*-formula $\psi(\bar{x})$ such that for any L-model M, any nonempty team X

$$(M, \operatorname{rel}(X)) \models \phi(R) \iff M \models_X \psi(\bar{x}).$$

Proposition

For any **SO** L(R)-sentence $\phi(R)$, there exists a **Ind**^{$[\rightarrow, \multimap]}$ </sup> L-formula $\chi(\bar{x})$ such that for any L-model M,

 $(M, \operatorname{rel}(\emptyset)) \models \phi(R) \iff M \models_{\emptyset} \chi(\bar{x}).$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of Ind^{\rightarrow}

On formulas level

Theorem

Restricted to nonempty teams, Ind^{\rightarrow} characterizes exactly second order properties.

$\mathbf{SO}(R) \ (eq \emptyset)$	¦ Ind→ ¦
$\mathbf{SO}(R\downarrow)$	[D [→,−∞]
$SO(R\downarrow)~(eq\emptyset)$	D→
$\Sigma^1_1(R\downarrow)~(eq \emptyset)$	D

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Expressive power of
$$Ind^{[\rightarrow, \multimap]}$$

 $\operatorname{Ind}^{[\rightarrow, \multimap]} \neq \operatorname{Team} \operatorname{Logic}$

Theorem (Kontinen, Nurmi)

For every formula ϕ of team logic one of the following holds:

- $\blacksquare M \models_{\emptyset} \phi \text{ for all } M$
- $\blacksquare M \not\models_{\emptyset} \phi \text{ for all } M$

In **Ind**^[→,⊸],

 $\blacksquare M \models_{\emptyset} \top \multimap \exists x \forall y (x = y) \text{ iff } |M| = 1$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Break independence atom into pieces

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

 $=(x)\equiv x\perp_{\emptyset} x$

 $\bar{x} \perp_{\bar{z}} \bar{y} \equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \rightarrow (\bar{x} \perp_{\emptyset} \bar{y})?$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Break independence atom into pieces

$$=(x_1,\cdots,x_n,y)\equiv (=(x_1)\wedge\cdots\wedge=(x_n))\rightarrow=(y)$$

 $=(x)\equiv x\perp_{\emptyset} x$

 $\bar{x} \perp_{\bar{z}} \bar{y} \equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \rightarrow (\bar{x} \perp_{\emptyset} \bar{y})?$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Break independence atom into pieces

$$=(x_1, \cdots, x_n, y) \equiv (=(x_1) \land \cdots \land =(x_n)) \to =(y)$$
$$=(x) \equiv x \perp_{\emptyset} x$$
$$\bar{x} \perp_{\bar{z}} \bar{y} \equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \to (\bar{x} \perp_{\emptyset} \bar{y})?$$

Independence Logic with implications

Intuitionistic Implication and Linear Implication

Break independence atom into pieces

$$=(x_1, \cdots, x_n, y) \equiv (=(x_1) \land \cdots \land =(x_n)) \to =(y)$$
$$=(x) \equiv x \perp_{\emptyset} x$$
$$\bar{x} \perp_{\bar{z}} \bar{y} \not\equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \to (\bar{x} \perp_{\emptyset} \bar{y})$$

Maximal implication

Independence Logic with implications

Maximal implication

Definition (Maximal implication)

 $M \models_X \phi \hookrightarrow \psi$ iff for all maximal $Y \subseteq X$ such that $M \models_Y \phi$, it holds that $M \models_Y \psi$.

 \hookrightarrow preserves empty team property.

Maximal implication

Independence Logic with implications

Break independence atom into pieces

$$\bar{x}\perp_{\bar{z}} \bar{y} \equiv ((z_1\perp_{\emptyset} z_1) \wedge \cdots \wedge (z_n\perp_{\emptyset} z_n)) \hookrightarrow (\bar{x}\perp_{\emptyset} \bar{y})$$

Example: $x \perp_{z_1 z_2} y \equiv ((z_1 \perp_{\emptyset} z_1) \land (z_2 \perp_{\emptyset} z_2)) \hookrightarrow (x \perp_{\emptyset} y)$

s_0	а	b	b	С
<i>S</i> ₁	а	b	d	е
S ₂	b	С	d	С
S 3	С	d	b	С
S_4	а	b	b	е
S 5	а	b	d	С

Maximal implication

Independence Logic with implications

Break independence atom into pieces

$$\bar{x} \perp_{\bar{z}} \bar{y} \equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \hookrightarrow (\bar{x} \perp_{\emptyset} \bar{y})$$

Example: $x \perp_{z_1 z_2} y \equiv ((z_1 \perp_{\emptyset} z_1) \land (z_2 \perp_{\emptyset} z_2)) \hookrightarrow (x \perp_{\emptyset} y)$

	<i>Z</i> 1	<i>Z</i> 2	X	У
s_0	а	b	b	С
<i>S</i> ₁	а	b	d	е
<i>s</i> ₂	b	С	d	С
<i>S</i> 3	С	d	b	С
S 4	а	b	b	е
s 5	а	b	d	С

Maximal implication

Independence Logic with implications

Break independence atom into pieces

$$\bar{x} \perp_{\bar{z}} \bar{y} \equiv ((z_1 \perp_{\emptyset} z_1) \land \cdots \land (z_n \perp_{\emptyset} z_n)) \hookrightarrow (\bar{x} \perp_{\emptyset} \bar{y})$$

Example: $x \perp_{z_1 z_2} y \equiv ((z_1 \perp_{\emptyset} z_1) \land (z_2 \perp_{\emptyset} z_2)) \hookrightarrow (x \perp_{\emptyset} y)$

	<i>Z</i> 1	<i>Z</i> 2	X	У
s_0	а	b	b	С
S 1	а	b	d	е
<i>s</i> ₂	b	С	d	С
<i>S</i> 3	С	d	b	С
S_4	а	b	b	е
S 5	а	b	d	С

Independence Logic with implications

Maximal implication

Expressive power of logics

On sentence level

Σ_1^1	Ind, I/E, E, D
FO	FO (team)

Independence Logic with implications

Maximal implication

Expressive power of logics

On formula level

Independence Logic with implications

Maximal implication

Expressive power of logics

On formula level

Maximal implication

Independence Logic with implications

That's all!

Thank you!