Highlights from VAAG - Uli Sauerland, ZAS, Berlin

Vagueness, Approximation, and Granularity

- Amsterdam: linguistics and philosophical logic
- Lund: theoretical and computational cognitive science
- Zagreb: experimental psychology of language, especially ERP
- Berlin: linguistic semantics and pragmatics
- (Glasgow AP: computer science)

Goal: unified theory of vagueness and related phenomena across the different fields involved

ERP highlight result (Zagreb with Berlin)

(Gotzner, Palmovic, \& Solt on Saturday)

CogSci result (Lund with Berlin)

(Bååth, Sauerland on Sikström on Saturday)

\exists Publications

Rick Nouwen
Robert van Rooij
Uli Sauerland
Hans-Christian Schmitz (Eds.)

言 Vagueness in Communication

International Workshop, ViC 2009 held as part of ESSLLI 2009
Bordeaux, France, July 2009
Revised Selected Papers

Borderline Contradictions

(1) A $5^{\prime} 10^{\prime \prime}$-guy is tall and not tall.

- Fuzzy Logic: Truth value 0.5
- Kamp (1975)/Fine (1975): clearly false
- recent psycholinguistic work (Alxatib \& Pelletier 2011, Ripley 2011): quite acceptable
- but actually super-acceptable: A \& not $A>A \&$ not B (Sauerland forthcoming)
(2) A $5^{\prime} 10^{\prime \prime}$-guy is tall and a guy with $\$ 100,000$ isn't rich.

Why are Borderline Contradictions Good?

Slightly Idealized Facts Assumed:
(3) A $5^{\prime} 10^{\prime \prime}$-guy is tall. - false/not assertable
(4) A $5^{\prime} 10^{\prime \prime}$-guy is and isn't tall - true/assertable
(5) A $5^{\prime} 10^{\prime \prime}$-guy is or isn't tall - false/not assertable

Spectrum of current approaches:
Ambiguity? 'tall' in one sense, but not another (e.g. Kamp \& Partee 1995)
Idiom? 'is and isn't tall' = 'borderline tall' (Pagin p.c.)
Pragmatic Cobreros, Egré, Ripley and van Rooij (2011): classical contradictions trigger lower standard of truth
Semantic Alxatib, Pagin, and Sauerland (submitted): semantic version, A \& not A triggers scaling of truth to $[0,1]$
Today: only compare pragmatic and semantic approaches

The Pragmatic Proposal: Notions of Truth

similar with respect to $P x \sim_{p} y$ iff./ x and y are indistinguishable with respect to their membership in predicate P (a non-transitive, reflexive, symmetric, and convex relation)
classical truth $\llbracket P(a) \rrbracket^{c, M}=1$ iff $\llbracket a \rrbracket^{c, M} \in I_{M}(P)$
tolerant truth $\llbracket P(a) \rrbracket^{t, M}=1$ iff $\exists x\left[x \sim_{p} \llbracket a \rrbracket^{c, M} \& \llbracket P \rrbracket^{c, M}(x)=1\right]$ strict truth $\llbracket P(a) \rrbracket^{s, M}=1$ iff $\forall x\left[x \sim_{p} \llbracket a \rrbracket^{c, M} \rightarrow \llbracket P \rrbracket^{c, M}(x)=1\right]$

Borderline cases: tolerantly, but not strictly true
(6) A $5^{\prime} 10^{\prime \prime}$ guy is tall.

Duality of strict and tolerant with negation:
(7) $\llbracket \neg \phi \rrbracket^{t, M}=1$ iff $\llbracket \phi \rrbracket^{s, M}=0, \llbracket \neg \phi \rrbracket^{s, M}=1$ iff $\llbracket \phi \rrbracket^{t, M}=0$
(8) A $5^{\prime} 10^{\prime \prime}$-guy isn't tall. (tolerantly: true, strictly: false)

The Pragmatic Proposal: Strongest Meaning Hypothesis

Strongest Meaning Hypothesis (cf. Dalrymple, Kanazawa, Kim, Mchombo, \& Peters 1998):

SMH Speakers judge a sentence according to the strongest notion of truth for which there exists a possible scenario such that the sentence is true.

Predictions:
(9) A $5^{\prime} 10^{\prime \prime}$-guy is and isn't tall. - tolerant eval.: true
(Assuming standard of tallness depends on the scenario:)
(10) Bill/A $5^{\prime} 10^{\prime \prime}$-guy is tall. - strict eval. : false
(11) A $5^{\prime} 10^{\prime \prime}$-guy is tall and a guy with $\$ 100000$ isn't rich. strict eval.: false
(12) A $5^{\prime} 10^{\prime \prime}$-guy either is tall or isn't tall. - strict eval. : false
(13) Bill is and isn't tall or he's blond. - strict eval.: false

Our Semantic Proposal: Fuzzy Logic Basis

(14) Let v be a function from well formed formulas to the interval $[0,1]$, then given a model M
(i) For any predicate letter P and term $t, v_{M}(P(t))=1$ iff $v_{M}(t) \in v_{M}(P)$
(ii) $v_{M}(\neg \phi)=1-v_{M}(\phi)$
(iii) $v_{M}(\phi \vee \psi)=\max \left(v_{M}(\phi), v_{M}(\psi)\right)$
(iv) $v_{M}(\phi \wedge \psi)=\min \left(v_{M}(\phi), v_{M}(\psi)\right)$
(15) A $5^{\prime} 10^{\prime \prime}$-guy is tall. - value: 0.5
(16) A $5^{\prime} 10^{\prime \prime}$-guy isn't tall. - value: 0.5
(17) A guy with $\$ 100000$ is(n't) rich. - value: 0.5

Conjunction cannot be truth-functional.

Scaling of Contradictory Conjunctions

borderline value

Formal Definitions

(18) $\quad(C){ }^{\wedge} \Phi=\sup \left\{k\right.$: for some model $\left.M, v_{M}(\Phi)=k\right\}$
(F) ${ }^{\vee} \Phi=\inf \left\{k\right.$: for some model $\left.M, v_{M}(\Phi)=k\right\}$

Definition of 'and':

$$
v_{M}(\phi \text { and } \psi)= \begin{cases}v(\phi \wedge \psi) & \text { if } \wedge(\phi \wedge \psi)={ }^{\vee}(\phi \wedge \psi) \\ \frac{v(\phi \wedge \psi))^{\vee}[\phi \wedge \psi]}{\wedge[(\phi \wedge \psi)]-\vee[\phi \wedge \psi]} & \text { otherwise }\end{cases}
$$

Predictions of the Semantic Proposal

Assume that truth-value 0.6 threshold for felicitous assertion.
(19) A $5^{\prime} 10^{\prime \prime}$-guy is and isn't tall. - value: 1.0
(20) Bill/A $5^{\prime} 10^{\prime \prime}$-guy is tall. - value: 0.5
(21) A $5^{\prime} 10^{\prime \prime}$-guy is tall and a guy with $\$ 100000$ isn't rich. value: 0.5
(22) A $5^{\prime} 10^{\prime \prime}$-guy either is tall or isn't tall. - value: 0
(23) Bill is and isn't tall or he's blond. - value: 1.0

Conclusion

- uniform theory of vagueness: intermediate values
- connectors like and are intensional

