VAGUENESS, IMPRECISION AND SCALES

Stephanie Solt
ZAS BERLIN

Vagueness and Imprecision

(1) John is tall
(2) John arrived at 4 o'clock

Vague
Imprecise

Vagueness and Imprecision

(1) John is tall

Vague
(2) John arrived at 4 o'clock Imprecise
\square Different:

- Underlying precise concept (4 o'clock) vs. no underlying precise concept (tall)

Vagueness and Imprecision

(1) John is tall

Vague
(2) John arrived at 4 o'clock
\square Different:

- Underlying precise concept (4 o'clock) vs. no underlying precise concept (tall)
\square Similar:
- Lack of sharp boundaries
- Borderline cases
- Sorities paradox

Central claim

\square Linguistic facts relating to both vagueness and imprecision can be analyzed in terms of the structure of measurement scales

- A scale $S=\langle D\rangle,, D I M\rangle$
- D a set of degrees
$\square>$ an ordering on D
- DIM a dimension of measurement
- Measure functions μ_{S} map entities to degrees

Vagueness vs. imprecision

Vagueness vs. imprecision

Imprecision

Imprecision and roundness

- Round numbers interpreted approximately; non-round numbers interpreted imprecisely
a. There were 100 people at the meeting approximate
b. There were 99 people at the meeting precise
- Extends beyond round / non-round
a. I wrote this article in twenty-four hours
b. I wrote this article in twenty-three hours
a. Mary waited for forty-five minutes
b. Mary waited for forty minutes
approximate precise
approximate
precise

Scale Granularity

\square Krifka 2007: Results of measurement an be reported with respect to scales differing in their granularity

Duration (minutes):
a. $0------------------------------60$
b. $0-------------30--------------60$
c. $0------15------30------45------60------75$
d. 0-5-10-15-20-25-30-35-40-45-50-55-60-65-70-75-80-85-
\square Pragmatic principle: numerical expression interpreted relative to coarsest-grained scale on which it occurs

- Forty-five minutes: Scale (c) - interval [$37.5 \mathrm{~min}, 52.5 \mathrm{~min}$]
- Forty minutes:

Scale (d) - interval [$38.5 \mathrm{~min}, 42.5 \mathrm{~min}$]

Granularity and approximators

\square Sauerland \& Stateva 2010: scalar approximators such as exactly and approximately analyzed as setting granularity level

4 o'clock

$$
\begin{aligned}
\llbracket \text { exactly } 4 \text { o'clock } \rrbracket & =[44 \text { o'clock } \rrbracket]^{\text {gran }} \text { finest } \\
& =[4 \text { o'clock } \pm 30 \mathrm{sec}]
\end{aligned}
$$

Granularity and pragmatic reasoning

More than 100 people More than 110 people More than 93 people
attended the meeting about the new highway construction project

- How many attended?

- Amazon MTurk
- $\mathrm{n}=100 /$ condition

From Cummins, Sauerland \& Solt (under revision)

Granularity and pragmatic reasoning

\square Cummins, Saverland \& Solt (under rev.): modified numerals give rise to scalar implicatures based on granularity (Grice 1975; Horn 1989):

- More than n implicates not more than m, where m is the next-highest value on some scale on which n occurs
a. ----100----------------150----------------200
b. ----100-------125-------150-------175-------200-------220--
c. -90-100-110-120-130-140-150-160-170-180-190-200-210-220-230-

Granularity and expression choice

\square Speaker/hearer preference for approximation over precision

- Rounding when telling the time (van der Henst et al. 2002)

- Reporting of survey data:

A third of Americans (32\%) read the bible daily
\square Hypothesis: Expressions interpreted relative to coarsegrained scale easier to process

Granularity and expression choice

\square Recall for clock times (Sternberg paradigm)
$\square 3$ granularity levels: coarse (e.g. 4:15), medium (e.g. 4:20), fine (e.g. 4:23)


```
\squareCoarse (4:15)
@ Medium (4:20)
\squareFine (4:23)
```

-Granularity or roundness?

EURO-XPRAG project
Preference for Approximation; Solt, Cummins \& Palmovič (in prep.)

Summary

\square Scale granularity can be productively applied to account for a range of linguist facts relating to (im)precision
\square Other cases of imprecision/vagueness: a more radically different scale structure

Imprecision/vagueness borderline

Most and imprecise comparison

Most Americans have broadband internet access More than half of Americans have broadband internet access
\square Superficially equivalent in truth conditions |Americans with broadband internet access| >
|Americans w/out broadband internet access|
\square But felicitous use of most typically requires proportion 'significantly' greater than 50\%

More than half of/??most Americans are female

- Related precise concept; but resists precisification to this interpretation

Distribution of Most /More than Half

\square Most is used for proportions considerably greater than half, while more than half is used for proportions close to 50% :
(1) a. The survey showed that most students (81.5\%) do not use websites for math-related assignments (Education, 1 29(1), pp. 56-79, 2008)
b. And while more than half of us grill year-round (57 percent), summertime is overwhelmingly charcoal time (Denver Post, 24/5/2000)

Distribution of Most /More than Half

\square More than half is used for proportions close to 50\%, while most used for higher percentages:

Distribution of Most /More than Half

More than half - but not most - requires a domain that can be individuated and counted (or otherwise quantitatively measured)
(2) a. But like most things, obesity is not spread equally across social classes (Mens Health, 23(7), p. 164, 2008)
b. Most beliefs, worries, and memories also operate outside awareness (Science News, 142(16), 1992)
(3) a. ?? But like more than half of things, obesity is not spread equally across social classes
c. ??More than half of beliefs, worries, and memories also operate outside awareness

Distribution of Most /More than Half

\square More than half - but not most - requires a domain that can be individuated and counted (or otherwise quantitatively measured)
(4) a. But black activists acknowledge that most racism is not so blatant. (Associated Press, 16/9/1991)
b. ?? But black activists acknowledge that more than half of racism is not so blatant.

- But...
(5) In 1997, non-OPEC producers accounted for more than half of world oil production. (Futurist, 33(3), p. 51, 1999)

Two correlated differences

More than half Mosł

Precise lower bound
Restricted to contexts where numerical measurement is possible

Fuzzy lower bound
Felicitous in contexts where counting/measurement not possible

Proposal

\square Distinct logical forms (per Hackl 2009):
More than half of A are $B \quad \mu_{5}(A \cap B)>\mu_{5}(A) / 2$
Most A are B

$$
\mu_{5}(A \cap B)>\mu_{s}(A-B)
$$

Proposal

\square Distinct logical forms (per Hackl 2009):
More than half of A are $B \quad \mu_{s}(A \cap B)>\mu_{s}(A) / 2$
Most A are B

$$
\mu_{s}(\mathbf{A} \cap \mathbf{B})>\mu_{\mathrm{s}}(\mathbf{A}-\mathbf{B})
$$

\square Place different requirements on scale structure

- More than half: support division by 2
\square Ratio level: volume in liters; area in hectares; set cardinality via counting numbers; etc.
- Most: support comparison of degrees via >
- Ordinal level (rank ordering) or weaker
$>$ Account for distributional differences

Semi-ordered scale

\square Consider a scale where:

- Degrees are Gaussian curves with linearly increasing standard deviations
\square Greater than relationship based on degree of overlap $a>b$ iff midpoint (a) exceeds midpoint(b) +1 std dev

Semi-ordered scale

\square Consider a scale where:

- Degrees are Gaussian distributions with linearly increasing standard deviations
\square Greater than relationship based on degree of overlap $a>b$ iff midpoint (a) exceeds midpoint(b)+1 std dev
\square Sufficient to support logical form of most: true if $\mu_{s}(A \cap B)$ 'significantly' exceeds $\mu_{s}(A-B)$

Semi-ordered scale

\square Consider a scale where:

- Degrees are Gaussian distributions with linearly increasing standard deviations
\square Greater than relationship based on degree of overlap $a>b$ iff midpoint (a) exceeds midpoint(b)+1 std dev
\square Sufficient to support logical form of most: true if $\mu_{s}(A \cap B)$ 'significantly' exceeds $\mu_{s}(A-B)$

Number cognition and scales

\square Approximate Number System (ANS)

- Primitive capacity for number
- Present in preverbal infants, societies without complex number systems - and animals
- Number encoded as analog magnitudes on mental number line
- Characterized by ratio dependence
> Leading psychological model of ANS parallel in structure to semi-ordered scale discussed above

Summary

\square Most - unlike more than half - may be interpreted relative to a semi-ordered scale structure modeled on humans' most basic numerical abilities

- In some contexts only option; in other cases, pragmatic strengthening
\square Accounts for:
- Broader distribution vs. more than half
- Imprecise lower bound
\square Extending typology to include scales that are not totally ordered a productive approach to the vagueness / imprecision borderline

To vagueness...

Implicit comparatives

Context: Anna's height -164cm; Lisabeth's height - 163 cm

Anna is taller than Lisabeth

\#Anna is tall compared to Lisabeth

Explicit
Implicit
\square Fults 201 1: 'Analog magnitude scale'
\square Van Rooij 201 1: Semi-order

> A structure S, \succ where S is a set and \succ is a binary relation on S, is a semi-order iff
> $\forall x, y, z, v, w \in S$:
> a. $\neg(x>x)$
> b. $((x \succ y) \wedge(v>w)) \rightarrow((x>w) \vee(v>y))$
> c. $((x \succ y) \wedge(y>z)) \rightarrow((x>v) \vee(v>z))$
$\forall x, y: x>y$ iff $f(x)>f(y)+\epsilon$, for some small fixed ϵ

Vagueness more broadly

\square Van Rooij 2009: Semi-orders can account for other properties of vagueness

- Sorites paradox
\square Hypothesus: Semi-ordered scale structures required to model speakers' use and interpretation of vague expressions
- Talk by Nicole Gotzner, 17:20 today
\square Scale structure matters

