

What are corvids? ravens, crows, rooks, jackdaws, jays, magpies

- large songbirds
- broad spectrum of social organisations
- large variety of habitats

Why cooperation in corvids?

- advanced cognitive capacities
 - ► tool use
 - ► perspective taking
 - ► deception
- comparable to primates in many aspects
- ... but few studies of cooperative behaviour

Input from Strasbourg (team of Ronald Noë)

emphasis on:

- partner choice
- exchange rates of commodities

that is ... we test different aspects of the biological market paradigm

participants exchange goods or services ("commodities") What are biological markets?

partner choice and outbidding are important mechanisms

What are biological markets?

Another well-known market ...

Baby markets

A natural market in primates:

sooty mangabey (Florian Möllers)

access to infants in exchange for grooming

yellow baboon holding twins

grooming for access to infants

Photos: Peter Henzi

The vervet baby market data: Cécile Fruteau mean time 80 (sec) 70 60 of being 50 groomed 40 30 20 10 adult adult mother mother male female 1 infant 2 infants present present NS

An experimental approach

Cécile Fruteau CentER for Economic Research Univ. Tilburg (NL) & Ethologie des Primates Strasbourg (F) Phase 1: a single "producer" (AF) in each group could open a box with fruit for everyone (7 apples in 24 pieces)

An experimental approach

Phase 2: a second "producer" (also AF) could open a second box simultaneously with the first

The same amount of resource as used in phase 1 was divided over both boxes

boxes 2 m apart

Producer experiment – shifts in grooming investments

Preliminary conclusions:

- 1. After a 'producer' has opened a box, this female is groomed considerably more than during the control period
- 2. There is no significant change between periods for other dyads
- 3. The 'value' of a producer, measured as the amount the producer grooms relative to the amount she receives grooming after opening her box, diminishes considerably when a second producer is added

Conclusion

Monkeys trade:

- they use a 'currency' (grooming)
- they react to changes in supply & demand

they shop for the most profitable partner

.. but do they trade like humans do?

Amsterdam stock market Emanuel de Witte 1653

fish seller Quiringh G. van Brekelenkam 1650 - 1670

24

Back to the rooks ..

- breeds in large colonies
- common in the Alsace
- young birds can be easily obtained from the campus colony

Cooperation in Ravens

Thomas Bugnyar

K. L. Forschungsstelle, University of Vienna School of Psychology, University of St. Andrews

drawing: Thomas Hindelang

27

From Rooks to Ravens

- Ecologically versatile
 - Large distribution
 - Broad diet, but preference for meet
 - Scavengers

Socially flexible

- Territorial pairs
- Vagrant non-breeder groups

Machiavellian Players

- Active recruitment of non-kin to monopolized food sources
- Scrounging
- Food caching and pilfering of caches

Make use of others as source of knowledge and as means to gain food

Machiavellian Mind

- Tactical deception by withholding information and misleading
- Follow other's gaze behind visual barriers
- Differentiate between 'knowers' and 'guessers'

Sophisticated mental skills to outwit others

Non-Observe

Context-specific or General Knowledge?

- Food-caching
 Storer-pilferer interactions
- Social complexity
- Captive groups structured by dominance, kinship, friendships
- Social bonds characterized by mutual preening, play, proximity
- Support in agonistic interactions (coalitions, alliances)
- Post-conflict third-party interventions (consolation)

within sexes

Males

Effects of Valuable Social Relations

- Exploration of novel objects
- Attention to conspecifics

· Food sharing, scrounging

Social learning

Profound differences between ravens and jackdaws in use of social relations

Selective Use of Cooperative Skills?

Cooperation in Ravens

Groups Austria and USA

Input from KLF/Austria

- Analyse coalitions, alliances
- Manipulate partner's availability and reliability
- Partner control/choice

Input from UVM/USA

- Recruitment, tolerance at food
- Manipulate (sub)group composition
- Public good

Partner Control and/or Choice?

- Individuals invest in affiliate relations
- Affiliated birds support each other in fights
- **D** System of dependent ranks

If and how ravens maintain alliances when partner prevented from providing support?

Effects across domains?

Where, How & With Whom?

- Konrad Lorenz
 Forschungsstelle,
 University of Vienna
- Captive colony
 6 breeding pairs
 20 offspring/year
- Habituated wild population
- Holding
 Section

 1
 Exp.

 2
 Woodland

 Woodland
 Holding

 Section 3
 Section 3
- Collaborations: Kurt Kotrschal, Redouan Bshary (CH) Ronald Noë (F), Paolo Zucca (I), Vittorio Baglione (E)

Cooperation and cognition in a variable social system

Cooperative breeding: when more

than two individuals contribute to raise the young

Meerkats

Evolutionary paradox

Key prediction of kin selection: cooperation arises among kin

Kin selection: Individuals maximise inclusive fitness by increasing reproductive success of relatives

- Cooperation at the nest in 73% of territories
- Average group size = 3.2
- Up to three helepers at the nest

 Delayed dispersal of offspring
 Immigration (male biased)

Cooperative social organization and cognition **Brain size**

In social species, evolution favours "clever" individuals that, through social cooperation can obtain the highest benefits from living in group.

A Machiavellian mind

A "social mind"

Social learning

Spread of knowledge ("social culture")

Hipotheses

- 1) Does family living promotes social learning?
- 2) Are individuals that grew up in a social environment better able to solve problems?
- 3) Are individuals from cooperative populations genetically "smarter"?

Field experiments Cross-fostering experiments

Thanks to

Jan Ekman José Manuel Marcos Giuseppe Bogliani Michael Griesser Rubén Vera Elisa Chiarati Guido Andreotti Gloria Robles

Modelling cooperation with robots

Institute of Cognitive Sciences and Techno

National Research Council, Italy

Modelling cooperation with robots

Emergence and evolution of cooperation in teams of autonomous robots

- social feeding behaviours
- collective hunting behaviours

The role of functional lateralization in social behaviour

- several avian species have a dominance of the right hemisphere for social recognition (Vallortigara & Rogers, 2005)
- functional specialization of neural modules

Modelling cooperation with robots

Emergence and evolution of cooperation in teams of autonomous robots

Robots are new kind of animals

The role of functional lateralization in social behaviour

Robots are models of existing animals

Modelling cooperation with robots

The Robots

Khepera

E-puck

Khepera II

Small Blimp

Evolutionary robotics

Evolutionary Robotics is a technique for the automatic creation of autonomous robots

It is inspired on the Darwinian principle of selective reproduction of the fittest

Robots develop their own skills in close interaction with the environment without human intervention

Neural Networks Genetic Algorithm

Evolutionary robotics

Emergence of cooperation

Cooperation in hunting

ECAgents EU Project

Emergence of cooperation

Cooperation in navigation

ECAgents EU Project

<section-header><section-header><section-header><section-header><text><text><text><text>