TECT Final Conference Collegium Budapest, Budapest, 2010.

The evolution of ant–plant coexistence and castration

András Szilágyi, István Scheuring Eötvös University, Budapest, Hungary

David P. Edwards, Jerome Orivel University of East Anglia, Norwich

Jerome Orivel UMR-CNRS Univ. Toulouse, France

Douglas W. Yu ECEC, Kunming Institute of Biology, Yunnan, China

Motivation: The *Cordia-Allomerus-Azteca* system

- Ant-plant symbioses are one of the most tractable model for the study of mutualism and parasitism
- We have got field data to make and parameterize a simple model

Motivation: The *Cordia-Allomerus-Azteca* system

- Cordia nodosa: domatia and food for the ants
- *Azteca* species: pure mutualists
- Allomerus cf. Demerarae protects host, but castrates the plant

Motivation: The *Cordia-Allomerus-Azteca* system

- Relative abundance of the ant species depends on the hostplant density
- Polymorphism in the intensity of castration

Yu et al. *Ecology*, **82** 1761-1771, 2001

The problem – *The tragedy of the commons*

What mechanisms generate the equilibrium level of castration in the Allomerus-Cordia system?

The problem is similar to the *tragedy of commons*

- The higher castration level gives advantage the owner
- There are no effects reducing level of castration
- Castration level is increasing and the system collapses

Mean-field computation leads to similar results

To escape from the tragedy of the commons, we need to take *spatial relations* and *trade-offs* into consideration.

The model

- The system occurs on an 500 *500 grid, h fraction is suitable for plants (0<h<1)
- Four different states of a gridpoint
 - *E* suitable and empty
 - N/A plants not yet inhabited (No Ant)
 - *CAS* plant inhabited by castrating *Allomerus*
 - NCAS plant inhabited by non-castrating Azteca
- Dispersal-fecundity trade-off
- Grid model with 12 parameters (suggested by field data)
- Dispersal distance and castration level evolve

Results – densities

Results – castration level

Cyclic competition hierarchy

- Cyclic competition hierarchy occurs
- We can explain the stable coexistence via a four-step Rock-Paper-Match-Scissors game

Conclusions

- We can avoid the tragedy of commons with spatially explicit modeling
- System reaches an intermediate level of castration
- With dispersal-fecundity trade-off and dispersal limitation the stable coexistence between NA-CAS-NCAS is possible
- We can explain the stable coexistence via a four-step Rock-Paper-Scissors game
- The evolution of castration level depends on the mutualistic species Azteca to a great extent
- These results are qualitatively consistent with the observed features in the *C. nodosa* system

Thank you for your attention!