
1

ESF Exploratory Workshop (EW05-119):
Challenges in Java Program Verification

Nijmegen, The Netherlands, 16-18 October 2006

Scientific Report
Reiner Hähnle, Wojciech Mostowski, Erik Poll

1. Executive Summary
The workshop managed to gather nearly all research groups world-wide currently working on
formal verification of programs written in Java and related languages.

 The workshop was described by all participants as an extraordinarily focused event with
discussions taking place on a very high technical level.

 An explicit aim of the workshop was not only to take stock of the latest advances in formal
verification of Java programs, but also to come to an understanding within the research community
on the most important future issues and how to cross-fertilise each other's research.

 The following trends were identified as likely to have particular influence on the shape of
research to take place in verification in the future:

● The definition of intermediate languages for specifications and target programs. Ideally,
there should be only few such languages and they should have a formal semantics. This will
lead to clear tool architectures and inter-operability.

● Compilation of specifications and proofs allows to obtain bytecode level proofs while
retaining the ability to verify interactively at the source code level.

● Symbolic execution of code as a powerful multi-purpose analysis tool.

● Hybrid methods that combine technologies from verification, program analysis, and
specification to attack complex problems.

● Tight integration of verification methods and tools with those in conventional software
development. The “customer” of verification technology should be more the software
developer, less the formal methods expert. Addition of language-based support for ensuring
stronger modularity notions than is possible at the moment in Java-like languages.

The following issues were perceived as challenges that the community must respond to in a
concerted effort:

● Verification of concurrent programs and the definition of a concurrency model that makes
verification feasible.

● Verification of larger frameworks and of automatically generated code.

● The consolidation and integration of specification languages for object-oriented programs.

The participants of the workshop clearly see the need for continued and regular collaboration on the
issues sketched here. The COST framework is seen as a possible instrument to supply the necessary

2

infrastructure for that.

2. Scientific Content and Results
The workshop managed to gather nearly all research groups that are currently working on formal
verification of programs written in Java and closely related languages. Only two groups were not
present (Klaus Havelund from Nasa Research, U.S.A., and Francesco Logozzo from École
Polytechnique, France): their representatives had to cancel the initial agreement to come, because of
unforeseen circumstances.

 The workshop was described by all participants as an extraordinarily focused event with
discussions taking place on a very high technical level.

 An explicit aim of the workshop was not only to take stock of the latest advances in formal
verification of Java programs, but to come to an understanding within the research community on
the most important future issues and how to cross-fertilise each others research.

 During the talks and discussions a number of important trends were identified that are likely
to shape formal verification technology in the next years and will push it forward.

Intermediate Languages Many people stressed the importance of intermediate programming and
specification languages for reducing the complexity of verification systems. Many systems
work by first compiling Java or C# into a simpler intermediate programming language
(Beckert, Leino, Müller) before starting verification condition generation or symbolic
execution. Likewise, specification languages such as JML or OCL are desugared and/or
compiled to, for example, typed predicate logic (Giese, Marché) instead of reasoning about
them directly.

During the panel discussion on “Past Experiences and Lessons for the Future” the
importance of high-quality intermediate representations for building inter-operable,
maintainable tools was stressed.

Compilation Compilation is a standard principle in Programming Languages and used for run-time
efficiency as well as for vertical structuring of complex systems. It is only now beginning to
be explored in the context of formal verification. One approach is the compilation of proofs
of verification tasks at the source code level to corresponding proofs at the bytecode level
(Pavlova). The motivation for such compilation is similar as for the usual compilation of
high-level programming languages: it allows one to obtain bytecode level proofs while still
being able to verify interactively at the source code level. This is important, because the
bytecode level is not suitable for human interaction in the context of formal proofs. Second,
bytecode is syntactically simpler and has a smaller instruction set than source code. As a
consequence, a bytecode proof checker has a smaller code basis and memory footprint than
one for source code. This is a serious issue for checking of certificates on small mobile
devices in a proof-carrying code architecture.

Symbolic Execution Several tools feature complete symbolic execution engines. One of the
advantages is that symbolic execution can be used not only for verification, but also for
code-based test generation, visualisation, and automated bug finding (Robby, Rümmer). In
addition, symbolic execution is used as a powerful dynamic analysis tool in order to increase
automation of verification proofs that otherwise require induction (Hähnle, Wallenburg).

Hybrid Methods Several of the most advanced verification activities involve not merely formal
verification, but, for example, refinement and verification (Stenzel), model checking and
deduction (Mostowski), program analysis and verification (Hähnle). Clearly, there is
tendency to integrate verification based on logical inference with methods developed in

3

program analysis and in specification.

Close Interaction with Conventional Software Development In several contributions it was
stressed that it is necessary to deeply integrate verification with more conventional software
development tools. Verification tools must be readily usable, pluggable, robust.They must
be designed for users, not for other researchers. This is an insight that the community started
to address seriously (talks by Kiniry, Robby, Leino).

In addition, in the creation of verification tools it is essential to use state-of-art software
engineering (SWE) techniques for development and documentation.

The verification community has detailed insights in specifications that are not well
understood or incomplete or simply too complex to be understood. There should be more
dialogue between the authors of Java JSRs and the formal verification community. The
analyses obtained from attempts to formally treat such concepts as the Java Memory Model
(Huisman) or Java Card Atomic Transactions (Mostowski) suggest that these aspects of the
Java/Java Card language are in serious need to becoming more precise and less complex.

Language-Based Modularity It has been long known in the formal verification community that the
design and complexity of target programming languages in which the verification objects
are written has a strong influence on the difficulty of the ensuing verification tasks. In the
past, a number of “clean” languages that are particularly suitable for verification have been
designed (for example, guarded commands, Pascal subsets, mutually recursive functions),
but they are too far away from what is required in an industrial context. The community
represented in this workshop, on the other hand, starts from an industry standard (Java, Java
Card, C#) and tries to handle as many features as possible.

One of the more serious shortcomings of object-based languages such as Java is lacking
support for writing modular programs: change or extension of existing classes can, in
principle, break numerous invariants and contracts. Worse, there is no obvious way to
determine which invariants and contracts are preserved. This situation extends to
verification proofs: classes and methods cannot be verified in isolation, that is, modularly,
because their invariants may depend on other classes. The solution that the Java verification
community (talks by Darvas, Jacobs, Leino, Middelkoop, Müller, Poetzsch-Heffter, Poll)
has to offer here is to extend the target language with concepts that allow the developer to
specify modularity assumptions more explicitly. In several talks solutions based on
ownership type systems and on directives for controlled representation exposure were
discussed. The current challenge is to keep the programming model of these new constructs
simple enough in order for the average developer to benefit from it.

This is an area where verification and programming language design can fruitfully interact.

Each of the issues discussed so far contains several research challenges. However, during the talks
and discussions a number of additional topics emerged that need to be addressed systematically in
the future.

Concurrency The first Java and C# verification tools now support concurrent programs (Klebanov,
Jacobs), but current restrictions are serious. In addition, the concurrency model of Java is
considered to be too low-level by the verification community (and by many Java
developers).

Frameworks, Code Generation Traditionally, formal verification centred on hand-written code on
the module level. In practice, however, large frameworks such as EJB or code generators
from more abstract models account for more and more executed code. Modularity and
Compilation will be essential technologies, but overarching strategies for verification of

4

large systems need yet to be developed.

Specification Languages The de-facto standard for specification of the formal requirements to be
verified is the Java Modeling Language (JML). In addition, the C# group uses Spec# (which
shares many features with JML) and one group also supports the UML standard Object
Constraint Language (OCL). While JML is sufficient in many situations, sometimes it lacks
expressivity. Several people use “low-level” formalisms such as first-order logic with
abstract data types in addition to JML (Marché, Mostowski). In particular, concurrent
programs cannot yet be specified. Another problem of JML is the lack of a formal semantics
that could guarantee inter-operability of all JML-based tools. A serious issue is the lack of
integration of JML with UML-based CASE tools and IDEs.

Clearly this challenge cannot be answered by the Java verification community alone. A
concerted effort is necessary.

3. Outcomes
The workshop was highly interactive and, in addition to individual presentations, featured also a
number of (panel) discussions. Of these, we would like to highlight two in particular. The first was
about “Past Experiences and Lessons for the Future” and it featured a representative of each of the
verification systems presented at the workshop. Each panelist was asked to name two positive and
two negative things they learned from their tool experiences. The emerging picture was remarkably
coherent and is partly taken up in the list of issues above. A summary of the discussion has been
made available in the form of a blog1 by the panel discussion leader, Joe Kiniry.

 We also wish to report briefly on the discussion about follow-up activities to the workshop:
various research funding programmes within ESF and FP7 were discussed. As this summary of the
scientific results shows, there is serious need for the research groups in Java verification to
collaborate even more closely and on a regular basis. It was felt that it is more important to establish
a research network rather than apply for funding of a project. Most people thought that a COST
action would provide an adequate infrastructure, because it is a relatively flexible and open
instrument. An informal inquiry among the participants produced a sufficient number of teams that
would be seriously interested. Within an appropriate COST action one could also initiate the
necessary dialogue with the formal specification community.

4. Worshop Webpage
At the Workshop webpage2 all post-workshop information and notes provided by the participants
and organisers are published.

5. Final Program

Monday October 16th
9:00-9:30 Introduction
 Reiner Hähnle - Welcome
 Kaisa Sere - Presentation of the European Science Foundation

1 http://kindsoftware.blogspot.com/2006/11/esf-workshop-on-challenges-in-java.html

2 http://www.cs.ru.nl/~woj/esfws06

5

9:30-10:30 Session 1a: Verification Frameworks
 Bernhard Beckert - Dynamic Logic with Non-rigid Functions

 Kurt Stenzel - Refinement of Abstract Specifications to Java Code
10:30-
11:00 Coffee Break

11:00-
12:00 Session 1b: Verification Frameworks

 Mariela Pavlova - Java Bytecode Verification

 Martin Giese - A Logic with Subtypes to talk about Java Objects
12:00-
13:30 Lunch

13:30-
15:00 Session 2: Concurrency

 Vladimir Klebanov - A Dynamic Logic for Verification of Concurrent Programs

Bart Jacobs - A Statically Verifiable Programming Model for Concurrent Object-
Oriented Programs

 Marieke Huisman - Formalising the Java Memory Model
15:00-
15:30 Coffee Break

15:30-
17:00 Discussion 1: Unsolved problems in Java Verification

 See Discussions below

Tuesday October 17th
9:00-10:00 Session 3: Tools
 Joe Kiniry - Usable Formal Tools

Robby - Bogor/Kiasan - Combining Symbolic Execution, Model Checking, and
Theorem Proving

10:00-
10:30 Coffee Break

10:30-
12:00 Session 4: Applications

Jean-Louis Lanet/Pierre Girard - New Challenges in Java Verification for Tiny
Devices

Wojciech Mostowski - Verifying Real Java Programs - API Calls vs. Language
Semantics, Official Specs vs. Implementations

 Peter Müller - Specification and Verification Challenges
12:00-
13:30 Lunch

13:30-
15:00 Session 5: Loops

 Reiner Hähnle - Verification of Loops by Parallelization

 Steffen Schlager - A Method for Loop Verification Based on Fixed Points

 Angela Wallenburg - Using Induction in Interactive Verification

6

15:00-
15:30 Coffee Break

15:30-
16:30 Discussion 2: Challenges

 See Discussions below
16:30-
17:00 Discussion 3: Follow-up Activities

 See Discussions below

Wednesday October 18th
9:00-10:00 Session 6: Encapsulation

Arnd Poetzsch-Heffter - The Box-Model: A Modular Semantics for Modular
Verification

 Rustan Leino - Going Beyond Simple Ownership System in Spec#
10:00-10:30 Coffee Break
10:30-12:00 Session 7a: Specification and Verification Techniques
 Adam Darvas - Verification Technique for Method Calls in Specifications

 Erik Poll/Christian Haack - Immutable Objects in Java

 Philipp Rümmer - Disproving in Dynamic Logic for Java
12:00-13:30 Lunch
13:30-14:30 Session 7b: Specification and Verification Techniques
 Ronald Middelkoop - Invariants for Non-Hierarchical Object Structures

 Claude Marché - Algebraic Specifications for Modeling Java Programs (Example)
14:30-15:00 Coffee Break
15:00-16:30 Discussion 4: Past Experience and Lessons for the Future
 See Discussions below
16:30 Closing

Panel Discussions

1. Unsolved Problems in Java Program Verification

Abstract: What are the most important problems in Java program verification for which we don't yet
have good solutions? What are the current means of attack? Can we identify areas where we can
collaborate?

Moderator: Arnd Poetzsch-Heffter

• Mobile Java bytecode and its verification (Mariela Pavlova)
• Java library and software frameworks such as EJB, CORBA (Robby)
• Concurrent Java (Vladimir Klebanov)
• Read and effects systems and ownership systems (Rustan Leino)

2. Challenges

Abstract: What are the strategic directions our field should be headed to? How can we make most
impact with our limited resources? Should we try to organize ourselfves more systematically

7

(COST action, etc.)?

Moderator: Peter Schmitt

• Which problems would industry like to have solved? (Jean-Louis Lanet)
• How to align our research with an overarching security concept for Java applications?

(Wojciech Mostowski)
• Our position wrt Hoare's Grand Challenge (Bernhard Beckert)

3. ESF Follow-up Activities

Abstract: How to proceed with the cooperation within the group of participants to support ESF
efforts?

Moderator: Reiner Hähnle

4. Past experience and lessons for the future

Abstract: Many of us actively took part in the development of a verification tool for OO languages.
As in all research tools one has to make design and technology decisions that in the end may turn
out to be suboptimal. Are there things that we can learn from each other? Which mistakes did we
make in designing our verification tool? Which technologies worked and which didn't? Which
lessons did we learn for the future?

Moderator: Joe Kiniry

Brief statements by:

• Erik Poll on LOOP
• Claude Marché on Krakatoa
• Peter Müller on Jive
• Joe Kiniry on ESC/Java2
• Steffen Schlager on KeY
• Mariela Pavlova on JACK
• Kurt Stenzel on KIV
• Rustan Leino on Boogie
• Robby on Bogor/Bandera

6. Detailed Participant List

Convenors:

1. Reiner Hähnle
Chalmers University of Technology
Department of Computer Science and
Engineering
SE-412 96 Göteborg
Sweden
tel: +46-31-772-1061
fax: +46-31-772-3663
e-mail: reiner@cs.chalmers.se
www:
http://www.cs.chalmers.se/~reiner/

2. Wojciech Mostowski (local)
Computing Science Department
Radboud University Nijmegen
P.O. Box 9010
6500 GL Nijmegen
The Netherlands
tel: +31-24-365-2076
fax: +31-24-365-3137
e-mail: woj@cs.ru.nl
www: http://www.cs.ru.nl/~woj/

8

3. Erik Poll (local)

Computing Science Department
Radboud University Nijmegen
P.O. Box 9010
6500 GL Nijmegen
The Netherlands
tel: +31-24-365-2710
fax: +31-24-365-3137
e-mail: erikpoll@cs.ru.nl
www: http://www.cs.ru.nl/~erikpoll/

ESF representative:
4. Kaisa Sere

Department of Information Technology
Åbo Akademi University, TUCS -
Turku Center for Computer Science
Joukahaisenkatu 3-5
FIN-20520 Turku
Finland
tel: +358-2-215-4537
e-mail: kaisa.sere@abo.fi
www: http://www.abo.fi/~kaisa/

Local organiser:
5. Maria van Kuppeveld

Computing Science Department
Radboud University Nijmegen
P.O. Box 9010
6500 GL Nijmegen
The Netherlands
tel: +31-24-365-3132
fax: +31-24-365-3137
e-mail: M.Kuppeveld@cs.ru.nl
www:
http://www.cs.ru.nl/staff/Maria.van.Ku
ppeveld

Participants:
6. Philipp Rümmer

Chalmers University of Technology
Department of Computer Science and
Engineering
SE-412 96 Göteborg
Sweden
tel: +46-31-772-1072
fax: +46-31-772-3663
e-mail: philipp@cs.chalmers.se
www:
http://www.cs.chalmers.se/~philipp/

7. Adam Darvas

Software Engineering
ETH Zentrum, RZ F3
8092 Zurich
Switzerland
tel: +41-1-632-7951
fax: +41-1-632-1435
e-mail: Adam.Darvas@inf.ethz.ch
www:
http://sct.inf.ethz.ch/people/darvas/

8. Peter Müller
Software Engineering
ETH Zentrum, RZ F3
8092 Zurich
Switzerland
tel: +41-1-632-2868
fax: +41-1-632-1435
e-mail: peter.mueller@inf.ethz.ch
www:
http://sct.inf.ethz.ch/people/mueller/ind
ex.html

9. Peter Schmitt
University of Karlsruhe
Institute for Theoretical Computer
Science
Am Fasanengarten 5
D-76131 Karlsruhe
Germany
tel: +49-721-608-4000
fax: +49-721-608-4211
e-mail: pschmitt@ira.uka.de
www:
http://i12www.ira.uka.de/english/schmi
tt-engl.htm

10. Steffen Schlager
University of Karlsruhe
Institute for Theoretical Computer
Science
Am Fasanengarten 5
D-76131 Karlsruhe
Germany
tel: +49-721-608-4338
fax: +49-721-608-4211
e-mail: schlager@ira.uka.de
www:
http://i12www.ira.uka.de/~schlager/

9

11. Bart Jacobs

Katholieke Universiteit Leuven,
Department of Computer Science
Celestijnenlaan 200A
3001 Leuven
tel: +32-16-32-7823
fax: +32-16-32-7996
e-mail: bart.jacobs@cs.kuleuven.be
www:
http://www.cs.kuleuven.ac.be/~bartj/

12. Martin Giese
RICAM
Austrian Academy of Sciences
Altenbergerstr. 69
A-4040 Linz
Austria
tel: +43-732-2468-5254
fax: +43-732-2468-5212
e-mail: martin.giese@oeaw.ac.at
www:
http://www.ricam.oeaw.ac.at/people/pa
ge/giese/

13. Mariela Pavlova
INRIA Sophia Antipolis
Everest Project
2004, route des Lucioles - BP 93
FR-06902 Sophia Antipolis
France
tel: +33-4-92-38-75-65
e-mail:
Mariela.Pavlova@sophia.inria.fr
www: http://www-
sop.inria.fr/everest/personnel/Mariela.P
avlova/

14. Marieke Huisman
INRIA Sophia Antipolis
Everest Project
2004, route des Lucioles - BP 93
FR-06902 Sophia Antipolis
France
tel: +33-4-92-38-79-45
fax: +33-4-92-38-50-29
e-mail:
Marieke.Huisman@sophia.inria.fr
www: http://www-
sop.inria.fr/lemme/Marieke.Huisman/

15. Bernhard Beckert

University of Koblenz
Department of Computer Science
AI Research Group
Universitätsstraße 1
D-56070 Koblenz
Germany
tel: +49-261-287-2775
e-mail: beckert@uni-koblenz.de
www: http://www.uni-
koblenz.de/~beckert/

16. Vladimir Klebanov
University of Koblenz
Department of Computer Science
AI Research Group
Universitätsstraße 1
D-56070 Koblenz
Germany
tel: +49-261-287-2781
e-mail: vladimir@uni-koblenz.de
www: http://www.uni-
koblenz.de/~vladimir/

17. Jing Pan
Technische Universiteit Eindhoven
Department of Mathematics and
Computer Science
Formal Methods Group
Postbus 513
5600 MB Eindhoven
The Netherlands
tel: +31-40-247-4628
e-mail: j.pan@tue.nl
www: http://www.win.tue.nl/~jpan/

18. Kurt Stenzel
Lehrstuhl für Softwaretechnik und
Programmiersprachen
Institut für Informatik
Universität Augsburg
D-86135 Augsburg
Germany
tel: +49-821-598-2178
e-mail: stenzel@informatik.uni-
augsburg.de
www: http://www.informatik.uni-
augsburg.de/lehrstuehle/swt/se/staff/ste
nzel/

10

19. Joe Kiniry

Computer Science and Informatics
Centre
UCD Dublin
Belfield
Dublin 4
Ireland
tel: +353-1-716 2929
fax: +353-1-269 7262
e-mail: kiniry@acm.org
www: http://secure.ucd.ie/~kiniry/

20. Robby
SAnToS Laboratory
Department of Computing and
Information Sciences
Kansas State University
212 Nichols Hall
Manhattan, KS 66506
U.S.A.
tel: +1-785-532-6350 (Ext. 30)
fax: +1-785-532-7353
e-mail: robby@cis.ksu
www: http://www.cis.ksu.edu/~robby/

21. Jean-Louis Lanet
Gemplus La Ciotat
ZI Athélia III - Voie Antiope
13705 La Ciotat
France
tel: +33-442-36-3266
fax: +33-442-36-5555
e-mail: Jean-
Louis.Lanet@gemplus.com

22. Pierre Girard
Gemplus La Ciotat
ZI Athélia III - Voie Antiope
13705 La Ciotat
France
tel: +33-442-36-5791
e-mail: Pierre.Girard@gemplus.com

23. Jean-Marie Gaillourdet
Universität Kaiserslautern
Fachbereich Informatik, Gebäude 34
Postfach 30 49
D-67653 Kaiserslautern
Germany
tel: +49-631-205-2625
fax: +49-631-205-3420
e-mail: jmg@informatik.uni-kl.de
www: http://softech.informatik.uni-
kl.de/twiki/bin/view/Homepage/Jean-
MarieGaillourdet

24. Arnd Poetzsch-Heffter
Universität Kaiserslautern
Fachbereich Informatik, Gebäude 48
Postfach 30 49
D-67653 Kaiserslautern
Germany
tel: +49-631-205-3536
fax: +49-631-205-3420

 e-mail: poetzsch@informatik.uni-kl.de
www: http://www.informatik.fernuni-
hagen.de/pi5/mitarbeiter/poetzsch.htm

25. Rustan Leino
Microsoft Research
One Microsoft Way
Redmond, WA 98052
U.S.A.
tel: +1-425-707-8045
fax: +1-425-936-7329
e-mail: leino@microsoft.com
www:
http://research.microsoft.com/~leino/

26. Claude Marché
Université de Paris-Sud, LRI
Bâtiment 490
F-91405 Orsay Cedex
France
tel: +33-01-69-15-64-85
fax: +33-01-69-15-65-86
e-mail: Claude.Marche@lri.fr
www: http://www.lri.fr/~marche/

11

7. Statistics on Participation
The workshop was attended by 25 researchers from 17 institutions/departments/companies:

● Chalmers University of Technology, Computing Science Department, Sweden
(2 participants),

● Radboud University Nijmegen, Computing Science Department, The Netherlands
(2 participants),

● ETH Zürich, Software Component Technology Group, Switzerland (2 participants),

● Karlsruhe University, Institute for Logic, Complexity, and Deduction Systems, Germany
(2 participants)

● Katholieke Universiteit Leuven, Department of Computer Science, Belgium (1 participant)

● Austrian Academy of Sciences, RICAM, Symbolic Computation Group, Austria
(1 participant)

● INRIA, Sophia-Antipolis, France (2 participants),

● Koblenz University, AI Research Group, Germany (2 participants),

● Technical University of Eindhoven, Formal Methods Group, The Netherlands
(1 participant),

● Augsburg University, Software Technology and Programming Languages Group, Germany
(1 participant),

● University College Dublin, School of Computer Science and Informatics, Ireland
(1 participant),

● Kansas State University, Department of Computing and Information Sciences, U.S.A.,
(1 participant),

● Microsoft Research, Redmond, U.S.A. (1 participant),

● Gemalto, France (2 participants),

● Technical University Kaiserslautern, Software Technology Group, Germany
(2 participants),

● Université de Paris-Sud, DÉMONS research team, France (1 participant),

● Turku Center for Computer Science, Finland (1 participant – ESF representative).

All groups/institutions that were represented by two participants (except for Gemalto) consisted of
at least one junior researcher (all except one still before their PhDs at the time of the Workshop).
Within the rest of the group the “academic” age of participants was distributed more or less
uniformly, from PhD students to full Professors.

Gender repartition :

Female : 4 Male : 21

Geographical distribution :
AT 1 FI 1 SE 2
BE 1 FR 5 US 2
CH 2 IE 1
DE 7 NL 4

