

Scientific Review Group for Physical and

Engineering Sciences

Scientific Review Group for the

Humanities

ESF Exploratory Workshop

on

Combining Learning

and Symbolic

Analysis for Software Documentation and

Mastering Change

Darmstadt (Germany), September 10-11, 2014

Convened by:
Ulf Brefeld and Reiner Hähnle

SCIENTIFIC REPORT

1. Summary
Automatic software documentation and validation is becoming a major challenge in software

engineering as programs and systems often distribute across millions of lines of code that

cannot be analysed and verified manually. The objective of this workshop was to bring

together researchers from software engineering, natural language processing, and machine

learning, and discuss commonalities and differences in challenges faced, survey the different

approaches, and provide a platform to present and learn about some of the most cutting

edge research in this area. Moreover, the workshop was intended to serve as a forum for

exchanging ideas to develop a new common understanding of the involved problems and to

agree on future actions to pursue them.

Exploratory Workshop Scheme

The workshop on “Combining Learning and Symbolic Analysis for Software Documentation

and Mastering Change” was held at TU Darmstadt, Germany, over 1.5 days in September

2014. Participation numbered 15 people from 9 countries. Even though 1.5 days are clearly

not enough to establish a deep understanding of all involved scientific and practical

challenges, the workshop has been considered a huge success by all participants. The group

discussed ways to bridge the gap between the areas, elected organisers for a follow-up

event, and will also share ideas and materials in the near future to further evaluate promising

ways to cooperate. In the following, we briefly sketch the concrete outcomes and findings of

the workshop.

2. Scientific content of the event
In both, static analysis of software and in automata learning, the last decade has brought

major advances that most researchers outside the specific areas are unaware of: for

example, there exist software modelling languages, such as ABS (http://www-hats-

project.eu) that permit fully automatic resource analysis, behavioural verification, and test

case generation for concurrent, industrial scale software. Functional verification of programs

written in industrial languages such as Java or C is possible.

In automata learning, active approaches alternatively issue membership and equivalence

queries to construct and validate hypotheses. Leveraging black-box inference to register

automata has been a significant leap towards realistic applications. A recent active learning

schema for Register Mealy Machines bridges the gap to data-independent processing which

is relevant for protocol and interface programs. Other work studies active learning for test

drivers.

From a machine learning point of view, kernel methods for learning automata have been

proposed. The idea is to map accepted and rejected inputs to some high-dimensional space

where a linear classifier is trained to separate the classes. Grammar and automata induction

has also been studied in the context of software engineering, for instance to learn

programming languages that are usually context-free, non-stochastic grammars. It is

possible to infer context-free grammars from positive examples for programming dialects

where the original programming language is used as prior knowledge. Genetic algorithms

have been proposed to learn grammars for small domain specific languages, such as one

that validates UML class diagrams from use cases.

In summary, one can observe that static analysis techniques, specifically deductive

approaches, scale to industrial problems and are largely automatic (i.e., work without

supervision). Recently, such techniques tend to be used in connection with modelling

languages. At the same time the target formalisms of automata learning become more

expressive and active learning is essential for performance. This leads to a historically

unprecedented narrowing of the methodological and language gap between symbolic and

learning-based approaches. The central role of the workshop will be to identify opportunities,

where joint research can lead to synergies that, ultimately, form the basis for breakthroughs.

We illustrate the vast possibilities by two examples:

• Active learning algorithms typically rely on two kinds of queries to improve/ assure

convergence: membership queries and equivalence queries. The former are simple

tests, but the latter are much harder and often left out for performance reasons. But

this is exactly, where a suitable static analysis can help, even if it is only

approximative.

• Formal software models, which are the basis of symbolic approaches, must usually be

expensively built manually and even then, are often incomplete and inaccurate. This

process could be greatly speeded up and made more reliable by modern learning

techniques.

It became evident during the workshop that there is already interesting work under way that

connects software analysis with automata learning and machine translation with machine

learning. From an abstract point of view programs and automata are both state transition

systems, however, it became very clear that the gap between modern programming

languages and the kind of automata considered in the learning community is considerable. It

is not impossible to bridge this gap (and first promising work exists in the form of learning

"interface programs"), but it will be a challenge. All participants agreed that there are vast

possibilities in this: static software analysis methods are symbolic and rely heavily on

deductive reasoning, while learning methods typically are statistical/combinatorial. So we

have a set of very complementary, highly developed approaches. Can we employ learning

techniques to incorporate runtime information into static software analysis or to make it rely

less on external specifications? Can we use deduction and symbolic reasoning to make

learning more efficient and the learned objects more expressive? Can ideas and concepts,

such as, for example, Transfer Learning, be usefully applied in the world of software?

As to natural language, the most promising starting point to bridge the gap between

disciplines is to better understand the differences between natural and artificial languages.

This not only allows for an easier transfer of results developed in NLP to the software domain

but may also lead to new problem settings, as many prior assumptions will be very different

when dealing with software. E.g., protocols and code are supposed to be noise-free and

finite languages with a very limited set of atomic words compared to natural languages.

Utilising these restrictions may be the key to developing new kinds of automata learning

algorithms. In this way, machine learning could provide the tool bridge between programming

languages and documentation in natural language.

3. Assessment of the results & contribution to the future direction of the field
A key observation during the workshop was that the automata learning community historically

has been much concerned with theoretical questions centring on learnability, completeness,

and complexity. The software analysis and verification community, however, is now mainly

driven by empirical challenges arising from attempts to scale the technology towards

industrial applicability. This led to scalable and robust software engineering tools in the last

decade and helped to get formal verification out of its theoretical corner. Several workshop

participants from the learning community agreed that the demand for high performance

coming from applications in software analysis could be a very positive stimulus for applied

research in machine learning (as this is the case already with applications coming from the

life sciences).

As a next step, the workshop participants plan a follow-up event at Dagstuhl that will serve as

a platform to evaluate collaborations and efforts that have been initiated today and to start

preparing more ambitious proposals based on the ideas sketched above. Concretely, Karl

Meinke (KTH Stockholm), Anssi Yli-Jyra (U Helsinki), Amel Bennaceur (The Open

University), plus a researcher from North America (to be confirmed) will submit a proposal for

a Dagstuhl perspectives workshop to be held in 2015. The theme of the workshop will be in

the direction of combining statistical and symbolic (learning) approaches with a clear focus

on applications in software documentation.

The feedback we obtained from the participants during and after the workshop was invariably

positive and we believe the workshop was a big success. We really enjoyed organising the

event and we would like to warmly thank ESF for supporting this event as it allowed us to

have so many exceptional invited speakers.

4. Final programme
The 1.5 days workshop was structured in three parts. On the first day, we reserved the

morning for tutorial introductions by leading researchers in each area to familiarise everyone

with the terminology, research methodologies, etc., of the different communities. The

afternoon of the first day and the morning of the second day is spent with a selection of

shorter presentations that report about the state of art in each area, the capabilities and

limitations of tools, etc. The remaining time on the second day was used to collect topics for

joint research projects and discussions of follow-up activities. To facilitate collaborations, we

had a joint social event with room for informal discussions on the evening of the first day.

Participants arrived on the evening before the workshop, that we used for an informal

welcome dinner and get together.

Tuesday, September 9

19:00 Welcome reception and get together

Wednesday, September 10

09:00 Welcome

09:15 Reiner Hähnle, Deductive Verification

10:00 Karl Meinke, Learning-based Testing

10:45 Break

11:15 Bernhard Steffen, Active Automata Learning

12:00 Colin de La Higuera, Probabilistic finite automata: using them and learning them

12:45 Lunch

14:30 Stefan Jähnichen, ESF Rapporteur

14:45 Session 1 

 Andreas Maletti, Rule Extraction for Multi Bottom-up Tree Transducers

 Anssi Yli Jyra, Decision Tree Learning and Transducer Induction

 Amaury Habrard, Spectral learning for (probabilistic) grammatical inference

16:00 Break

16:30 Session 2 

 Paola Inverardi, Producing Correct Software by Integration

 Einar Broch Johnsen, Model-Based Analysis of Resource-Aware Virtualized Services

 Ina Schaefer, Deductive Verification of Software Product Lines

17:45 End of day 1

Thursday, September 11

09:00 Session 3 

 Andrzej Wąsowski, Logic-based Synthesis of Feature Models 

 Ricard Gavaldà, Spectral learning of probabilistic automata and related models

 Amel Bennaceur, The Role of Machine Learning in Achieving Interoperability

10:15 Break

10:45 Session 4 

 Falk Howar, Interface Generation through Static, Dynamic, and Symbolic Analysis

 Ulf Brefeld, Kernels for Automata

11:35 Break

11:50 Time for discussions

13:00 End of day 2

5. Participants
In total, there have been 15 participants at the workshop (3 female, 12 male), six of which are

considered young researchers. By the time of the workshop, participants came from

Germany (6), France (2), Norway (1), Spain (1), Italy (1), Denmark (1), and Finland (1),

United Kingdom (1), and Sweden (1). The following colleagues participated in the workshop.

 ▪ Amel Bennaceur, The Open University [slides]

 ▪ Ulf Brefeld, Technische Universität Darmstadt [slides]

 ▪ Einar Broch Johnsen, University of Oslo [slides]

 ▪ Colin de La Higuera, Université de Nantes [slides]

 ▪ Ricard Gavaldà, Universitat Politècnica de Catalunya [slides]

 ▪ Amaury Habrard, University Jean Monnet of Saint-Etienne [slides]

 ▪ Reiner Hähnle, Technische Universität Darmstadt [slides]

 ▪ Falk Howar, TU Clausthal [slides]

 ▪ Paola Inverdardi, Università degli Studi dell'Aquila [slides]

 ▪ Andreas Maletti, Universität Stuttgart/Universität Leipzig [slides]

 ▪ Karl Meinke, KTH Stockholm [slides]

 ▪ Ina Schaefer, Technische Universität Braunschweig [slides]

 ▪ Bernhard Steffen, Universität Dortmund [slides]

 ▪ Andrzej Wasowski, IT University [slides]

 ▪ Anssi Yli Jyra, University of Helsinki [slides]

https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/amel.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/ulf.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/einar.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/colin.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/ricard.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/amaury.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/reiner.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/falk.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/paola.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/andreas.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/karl.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/ina.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/bernhard.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/andrzej.pdf
https://www.kma.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_KMA/ESF-WS/anssi.pdf

