Scientific challenges and technological limitations in groundbased astronomy 2:

Instrumentation

Colin Cunningham

UK Astronomy Technology Centre, Edinburgh Director, UK Extremely Large Telescope Programme Chair, OPTICON Key Technology Network

Ground-based Instruments

- Technically challenging
 - But can take more risks than in space
- Still a tendency to be conservative on technology adoption

Technical Limitations: Atmosphere

Absorption

Technical Limitations: Atmosphere

Turbulence

Technical Limitations: Atmosphere

OH Emission Lines

Night sky near-IR spectrum P Rousselot et al, Astron. & Astrophys. **354**, 1134 (2000)

Technical Limitations: Instrument size and stability

UKIRT: IRCAM 1 1986

VLT: KMOS 2011

Critical Requirement: 3D and Multi-object spectroscopy

Critical Requirement: 3D and Multi-object spectroscopy

SOLUTIONS

Impact of Adaptive Optics: exoplanets

HR 8799: 140 light years away, 1.5 times the size of our Sun and five times more luminous

Gemini North adaptive optics image shows two of the three confirmed planets • ~7 Jupiter-mass planet orbiting at about 70 AU

• ~10 Jupiter-mass planet orbiting the star at about 40

Keck AO follow-up AO image showing a third planet!

© Gemini & Keck Observatories

Adaptive Optics: The Galactic Centre

Axel Mellinger

Supermassive Black Hole with mass of ~ 3 million Suns

Integral Field Spectroscopy: Image Slicer

Jeremy Allington-Smith

and fore-optics

Multi-Object Spectroscopy

	and the second

. .

Key Technology: Smart Focal Planes

VLT KMOS: Pick-off arms

Object Selection Technologies

Smart Focal planes – fibres, robots, micro-mirror arrays

E-ELT: EAGLE Adaptive Optics

- Multi-Object Adaptive Optics (MOAO)
- Correct small sub-fields across a 5 arcmin field
- Extensive MOAO research in the UK and France

Disruptive Technologies: Detectors

- Generally limited to intensity measurement
- Energy resolution would be great:
 - $R (Eg \lambda \Delta / \lambda) > 100$
- Technology maturity and performance scales inversely with wavelength eg Visible (CCDs), NIR, Far-IR/THz

ESA S-CAM: Superconducting Tunnel Junctions

SCUBA2: Arrays of Transition Edge Superconducting Devices

Disruptive Technologies: Astrophotonics

Fibre v. conventional spectrometer

The fibre array spectrometer has 5x the spectral resolution of the conventional dispersive spectrometer – or is 5x smaller

Robert R. Thomson, Ajoy K. Kar, and Jeremy Allington-Smith Vol. 17, No. 3 / OPTICS EXPRESS

Integrated Spectrometer

Figure 1 (a) Schematic diagram of the first Photonic Integrated Multimode Micro Spectrograph (PIMMS#1). (b) Transmission mode micrograph of the 120 core multicore fiber. The field of view of (b) is $\approx 240 \times 240 \mu m$.

PIMMS: Joss Bland-Hawthorn (Sydney)

Direct-write waveguides: Robert Thomson (Heriot-Watt)

Summary: Scientific challenges

- Direct detection of a "Super Earth"
- Understanding of galaxy formation in the early Universe
 v

• Direct measurement of the expansion rate of the Universe

Summary: Technology Limitations

- Energy-sensitive Detectors
- Real-time computing
- Deformable Mirrors
- OH-line suppression
- Object selection
- Beam combiners in interferometry
- Spectrometer size and hence stability

Multidisciplinary character of KETs

- Cross-links with military, environment and biomedical applications
 - Adaptive optics in the eye
 - Adaptive optics for laser optimisation
 - Adaptive optics for free-space communication
 - Earth observing multi-spectral imaging
 - Skin Cancer detection multi-spectral imaging

European "windows of excellence"

- Adaptive Optics
- Smart Focal Planes
- Image slicers
- Interferometry
- Detectors
- Astrophotonics

Promising/demonstrated mechanisms

- ERA-net: ASTRONET astronomy roadmapping
- FP7 OPTICON Optical and IR Astronomy
 - Joint Research Activities
 - Key Technology Network
- FP7 RADIONET Radio Astronomy
- FP7 ARENA Antarctic Astronomy
- UK Knowledge Transfer Networks
 - Electronics, Sensors and Photonics
- Open Innovation in the UK
 - Daresbury and Harwell Science and Innovation Campuses
 - International Space Innovation Centre (ISIC)
 - Hub & spoke model

Additional Material

Cameras: VISTA

IR Camera for the VISTA Telescope

VISTA telescope: Largest dedicated IR survey in the world – 4m class Location is ESO's Cerro Paranal site in Chile

IR Camera

- At focus of F/3 telescope.
- Field of view 1.65 degrees.
- Up to 7 spectral bands.
- M ~ 20 at Ks wavelength (2 microns) in 15 minute exposures.
- Pixel size : 0.34 arcsecs
- Cold front baffle, cryostat length ~2.5m
 - for low background, to be similar to telescope (self-emissivity, ~4% in Ks-band)

Poster prepared by: IR Camera team, contact A K Ward or M Caldwell

Key Technology: Interferometry

Albert Michelson

The 20-foot beam on top of the 100-inch Hooker Telescope on Mt. Wilson in Southern California.

ESO's VLTI Very Large Telescope Interferometer

Key Technology: waveguide beam combiners

- Planets at earth-like temperatures brightest between ≈ 5 μm and 30 μm
- Use Ultrafast Laser Insciption to enables 3D mid-IR waveguides
- Robert Thomson (Heriot Watt, UK) with Pierre Kern (LAOG, France) and Lucas Labadie (IAC, Spain)

Planar three-telescope beam combiner P. Haguenauer et. al., Proc. SPIE 4006, 1107 (2000)

Four-telescope beam combiner P. Kern, Opt. Express 17, 1976 (2009)

CODEX

Dark Energy accelerating the expansion of the Universe?

- E-ELT can measure acceleration directly, in real time
- Fundamentally different probe
 - dynamical vs geometrical current measurements rely on supernova 'standard

Measuring the redshift drift requires:

- E-ELT
- High-resolution, extremely stable spectrograph: CODEX
- ~20 yr long spectroscopic monitoring campaign.

Frequency Comb

the frequency comb:

