November 29-30, 2010, Brussels, Belgium

Foresight conference on Technology Breakthroughs for (space) scientific progress

Michèle Lavagna

Dipartimento di Ingegneria Aerospaziale Politecnico di Milano-Milano, Italia

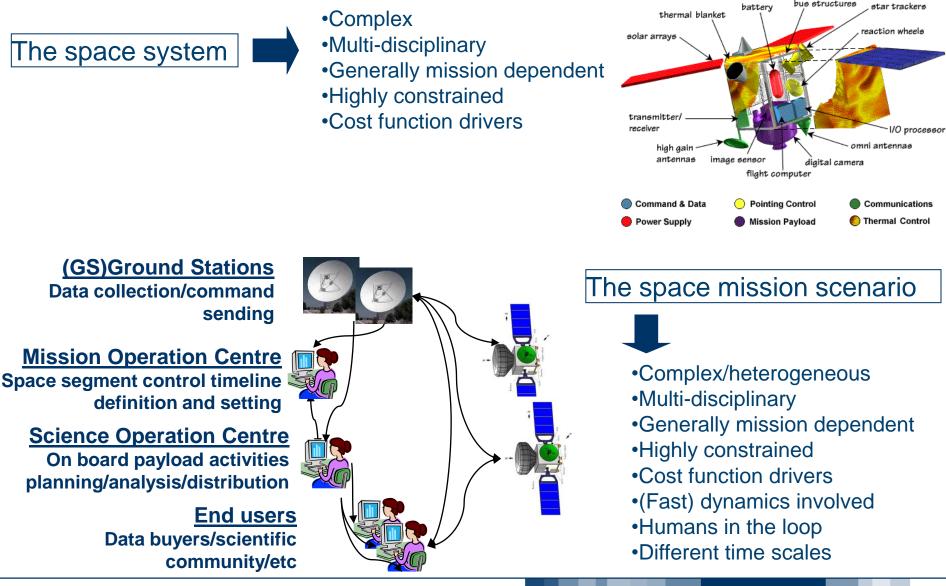
- ✓ Autonomy in space
 - the space mission domain
 - The agents' technology exploitation
- ✓ Final remarks

Autonomy represents a powerful tool to

- → better exploit robotic systems performance
- →enhance robotic systems productivity

Robots need **automation→** to manage and control repeatable low level operations Intelligent robots exploit **autonomy→**to enable low/high level operations in changing/unknown environments

Intelligence entails robots to be provided with <u>reasoning/Decision-Making</u> mechanisms which offer:


•Flexibility: unpredictable events, not pre-designed situations become manageable; failed systems still produce

•Timely response: idleness is avoidable as the system senses and rapidly reacts

•Adaptation: better suited behaviour/control according to the actual sensed environment is achievable; limited resources allocated at best to maximise the robot efficiency

Actors in space: the space mission domain building blocks

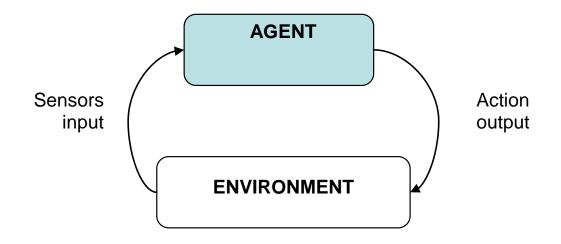
Aerospace Dep.

Reasoning/Decision-Making mechanisms occur during

	features	Decision making on	Goal/needs	
Design phase	 Large variables domain: subsystem sizing/device selection Large net of constraints (temporal/technological/financial,pro grammatics,etc) Multiple clashing design drivers Numerous disciplinary models/tools Numerous experts involved one System Engineer 	 Engineering design Technological development needs Modules/mission sequencing Financing profile 	 Feasible system/mission design and lifecycle definition Team support tool 	

Reasoning/Decision-Making mechanisms occur during

	features	Decision making on	Goal/needs
Mission operation phase	 Features segment dependent/mission dependent Large variables domain: subsystem/system state vector in time Discrete/continuous domains Different operational phases differently constrained Large net of temporal/logical constraints Different and complex resources/resource availability dynamics Both hierarchical and peer-to- peer architectures among actors Uncomplete environmental and behavioural knowledge 	 goal(local/global) Strategies to get the goal Resources/tasks allocation/distribution Action/commands to cope with uncertainties/unpredictable events coping control law Strategies for the basic behaviours coordination 	 Robust and consistent allocation of actions/activities and resources in time Logical/temporal solvers Supports to operators

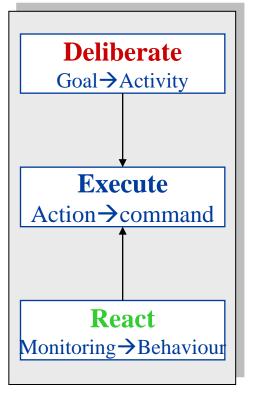

Autonomy in space would support and cope issues for:

- <u>Complex mission scenarios</u>
 Formation flying (Darwin, Lisa, GMES)
 Multimodule missions (ExoMars, Bepicolombo, MSR)
 cooperative heterogeneous entities (Human bases)
- <u>Very far missions</u> → comms delays → mission return degradations and lack of robustness (Asteroids missions, Laplace, Cassini like)
- <u>Complexity in space operations</u> Docking/RV, In space Buildings, human bases-Astronauts supports
- Huge scientific data managements: possible multiple p/l, possible timeliness
 need in elaboration
 - Earth monitoring/protection missions (GMES, Envisat like)
- <u>Mission with harsh and unknown environment</u> Exploration missions to NEO, Mars, Moon, Comets
- Limited on-ground resources scenarios
 Mission control centre bottleneck support
- Anomalies & unpredictable events/opportunities management

"agents are simply computer systems that are capable of autonomous action in order to meet their design objectives" [Wooldridge]

"an agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators" [Russell and Norvig]

Solution→ to shift part of the decision-making processes on-board through Agent paradigms exploitation


In an Artificial Intelligence framework an **agent** enjoys the properties of:

- autonomy → agents operate without the direct intervention of humans or others, and have some kind of control over their actions and internal state;
- •social ability →agents interact with other agents (and possibly humans) via some kind of agent-communication language;
- •reactivity →agents perceive their environment, (which may be the physical world, a user via a graphical user interface, a collection of other agents, etc), and respond in a timely fashion to changes that occur in it;

• pro-activeness → agents do not simply act in response to their environment, they are able to exhibit goal-directed behaviour by taking the initiative

DELIBERATIVE LEVEL

Produces the high level decisions at system level (goals);

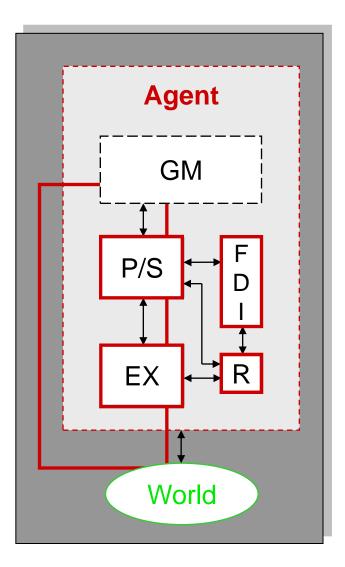
•Deliberates activities exploited to obtain a long-term control strategy to satisfy high level goals according to the system/environment physical constraints

States for failures occurrence and recovers

INTERMEDIATE LEVEL

•Turns actions into real commands to the hw coping with possible uncertainties rising from unknown and dynamic environment

REACTIVE LEVEL


•Monitors the actual system/environment conditions and identifies – within the short incoming time span –the set of commands consistent with them

- Goal Management
- Planning/Scheduling
- Execution
- Failure Detection & Identification/Reconfiguration

Partial architectures/paradigms can be selected depending on the applicative scenario

Deliberative: based on the symbolic reasoning needs a world representation
 Reactive: no knowledge of the world is needed
 Hybrid: focused on merging the benefits of both the deliberative and reactive architectures

POLITECNICO DI MILANO

Aerospace Dep.

Goal generation

- Aim: to identify the best/most convenient particular state of the world to satisfy given criteria
- Control variables: system
 state/environment
- Constraints: feasibility

Goal generation is a Decision Making/Opt problem on system states/resources

Scheduling

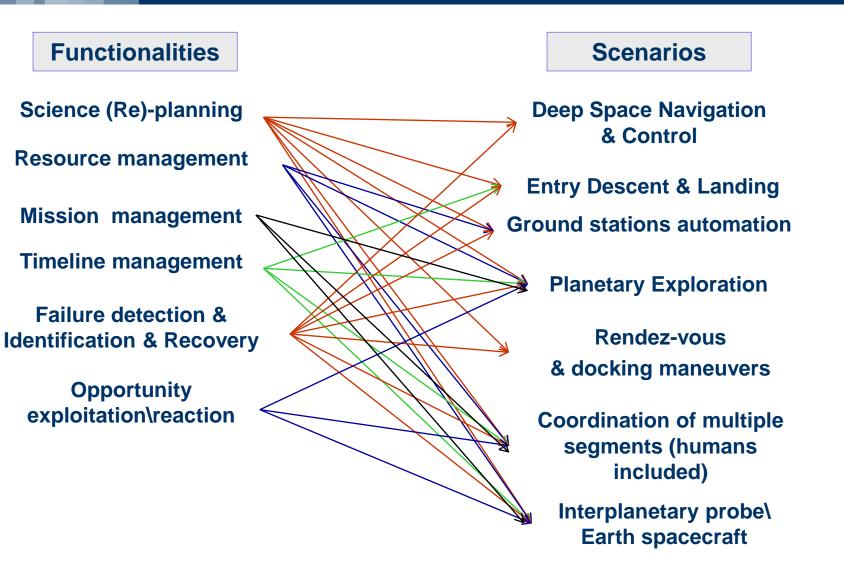
- Aim: To select the feasible plan that satisfies constraints related with time
- Control variables: Timelines of activities
- Constraints: Resource limitation and temporal constraints

Scheduling deals with allocation in time and resources exploitation

Planning

- Aim: to reach a particular state of the world, starting from the current one
- Control variables: actions to be sequenced (i.e., a plan) to achieve the objectives
- Constraints: pre, post or during conditions among selected activities in the plan

Planning deals with system states, and their changes & logical dependencies


Failure Detection/identification

- Aim: To classify deviation as failures/to identify faulty units
- Control variables: Timelines of activities
- Constraints: functional dependencies in the system

FDI deals with modelling robustness and abductive reasoning

AGENT in space for AUTONOMY

Pro-activeness

Deliberative

Top-down reasoning

- \rightarrow large problems/largely constrained managed
- \rightarrow wide time horizon managed
- → large knowledge to be uploaded (e.g.model needed for resource propagation)

The deliberative paradigm is greatly exploited to get rid of *decision making*

MCDM/MADM

CSP

COP

Pro's

Forecasting skills

Methods

 Decision making supported by a global point of view

Cont's

- Problem solving limited to situations included in the domain of experience
- No reactive behaviour to environment exists

Soft computing/heuristics Global optimization/MDO Graph theory Logical reasoning

Reactivity

Bottom-up reasoning

- \rightarrow actions focused on perception
- \rightarrow very short time horizon managed
- \rightarrow very limited knowledge required

Pro's

- adaptive to the system current status
- robustness+flexibility+time
- learning from experience capabilities

Methods

MCDM/MADM

Cont's

Reactive

- lack of global vision in time→local point of view
- strategies to be defined for complex reasoning

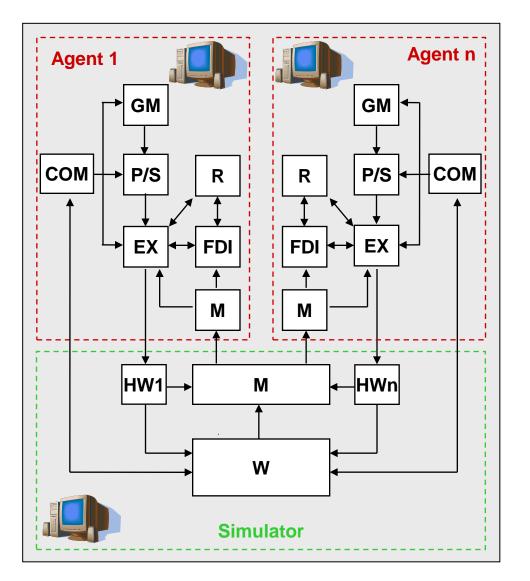
Soft computing/heuristics Global optimization/MDO Behaviour based reasoning

Architectural aspects\General scenarios	Reactive	Deliberative	Hybrid
Known environment	Useful if no P/S functions are required (or simple tasks/goals have been implemented)	Correct choice in P/S functions are required	Maybe too much complex for this case
Unknown environmentWell suited even it can involve a huge list of behaviours in case of very complex and unknown environmentNot suited because planning is (rather) impossible and not effectiveaccording to flexibility and of the agent environment		It could be used according to the flexibility and robustness of the agent towards the environmental uncertainties	
Timeliness required	and the actions to be performed, and the goals to be accomplished are extremely simple		Hybrid agent is well suited because guarantees short-term execution and long-term deliberation
Long term vision required	Not applicable	Correct choice agent has long deliberative fac	
Autonomy level	Low level of autonomy (i.e. directly controlled or semi-controlled robot) or fail-safe functions	High level of autonomy, but with a perfect knowledge of the world (ideal case).	High level of autonomy in a very complex situation and real environment

Autonomy in space: levels definition

From the European ECSS Space Segment Operability Standard : on-board autonomy management addresses all aspects of on-board autonomous functions that provide the space segment with the capability to

continue mission operations and to survive critical situations without relying on ground segment intervention


Level	Description	Functions	
E1	Mission execution under ground control; limited onboard capability for safety issues	Real-time control from ground for nominal operations Execution of time-tagged commands for safety issues	
E2	Execution of pre-planned, ground-defined, mission operations	Capability to store time-based commands in an on-board scheduler	
E3	Execution of adaptive mission operations on-board	Event-based autonomous operations Execution of on-board operations control procedures	Agents
E4	Execution of goal-oriented missio operations on-board	nGoal-oriented mission re-planning	

Autonomy levels and criticalities

Courtesy of ESA-ECSS

A multi-agent system is one that consists of a number of agents, which *interact* with one-another.

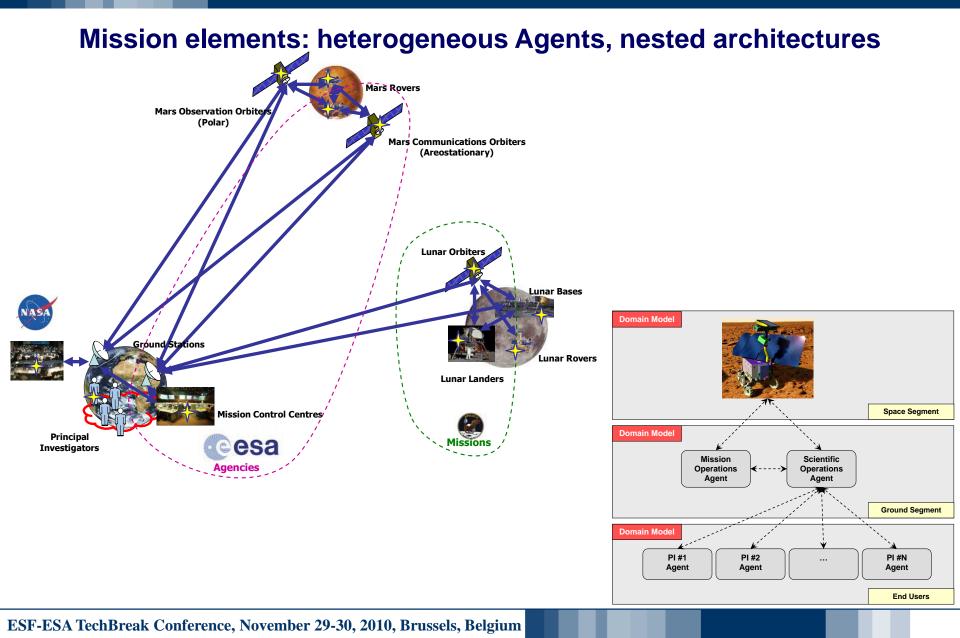
To successfully interact, they will require the ability to:

All those functionalities ask for a **communication paradigm** to be defined to let information be shared among the team units

•The **Physical Distribution** implies the deployment of a MAS architecture across multiple physically distinct platforms

•the **Functional Distribution** is such that, a MAS architecture is used to perform the different functions required by a single system, by dedicating an agent to each function or task.

Architectural aspects\General scenarios	Communication	Auction & Negotiation	Organisation
Physical distribution	Extremely important for reaching coordination. Mean of communications to be carefully evaluated (radio- link, internet/ethernet,).	Negotiation becomes relevant in case of private resources to be used by other agents or by the agency, or in case of instruments to be physically shared, otherwise distribution is not demanding.	The organization pattern is extremely important and could have an added value in this case. Physical distribution helps in choose the pattern (i.e.: mimicking the real-world structure of the agency)
Logical distribution	Communication protocols must be established (in general they are the interfaces among the logical units of the MAS), but they are not demanding because in general there is a unique physical entity.	conflict among each agents, or they could use the same	Organisation in general maps the logical relationships among the functions/agents, thus keeping the hierarchies and the dependencies.


The Multiple Agent's architecture comparison

Architectural aspects\General scenarios	Communication	Auction & Negotiation	Organisation
Limited resources	Extremely relevant in case of a limited number of messages or a limited information flow between the agents; otherwise communication protocols and languages are only functional for reaching the agreement on shared resources.	Extremely relevant issue for the optimization of the limited resources.	The choice of the good MAS pattern could help in optimizing the usage of limited resources or in reaching coordination.
Unlimited resources	Not relevant issue	Negotiation and auction may be useless because resources could be freely exploited; coordination is always relevant when two or more agents execute different actions at the same time or when there are other constraints.	Organization could be extremely important with unlimited resources because could give an added value in the reaching of the common goal (e.g.: could be a pathfinder for the limited resources case).

Formation Flying/Swarms

of units N=[2;100] thight control on relative dynamics \rightarrow hard constraint \rightarrow on-board autonomy needed

In orbit missions: EO-1+Landsat-7; GRACE(DLR); LISA (ESA); SMART2 (ESA); DARWIN(ESA); Proba 3;Terrestrial Planet Finder(NASA);ST5 Nanosat(NASA)

<u>Constraints</u>: hard→Formation geometry/relative dynamics

 \rightarrow available local/shared on board resources

 \rightarrow real-time

→ common high level goals (scientific data collection, maneuvers, etc)

FF autonomous management: centralized (hub) ← → distributed

Requisites: flexibility/robustness

<u>Challenges</u>: local ↔local consistency ⇒negotiation, comms strategies, knowledge bases management and distribution, very limited computational resources

Ground station nets

1 Mission Control Centre → N Ground stations devoted to:
 Tracking/Ranging orbiting systems
 Telemetry/data Rx

Telecommands Tx

ESTRACK: Darmstadt (MOC), 7 Ground stations (Redu 10 Antennas, Villatranca 8)

<u>Constraints</u>: hard→orbiting systems/antennas relative dynamicss (visibility)

→shared technical/financial resources

 \rightarrow high dimension problem

 \rightarrow on-board functional constraints

<u>Autonomous/smart management</u>: centralized/disributed (hetero/homo-geneous nets)

Requisites: flexibility/robustness possible human interaction

Team of Robots

Robots: rover flottillas/UAV from 10 to 100

Scenario: planetary exploration / Location setting for human habitat→autonomy

Elements: heterogeneous/homogeneous

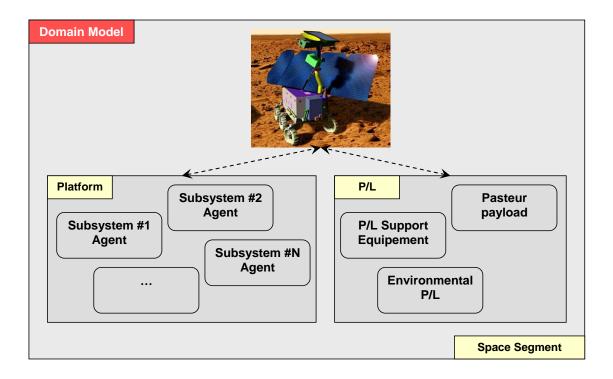
<u>Constraints</u>: →common/coordinated goals/tasks

- \rightarrow local/shared resources
- \rightarrow relative dynamics

<u>Autonomous management</u>: centralized ← → distributed; hierarchical/peer-to-peer

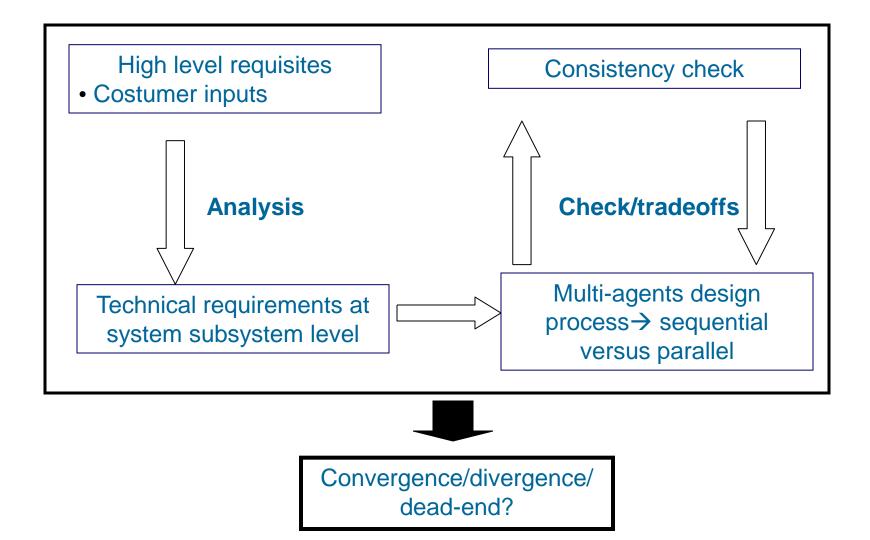
Requisites: flexibility/robustness/reactivity

Issues: unknown environment; comms management; possible human interaction; learning needed


Single Vehicle

Scenario: planetary surface vehicle exploration/satellite Agents: cluster of on-board subsystems/cluster of on board functionalities Goal: robustness/flexibility increase; system product return increase Constraints: →system functional model → shared/local resources Interaction strategy: competitivw/collaborative Issues: comms; interfaces; architecture selection

Single Vehicle, Multiple Agents



Design phase

- Space System: orbiter/lander/robot etc
- **Scenario:** Concurrent Engineering Process
- <u>Agents:</u> Subsystem discipline
- <u>**Constraints</u>:** \rightarrow design relationships inter/intra-disciplines</u>
 - → temporal/financial/technological resources
- Architecture/Interaction:
- $centralized \leftarrow \rightarrow distributed, competitive \leftarrow \rightarrow collaborative$
- **Requisites:** robustness/reactivity/flexibility
- **Issues**: Strongly coupled design among disciplines; human behaviour in decision making to be possibly modelled

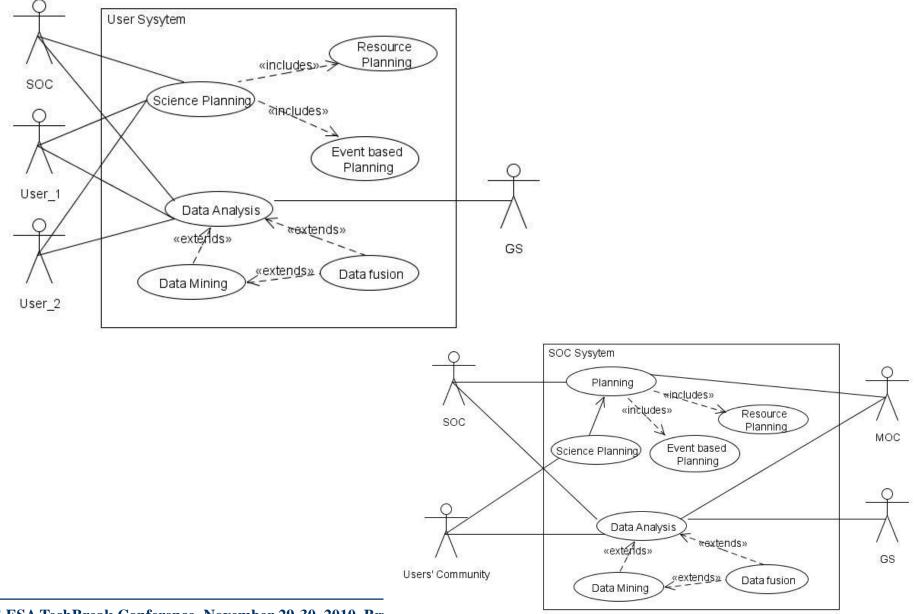
	Current status EU	Current status US	notes	
Goal Generation	3	7 very limited functionalities in scientific location for Mars rover selection	scientific rs rover	
Planning	4-5 demonstration limited to p/l activities sequencing	7	Well-proven algorithms Industrial applications	
Scheduling	3-4	7	Main challenge represented by the type of resource to be managed	
FDI 3-4 7		Main challenge represented by the modelling limitations		
Reactive agent	3	4		
Hybrid agent	ybrid agent 3-4 7 representation management		Challenge: system harmonic representation/interface management/execution module	
MAS	3	3		

- 1. To test and validate each agent's component with a real mission sw simulator
- 2. To test and validate each agent's component with a real mission hw in the loop
- 3. To test and validate each agent's component on ground, run as a back-up of the mission management in nominal and off-nominal scenarios
- 4. To test and validate the whole hybrid architecture with a real mission hw in the loop
- 5. To test and validate fly as an experiment on board either partial or the whole agent tool

 Within the space domain to study and apply autonomy and distribution is an obliged step to answer mission goals tighter and more challenging

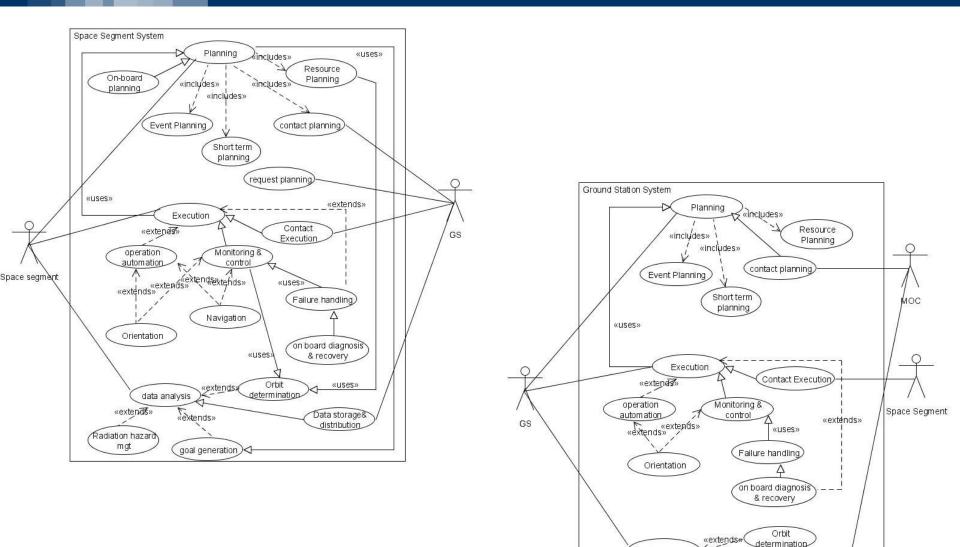
•Single Agent architectures seems to be the well-suited tool especially within the operative phases to answer flexibility, feasibility and robustness requirements

•Multiple Agents Systems may answer a wide class of issues and bottlenecks the space engineering community is facing; this technology, however, post further challenges in the communication management, the knowledge sharing and the common constraints resource management and need the single agent technology to be firstly exploited and validated in the space activities framework.



backup

Earth Observation Scenario


POLITECNICO DI MILANO

Aerospace Dep.

ESF-ESA TechBreak Conference, November 29-30, 2010, Bri

Earth Observation Scenario

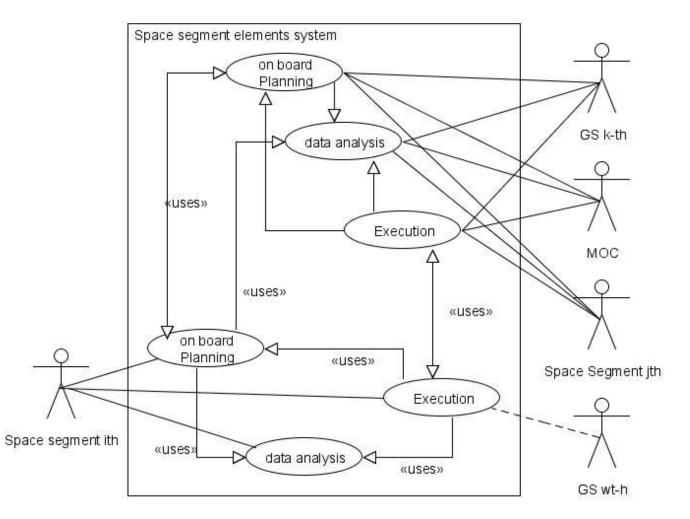
data analysis

«Extends»

Data fusion

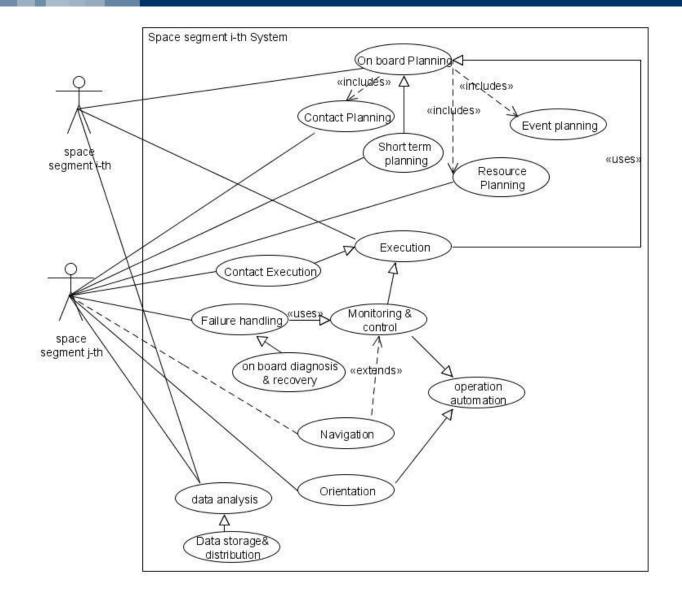
Data storage& ______distribution____

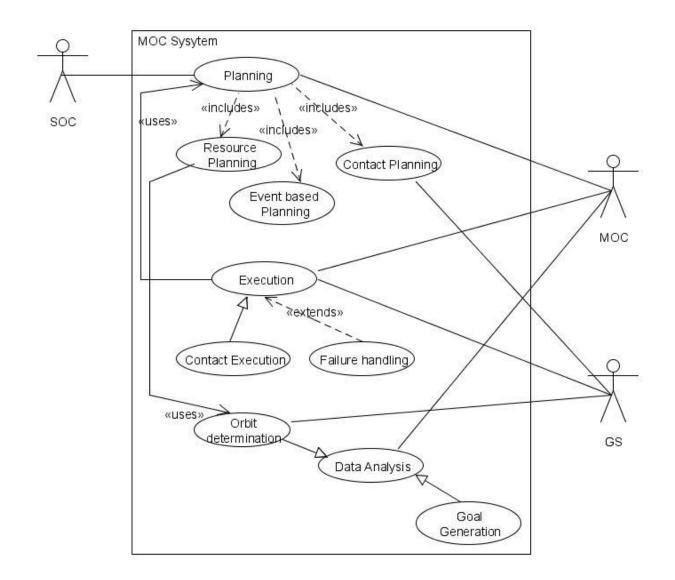
SOC

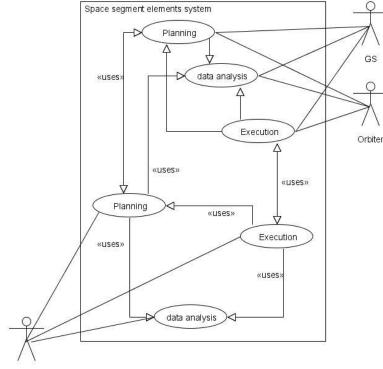

«extends»

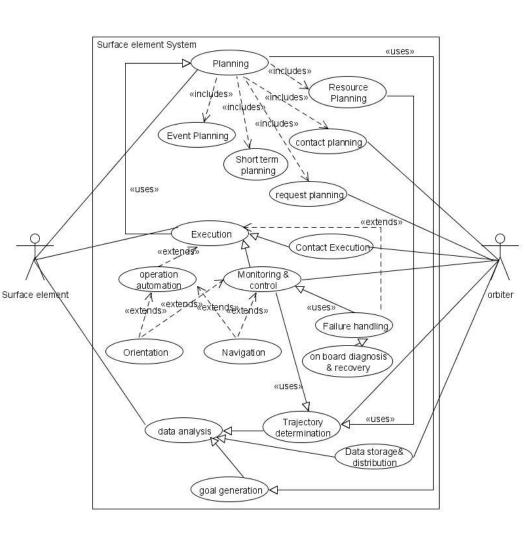
Radiation hazard

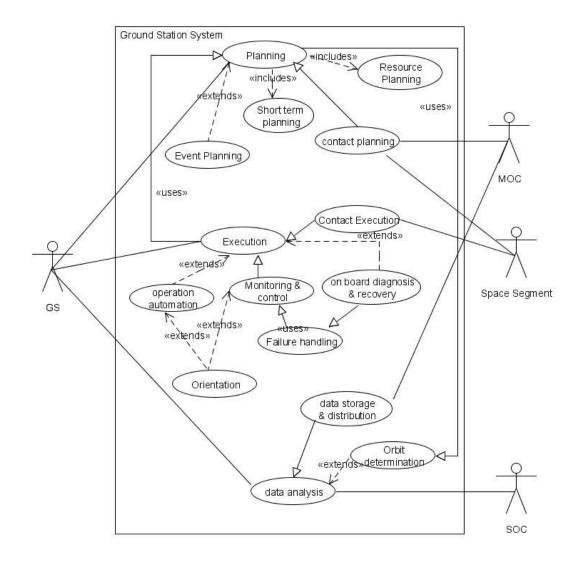
mgt

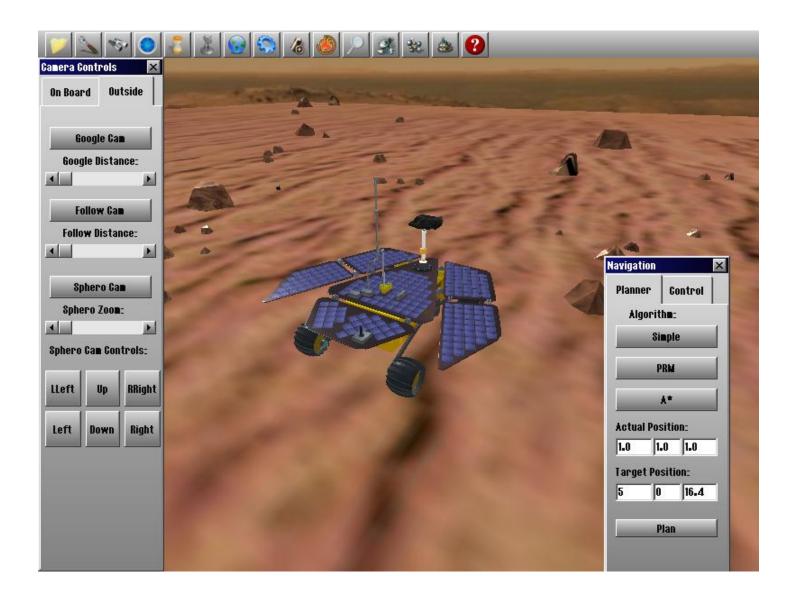

Formation Flying-multiple in space segments

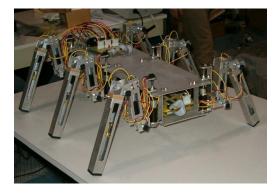

Formation Flying-multiple in space segments










Goal→testbeds for testing and tuning sw and hw technologies

Planetary exploration

CASIMIRO

Six independent wheels with Rocker-Boogie Suspension System
Pentium Class On Board CPU
50 W solar Array + Li-Ion Battery
2 Stereo Cameras
25 Kg and 70 cm (100 cm SA)
50 W Peak Power (35 W Avg.)

NEMESYS

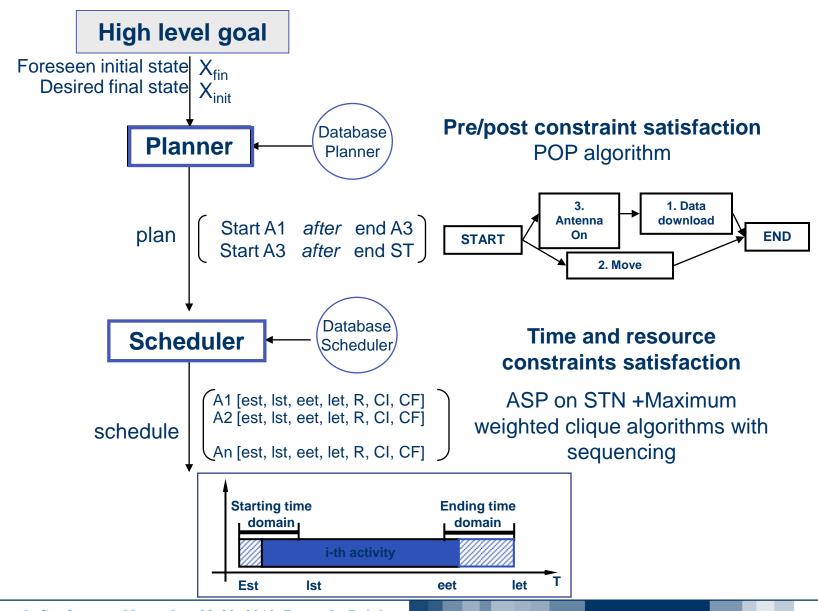
Orbiting systems

•3DOF

- •Sensors: monocamera; IMU platform
- Actuators: 8 fans
- •Requested power: 60 W (Li-Ion Battery)

•Mass: 11 kg

•PCU: PC104+


•Six legs, 18 DOF

- •Pentium IV Class Off-Board CPU
- •Off-Board Power Supply
- No contact Sensors
- •Both CTRNN Neural Network and PID controller
- •7 kg and 60 cm
- •30 W Peak Power (19 W Avg.)

	Algorithms/approaches	Notes
Planning	 the state-space planning the Partially Ordered Planning (POP) where the solution is searched into the plan-space. The graph theory Hierarchical Task Network (HTN) Decision-theoretic planning, using mainly Markov Decision Processes (MDPs); Case-based or Explanation-based planning. 	 Path planning Operative system designs Well-proven algorithm
Scheduling	 •CSP→STN •COP •Constructive search •Repair methods 	 Commodities due time Plants production scheduling PC kernel activity scheduling Depending on the resource type algorithms are closed or heuristic based
FDI		Search space limited by the designer
Goal Generation	•MADM/MDO methods •Belief/Desires/Intention •Motivated agents	

Deliberative Agent:Planning\Scheduling

POLITECNICO DI MILANO

Aerospace Dep.