Statement for Techbreak

Christian Oehr Fraunhofer Institute for Interfacial Engineering and Biotechnology

Materials and their interfaces

- Synthesis
- **Functionalisation**
- Coating
- Characterization
- Application

Wovens/ non-wovens 0.5 – 10 m²/g monofil, multifil $0.01 - 0.2 \text{ m}^2/\text{g}$ defined topology

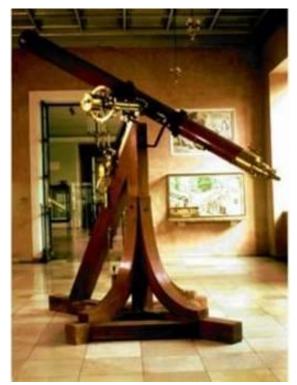
Nanoparticles 50 – 150 m²/g Membranes 0.5 – 60 m²/g different geometries

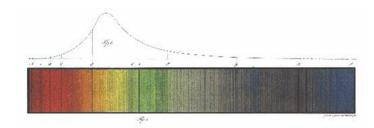
Nanotubes, nanofibers 400 – 2000 m²/g SWNT, MWNT

Films

Joseph von Fraunhofer (1787 - 1826)

Researcher


discovery of »Fraunhofer Lines« in the sun spectrum


Inventor

new methods of lens processing

Entrepreneur

head of royal glass factory

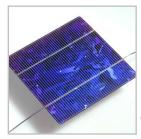
Frontline themes - Tomorrow's opportunities

Assisted Personal Health The electronic guardian angel

Decentralized integrated water management **Saving precious water**

Bio-functional surfaces High tech with a sensitive skin

Energy-efficient modernization More than just a facade


Food chain management Always fresh on the table

Solid-state light sources Bright and efficient illumination

Frontline themes - Tomorrow's opportunities

Energy storage in power grids **Solar and wind-generated**

electricity on demand

Visual analytics A clear overview in the data jungle

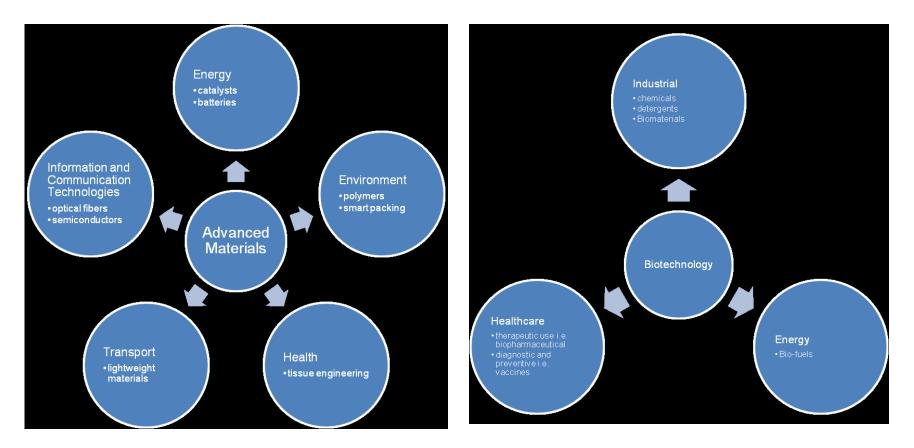
Green powertrain technologies **New impetus for eco-friendly cars**

Hybrid material structures Combining the best of the best

Energy self-sufficient sensors and sensor networks

Vigilant clusters

Integrated localization technology **On the move – quick and safe**

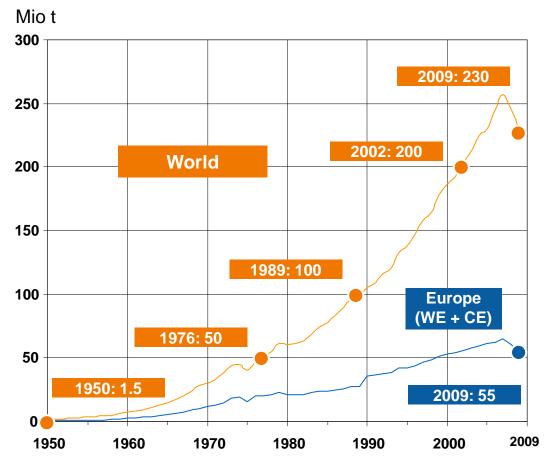

Shift of topics in technology forecast (according VDI Meta-Study, Sept.2010)

2004		2006		2010
ICT		Sustainability & Environment	1	Energy
Electronics		ICT		Sustainability & Environment
Materials Technology		Biotechnology & Life Sciences		Health & Food
Biotechnology & Life Sciences		Health (incl. med. technol.) & Food	/	ICT
Health (incl. med. technol.) & Food		Energy	/	Transport and Traffic Logistics
Production and process techniques	Λ	Production and process techniques		Biotechnology & Life Sciences
Energy		Materials Technology		Defense and Security
Nano- and Microsystems Technol.		Nano- and Microsystems technol.		Buildings & Living
Transport and Traffic Logistics		Transport and Traffic Logistics		Production and process techniques
Defense and Security	1	Aerospace		Materials Technology
Sustainability & Environment		Buildings & Living		Nano- and Microsystems technol.
Aerospace	/	Defense and Security		Aerospace
Ocean engineering and navigation		Electronics		Ocean engineering and navigation
Services		Optical technologies		Optical technologies
Optical technologies		Services		Services
Buildings & Living		Sustainability and environment		Electronics

Countries: USA, UK, France, Spain, India, Japan

Goals in Material Science and Technology

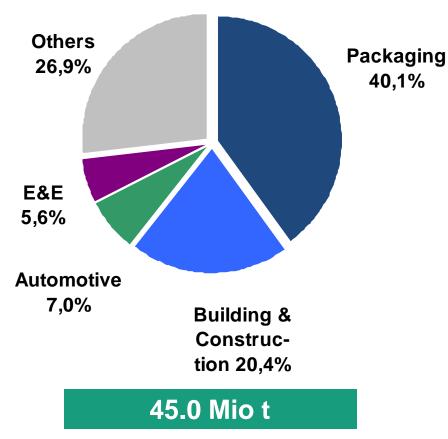
ESPI Report, June 2010


Advanced Materials

- Metals
- Ceramics
- Polymers
- Composites

Plastics – a success story Plastics Production 1950 - 2009

Includes Thermoplastics, Polyurethanes, Thermosets, Elastomers, Adhesives, Coatings and Sealants and PP-Fibers. Not included PET-, PA- and Polyacryl-Fibers


- Plastics are a global success story
- **Continuous growth** for more than 50 years
- Plastics production ramped up from 1.5 Mio t in 1950 to 230 Mio t in 2009
- Plastics Production be gripped by the Economic Crises by end of 2008 and in 2009

Compound Annual Growth Rate (CAGR) is **about 8,7%**

Europe 2009 Plastics demand* by market segments

* EU27+N, CH incl. Other Plastics (~5.4 Mio t)

- Packaging by far represents the largest end-use market
- Building & Construction, Automotive and E & E follow

• Others

includes consumer, household, appliances, furniture, agriculture, medical, etc.

 Over the last years the share of end-use applications remained fairly stable

Drivers for plastics use

Low density

Copper	8.90 g/cm ³		
Steel	7.80 g/cm ³	PVC	1.40 g/cm ³
Aluminium	2.70 g/cm ³	PE	0.96 g/cm ³

Tailor-made properties

scratch resistant - impact resistant - galvanizable - oil resistant - stiff - flexible heat resistant - sterilisable - insulating - conducting - corrosion resistant biologically degradable - inflammable - non-inflammable - transparent intransparent...

Easy processability

low energy and little investment, but skilled and qualified staff

Good price/performance relation

Energy efficiency

Challenges for plastics in application

Temperature Stability

energy engineering

Conductivity and Transparency

- thin film photovoltaics
- replacement for ITO

UV Stability

lots of efforts with polycarbonate (automotive)

Permeability

transparent barriers for

food insulation panels flex. Photovoltaics flex. OLEDs

Coatings are needed for

Thin films (micro...)

Protection

against mechanical stress scratch and wear resistance, hardness against chemical attack corrosion and solvent resistance

• Specified transport properties

Optical transport	lenses, mirrors, waveguides
etc	
Electrical transport	conductive and dielectric layers
etc	
Material transport	
Material specific permeation	separation membranes
permeation $\rightarrow 0$	barrier layers

Material transport out of layered systems

Defined release

(medicament) dosage systems

Surface Funtionalisation is needed for

Ultra-thin films (nano...)

- Tailored surface energy (wettability <-> water repellency) (solid-liquid-gaseous)
- Tailored contact between polymers and other phases static: solid-solid, (Adhesion) <u>dynamic</u>: solid-(liquid)-solid (Tribology)
- Interaction with biological systems (binding and adsorption of biomolecules, biocompatible or bioactive surfaces)
- Separation membranes and ion-exchange materials
- Basic research and analytical methods

Example: light weighting in transportation

Innovative products make it possible to cut CO₂ emissions and energy consumption:

- On average only 12-15% of modern cars are now made from plastics
- The resulting weight savings reduce fuel consumption by 750 liters for the 150, 000 km life of the average car
- Oil consumption for European car owners is reduced by 12 Mtonnes a year and CO2 emissions are reduced by 30 Mtonnes.

Top 10 GHG reducing products of the Chemical Industry

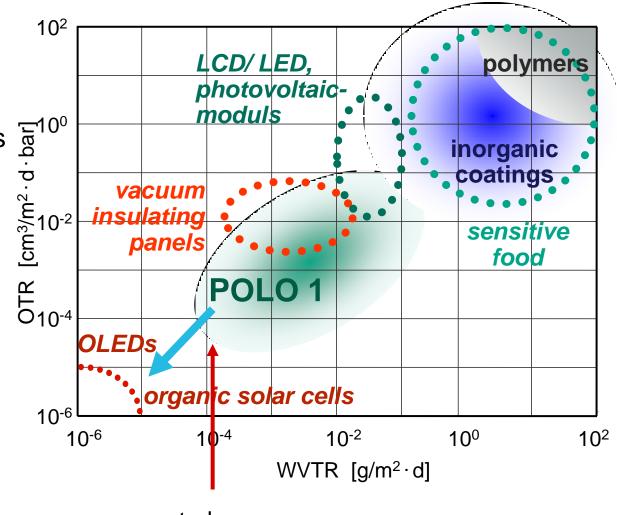
Thermal insulation of buildings Fertilizers and crop protection Efficient lighting Plastic packaging Anti-fouling coatings for ships Man made fibres Plastics in cars Low temperature laundry detergents Fuel additives, lubrificators Plastic piping

Example: packaging, barriers for

- Food
- Vacuum panels
- Photovoltaics
- Org. LEDs

Other properties by coating: enhanced emptying, anti counterfeiting, integr. sensors and O_2 scavengers etc.

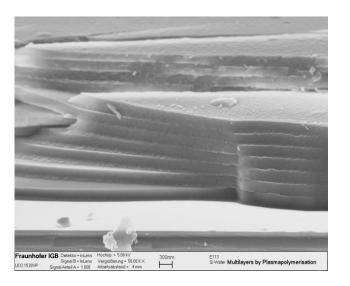
State of the Art


Barriers

Performance of polymers and film systems (shaped regions)

wanted barrier values for special products (doted areas)

POLO 1: PET-Al₂O₃-ORMOCER®



today

Plasmadeposited multilayer

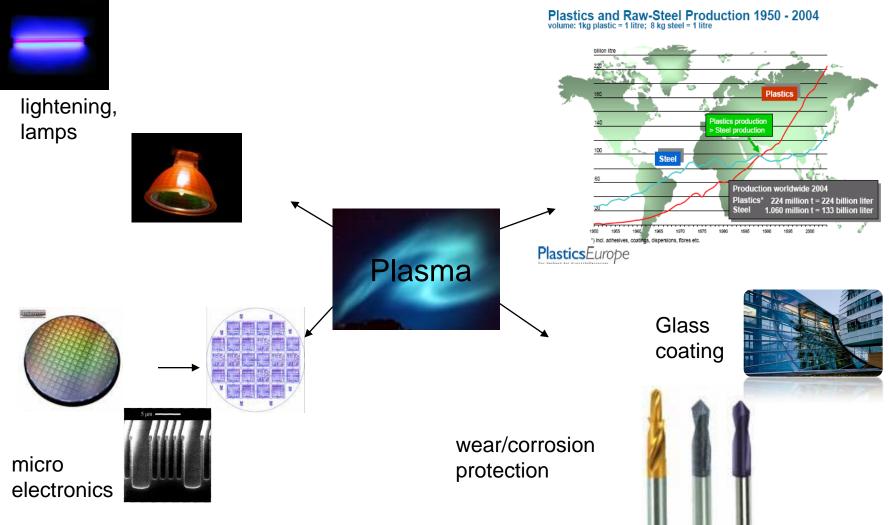
- for barriers (div. application) e.g.for OLEDs
- liquid and gas phase deposition of stacks of inorganic and organic layers
- "Pilot Production of Ultrabarrier Substrate for Flexible Displays" (Vitex Systems, mixed process)

Problem: incremental success in barrier properties/measurements reliability Solution: highly sensitive IR-Spectrometer?

Fraunhofer

Composites

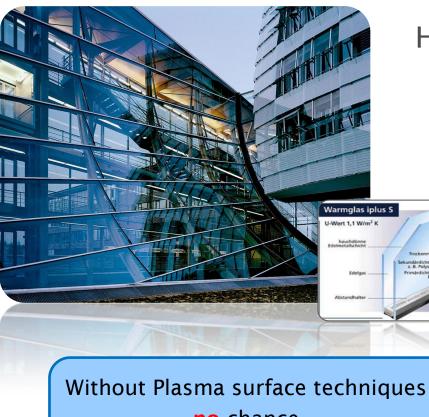
- New materials for gas separation (high temperature) (problem: coefficient of thermal expansion)
 O₂, CO/H₂ (chemical process engineering)
 CO₂ separation from biogas etc
- New materials for water treatment, reverse osmosis and osmosis power plants
- New materials for energy conversion (photovoltaic thermo-voltaic etc.), energy distribution and efficient use.
- Strategies against corrosion may differ in space and on ground application (Self healing corrosion protection?)



Thin film deposition, methods highly recommended

- Sol-Gel Deposition
- Printing
- Gasphase Processes (Plasma enhanced)

Development of plasma technology

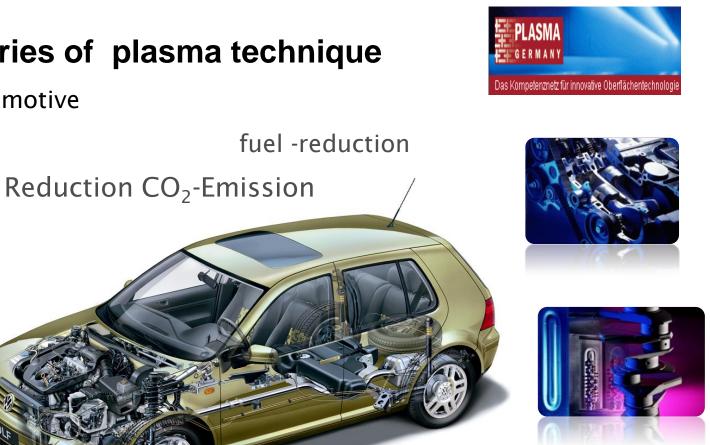


Success stories of Plasma technique

example 1: coating of architecture glass

no chance, To fullfill the German Energy-saving-decree 2002 Switchable sun protection

Selfcleaning


Heat insulation

Permanent sun protection

Success stories of plasma technique

example 2: Automotive

IGB Quellen: Robert Bosch | Volkswagen | Fraunhofer IST

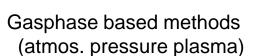
Success stories of plasma techniques to be expected

Flexible cells on soils

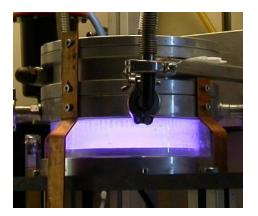
Growth rates of 15 - 30 %

Integration in Gebäude-Architektur High efficiency

© Fraunhofer IGB

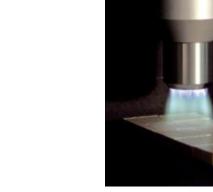


Quellen: Schott Solar | Applied Materials | first solar | DBmobil

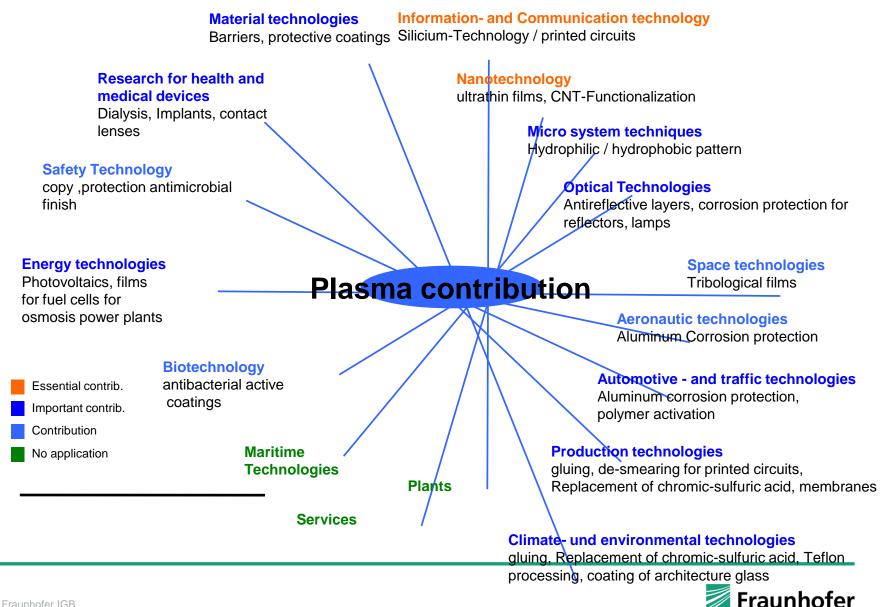

Ressource efficiency

Surface treatment by:

Liquid based methods


Gasphase based methods (low pressure plasma)

"solvent": vacuum, carrier gas 2,7 10¹⁵ molecules cm⁻³ (working pressure: 0.1 mbar)



"solvent": air, N_2 , Ar, He s cm⁻³ 2,7 10¹⁹ molecules cm⁻³

solvent: e.g. H₂O 3,3 10²² molecules cm⁻³

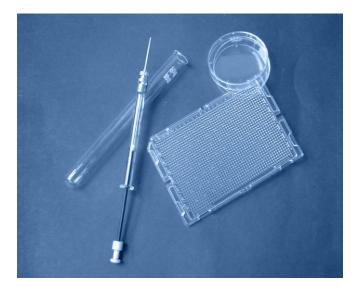
BMBF-identified topics for Innovation in the future

Biotechnology and Healthcare

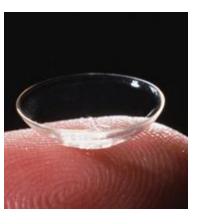
- Materials that do not disturb biological functions
- Materials that trigger biological response
- Minimized unspecific protein adsorption
- Replacement for collagen as syn. Scaffold
- Replacement of PVC ?
- Prologation of implant function
- Materials with sustainable antimicrobial activity for temporarily use and long-term implants

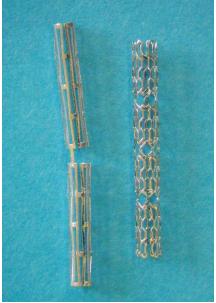
Interface between Technical Materials and Biology

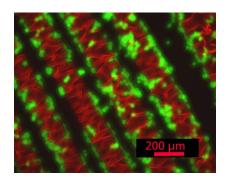
Interface and	enhanced Interaction	decreased Interaction
Proteins and other biological active molecules	Specific binding of bio- molecule >> diagnostics e.g. new pyrogene test, heterogeneous bio-catalysis, specific scavengers	Decreased protein adsorption >> minimized fouling
Microbes	Immobilized Microbes/ plasma sterilization	bacteriophobic, bacteriostatic, bacteriozidic surfaces
Mammalian cells	Growing and proliferation of cells for artificial organs and test-kits	minimizing problems with temporary Implants, minimized restenosis etc.

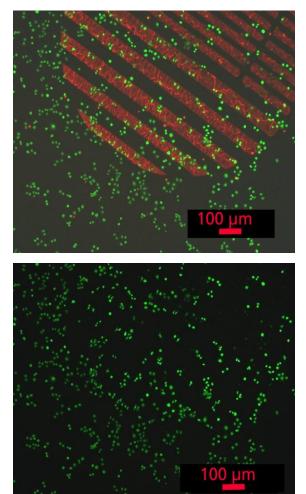

Thin Plasma Films deposited for

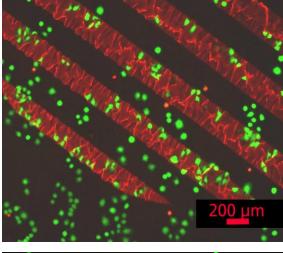
Diagnostics

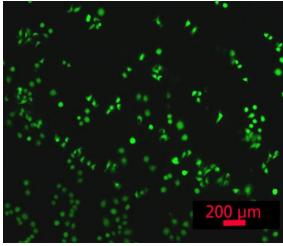

and


Therapy

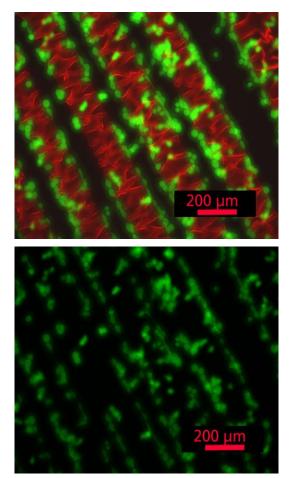

Replacement of Glass in Medicine and Pharmacy

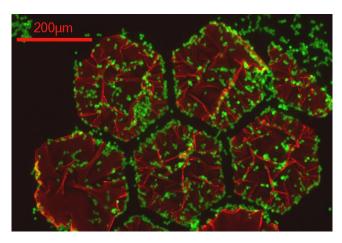


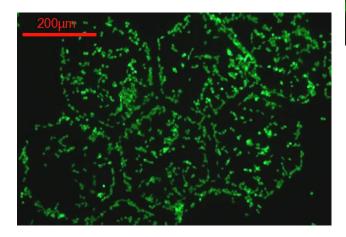


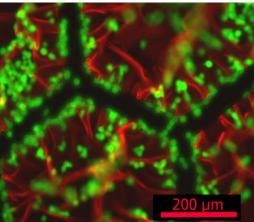


Human rhabdomyosarcoma cells: dyed with ethidium bromide (red) and calcein (green)

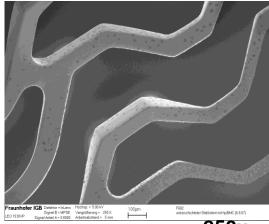


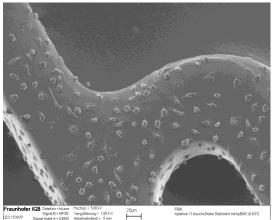


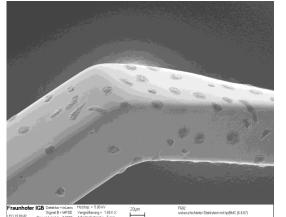




Rat insulinoma cells (Pancreas): dyed with ethidium bromide (red) and FDA (green)




Progenitor endothelial growth on coated stents after two days of cultivation



1000x

1000x

raunhofer IGB F681 Parylen beschichteter Stahlstent mit hpBMC (6.8.07)

+Parylene +Aptamer

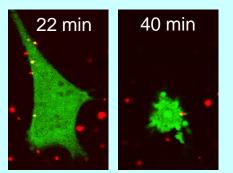
hsp. = 5.00 k

ng= 4.00 KX 2µm

+Parylene

Not coated

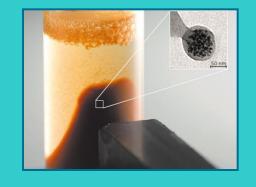
4000x


NANOCYTES®-Applications

Life Sciences

Particle based Biochips

TNF-NANOCYTES®



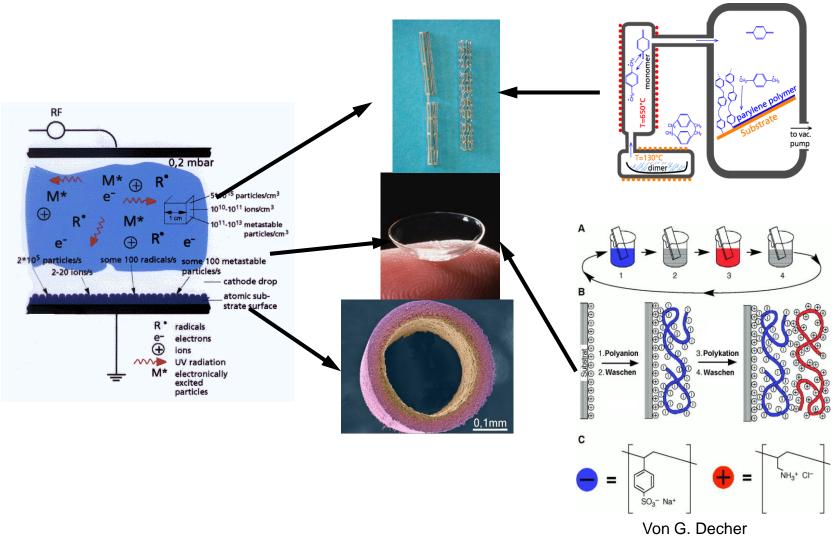
Functional materials

MIP-Membrane

Magnetit-MIP

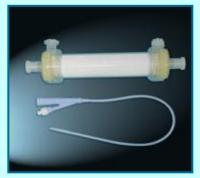
Consumer

Enzyme immobilisation



Tailored inks for ink-jet

Competitive surface treatment methods

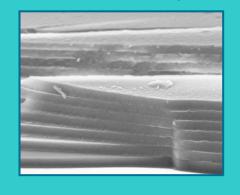


Application – plasma based products

Life Sciences

Medical devices

Sterilisation / Desinfection



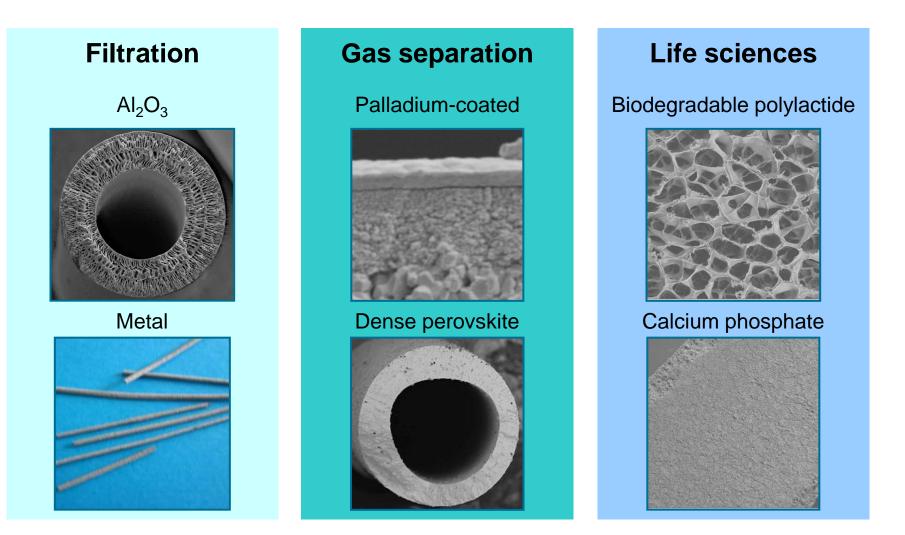
Protective Layers

scratch-/wear protection

Barrier coatings

Functional films

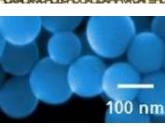
wetting



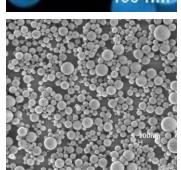
Friction reduction

Types and applications of capillary membranes

Using PET instead of glass for beverage packaging


Fraunhofer

Particle based systems and formulation



tailored core-shell particles

- Drug Delivery, Drug Release & Drug Targeting
- Biodegradible und biocompatible particles
- Encapsulation of drugs
- Organic and inorganic particle core with functional shell

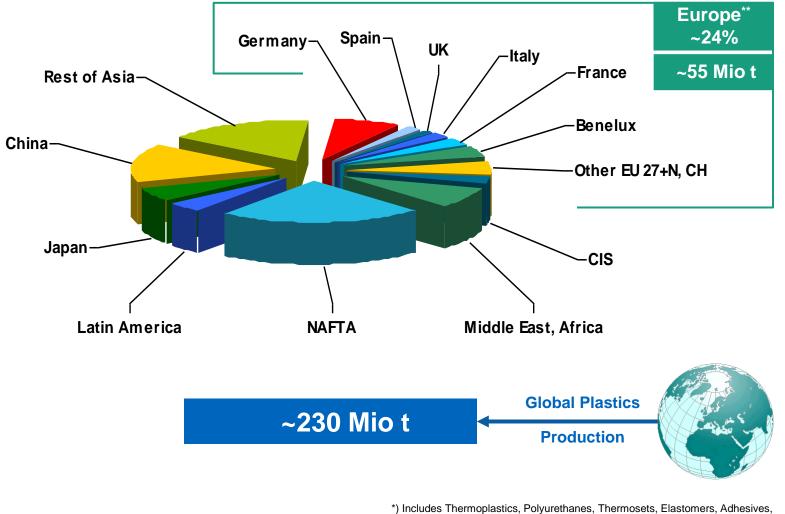
Formulation of

- Drug-Matrix systems
- Tailored inks for Micro-Printing
- Molecular imprinted polymers (MIP) for synthetic receptors
 - Sensoric and selective Absorption
 - Enrichment of of components

Some characteristics of liquid phase and gas phase with respector to surface treatment

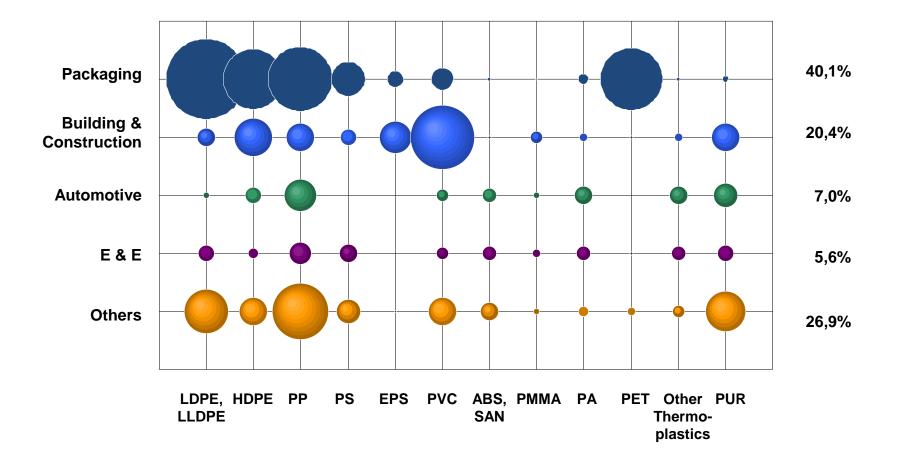
Liquid phase

- Material consuming
- Conc. of reactive species:10⁻² 20%
- Diff. coeff. ca. 10⁻⁵ cm²/s (e.g. Albumin 6*10⁻⁷ cm²/s)
- Geometric restrictions (e.g. due to capillary depression)


Gas phase

- 10⁶ less material consuming
- Conc. of reactive species:10⁻⁵-50% (in-situ produced)
- Diff. coeff. ca. 10⁻¹ to 1 cm²/s at atm. press.) (prop. to mean free path)
- Geometric restrictions prop. to mean free path (relat. to pressure)

Plastics production World 2009

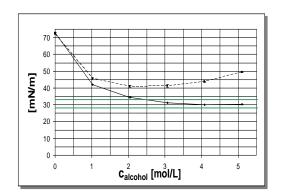

Coatings and Sealants and PP-Fibers. Not included PET-, PA- and Polyacryl-Fibers

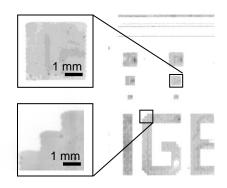
**) EU27 plus Norway and Switzerland

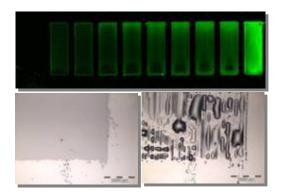
Europe 2009 Plastics demand* by market segments

45.0 Mio. t

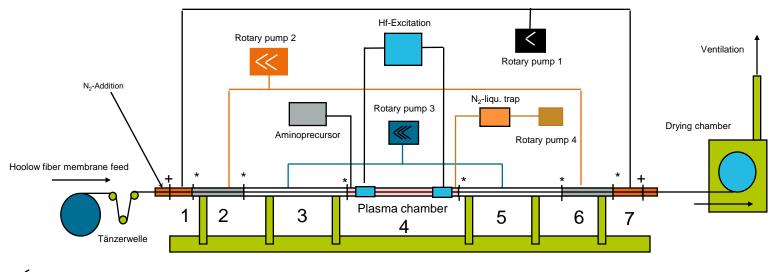
* EU27+N, CH incl. Other Plastics (~5.4 Mio t)




Inkjet Printing


Ink Formulation

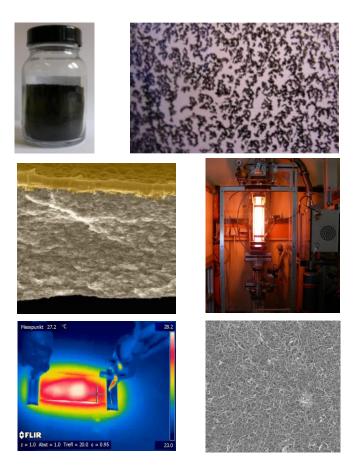
- Semiconducting Inks, Inks Containing Nanomaterials, MOFs, CNTs, etc.
- Biofunctional Inks, Protein Printing
- Printing of Functional Nanomaterials and Microparticles
- Substrate Preparation, Thin Films



Scalable in-line air to air low pressure plasma modification unit

Transport velocity variation: 5 - 100 m/min

Plasma exposure time: 4 s - 200 ms


+ Feed through: 0.5 mm Ø

* Feed through: 0.7 mm Ø

Carbon based Materials

- Characterization and processing of carbon nanotubes, graphene and carbon fibers
 - Optimisation of Dispersion of CNTs in polymers
 - Characterization of CNTs by ESCA, REM, AFM, BET oder Raman-Spectroskopie
 - Plasma-Functionalisation of CNT-powder and Bucky Papern
 - Testing of biocompatibility and toxicity
 - Production of: polymercomposites, electric conducting polymer composites, membranes and electrode materials

	LBL-Coating (20 nm)		Plasmacoating (20 nm)	
	Material needed for coating (kg)	Cost in US Dollar	Material needed for coating (kg)	Cost in US Dollar
Invest cost		250 000		3 000 000
Coating materials	7,6 Mio. kg (0,05% aqueous)	181 277	11 kg	290
Effluent treatment cost		5 971 292		0
Depreciation		25 000		300 000
Total coast without labor		6 177 569		300 290
28 Mio. lenses /year		22 Cent per Lense		1 Cent per Lense

Cost comparison: Plasma- or wet chemical treatment for contact lenses

H. Yasuda: LCVD and Interf. Engin. 2005,

Coating techniques used for surface tailoring

Irradiation e-beam,γ crosslinking

Plasma(-CVD,-Polym.)

regioselective deposition,

Photocoupling grafting,

Polymer coating

Sputter coating radiopacity

Corona hydrophilicity

> Texturing photoresist, screening

or printing techniques

Dip coating LbL,SAM,nanocytes ® Ozonisation activation for grafting

Electroless deposition metallic layers

Silanization coupling to metals

Parylene® barrier, lubricity

© Fraunhofer IGB

Wettability is relevant for:

diagnostics Water transport capillarity, goretex[®], sympatex [®]

Protein-Adsorption fouling, biocompatibility

Gluing

Wetting

Microfluidics

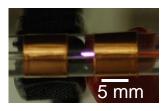
Lamination

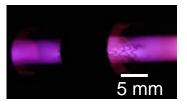
Varnishing

Contamination

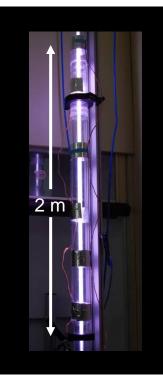
Coating

Adhesion

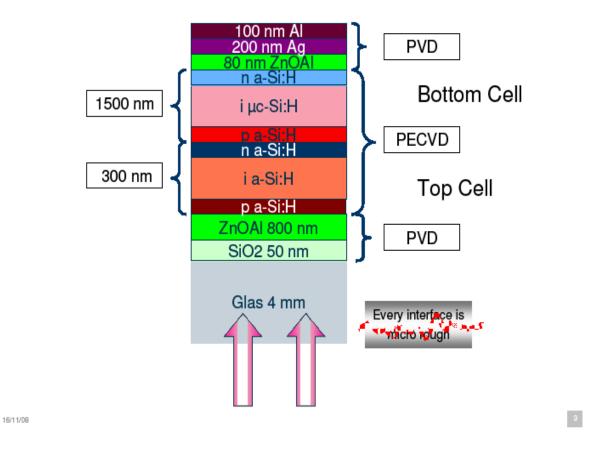

Soldering


Printing

Cleanability easy-to-clean


Plasma – from micro to macro

5 cm


- Plasma purification/sterilization/ medical engineering
 - Inactivation of bacterial contaminations
 - Pyrogen degradation
- Plasma modification
 - Hydrophilic / hydrophobic / oleophobic
 - Functionalization: amino, carboxy...
- Coating
 - High-efficiency barriers, permselective layers
 - Scratch-resistant, wear protection
 - Easy-to-clean, reduced friction

Geometries

- 1D, 2D, 3D
- Coating (≥ nanoparticle size)
- Coating inside of capillaries (diameter ≥ 100 µm)

