"When I use a word," Humpty Dumpty said in a rather scornful tone, "it means just what I choose it to mean - neither more nor less."

"The question is," said Alice, "whether you can make words mean so many different things."

Dumpty, "which is to be master that's all."

Whatsin a name?

Bionics Bionique Biognosis Biomimicry **Biomimetics** Bio-inspiration "The question is," said Humpty io-inspired design Biological mechanisms are obviously sustainable within the constraints of spaceship Earth, so biomimetics can provide a paradigm for the survival of a technical culture. Since natural selection has provided the quality control, this abstraction is also a compendium of best practice. A comparison of biology and technology should therefore provide formulations for truly sustainable technology.

Solving problems the technological way

Vincent et al. (2006) RSJ Interface 3: 471-482

Solving problems the biological way

Remember...

- in technology, shape is expensive, material is cheap
- in biology, material is expensive, shape is cheap

Strength by suppression of buckling

Siren gigas

Reciprocating drill

Biominetic drill

Comparison of drills

	Biomi metic drill	Beagle 2/Mole [Kochan et al, 1999]	USD C [Bar-Cohen et al, 2001]
Drill di ameter (m)	0.018	0.02	0.003
Power (W)	3 (max)	5(peak)	5
Drilli ng speed (m/s)	~10 ⁻⁴ (soil) ~3 x 10 ⁻⁵ (rock)	~2 x 10 ⁻⁴ (soil)	~10 ⁻⁴ (rock)
Q (m³/s)	π x 0.009 ² x 10 ⁻⁴ (soil) π x 0.009 ² x 3 x 10 ⁻ ⁵ (rock)	π x 0.01 ² x 2 x 10 ⁻⁴ (soil)	π x 0.0015² x 10 ⁻⁴ (rock)
Power/Q (J/m ³)	11.7 x 10 ⁷ (soil) 3.9 x 10 ⁸ (rock)	6.4 x 10 ⁷ (soil)	7.07 x 10 ⁹ (rock)

6. Diagrammatic drawings of the structure of an insect campaniform sensillum (A) and an arachnid slit sensillum (B). The arrows show the probable direction of strain which excites the sensilla. (A: based on drawings of the basal plate sensilla on the haltere of *Calliphora* (Pflug-staedt, 1912); B: based on a drawing of the lyriform organ on the patella of a spider (Vogel, 1923).)

(a) (ii)

Campaníform sensílla on a cockroach leg Two sensílla orientated orthogonally can detect all deformations with

Um sensítívíty

Distribution of equivalent stress

An array of holes is more sensitive and can be tuned for resonance. It is also safe!

What biology can offer

- low rísk verífied design
- low energy requirement
- autonomy (technology of 'self-')

Where biology can differ

- technical pastiche (swarms, ants)
- function, not form (beware mediaevalism!)
- everything is a system with context

- There is a basic mis-match: technology is analytical, biology is descriptive
- But this allows huge changes in context
- Biological solutions are mostly simple and robust
- Bio-solutions can have control built in to the material and the design

Recommendations

- True interdisciplinary team needed
- The biologist must be there at all times
- Develop objective (ontological?) analysis
- Recognise that many solutions are not used by biology
- . . . and that biological solutions may be non-optimal in a technical context
- Frame problems as FUNCTIONS