

**RESEARCH NETWORKING PROGRAMME** 

# Functional genomics in *Aspergillus fumigatus* and new strategies to fight against the first fungal pathogen in Europe: Fuminomics

First Annual Meeting report on Transcriptomics and Molecular tools, Sept 18-21, 2008, Giens, France



Thirty eight members of the consortium gathered at the Giens VVF (France).

The first annual meeting took place in Giens, south of France. Thirty eight members of the consortium, including senior and junior scientists from each of the eighteen partner laboratories, met to discuss their experience and results about transcriptomic analysis and genomic tools recently developed.



European Science Foundation (ESF) Research Networking Programme on The Functional genomics in Aspergillus fumigatus and new strategies to fight against the first fungal pathogen in Europe (Fuminomics) First Annual Meeting Transcriptomics and Molecular tools Giens, France Sept 18-21, 2008

| Thursday September 18 <sup>th</sup> , 2008      |                                                     |                    |  |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| Arrival in Giens                                |                                                     |                    |  |  |  |  |  |  |  |
| Day 1- Friday September 19 <sup>th</sup> , 2008 |                                                     |                    |  |  |  |  |  |  |  |
|                                                 | Introduction                                        | Jean-Paul Latgé    |  |  |  |  |  |  |  |
|                                                 | ESF Presentation                                    | Thomas Brühn       |  |  |  |  |  |  |  |
|                                                 | A. Microarrays                                      |                    |  |  |  |  |  |  |  |
|                                                 | The Toulouse experience                             | Véronique Le Berre |  |  |  |  |  |  |  |
|                                                 | Transcriptional consequences of cytoplasmatic       | Omar Loss          |  |  |  |  |  |  |  |
|                                                 |                                                     |                    |  |  |  |  |  |  |  |
| the JCVI (TIGR) and TOULOUSE experiences        |                                                     |                    |  |  |  |  |  |  |  |
|                                                 | The identification of the A.fumigatus SREA          | Hubertus Haas      |  |  |  |  |  |  |  |
|                                                 | regulon by microarray analysis                      |                    |  |  |  |  |  |  |  |
|                                                 | The Spanish experience                              | Sara Alvarez       |  |  |  |  |  |  |  |
|                                                 | The German experience                               | Volker Schroeckh   |  |  |  |  |  |  |  |
|                                                 | Marc Seidler                                        |                    |  |  |  |  |  |  |  |
|                                                 | The Scottish experience                             | Eilidh Mowat       |  |  |  |  |  |  |  |
|                                                 | 'Development of an in vitro model of                |                    |  |  |  |  |  |  |  |
|                                                 |                                                     |                    |  |  |  |  |  |  |  |
|                                                 | The Irish experiences                               | Jim Morrissey      |  |  |  |  |  |  |  |
|                                                 |                                                     | Oliver Morton      |  |  |  |  |  |  |  |
|                                                 | The French experience                               | Anne Beauvais      |  |  |  |  |  |  |  |
|                                                 |                                                     | Emilie Frealle     |  |  |  |  |  |  |  |
| The                                             | List of "To Do" to validate/use Toulouse microarray | S                  |  |  |  |  |  |  |  |
|                                                 | Oligo Design                                        | All                |  |  |  |  |  |  |  |
|                                                 | Spotting                                            | All                |  |  |  |  |  |  |  |
|                                                 | RNA extraction protocols                            | All                |  |  |  |  |  |  |  |
|                                                 | Hybridization protocols                             | All                |  |  |  |  |  |  |  |
|                                                 | Experiment design                                   | All                |  |  |  |  |  |  |  |
|                                                 | Reading slides                                      | All                |  |  |  |  |  |  |  |
|                                                 | Data storage                                        | All                |  |  |  |  |  |  |  |
|                                                 | Conclusion                                          | All                |  |  |  |  |  |  |  |



European Science Foundation (ESF) Research Networking Programme on The Functional genomics in Aspergillus fumigatus and new strategies to fight against the first fungal pathogen in Europe (Fuminomics) First Annual Meeting Transcriptomics and Molecular tools Giens, France Sept 18-21, 2008

| Day 2 – Saturday September 20 <sup>th</sup> , 2008 |                                               |                        |  |  |  |  |  |
|----------------------------------------------------|-----------------------------------------------|------------------------|--|--|--|--|--|
| B. Molecular Tools                                 |                                               |                        |  |  |  |  |  |
|                                                    | 'No gene left behind – Targeting the opt gene | Thomas Hartmann        |  |  |  |  |  |
|                                                    | family using the Cre/loxP system'             |                        |  |  |  |  |  |
|                                                    | Resistance/Auxotrophic markers                | Shelly Hagag           |  |  |  |  |  |
|                                                    | xylP promoter-driven gene expression in       | Michael Blatzer        |  |  |  |  |  |
|                                                    | Aspergillus                                   |                        |  |  |  |  |  |
|                                                    | Large scale gene disruption in A. fumigatus?  | Joanne Wong Sak Hoi    |  |  |  |  |  |
|                                                    | Nir Osherov                                   |                        |  |  |  |  |  |
|                                                    |                                               |                        |  |  |  |  |  |
|                                                    | Isabelle Mouyna                               |                        |  |  |  |  |  |
|                                                    | The most adapted animal model for screening   | Laura Alcazar          |  |  |  |  |  |
|                                                    | Emilia Mellado                                |                        |  |  |  |  |  |
|                                                    | Discussion                                    |                        |  |  |  |  |  |
|                                                    | Which stress to study ?                       | To be discussed at the |  |  |  |  |  |
|                                                    |                                               | next meeting           |  |  |  |  |  |
|                                                    | XFP-labeling                                  | To be discussed at the |  |  |  |  |  |
|                                                    |                                               | next meeting           |  |  |  |  |  |
|                                                    | Sunday September 21 <sup>st</sup> , 2008      |                        |  |  |  |  |  |
| Departure                                          |                                               |                        |  |  |  |  |  |

After a brief introduction by the coordinator of the consortium, Pr. Latgé, Science Officer Dr. Brühn introduced European Science Foundation and the pillars of ESF activity (Figure 1). He presented also a portfolio of activities of the European Medical Research Councils.



Figure 1 : Pillars of ESF Activity.

## A. Microarrays – transcriptomic analysis

## 1. Biochip (Toulouse experience)

The Toulouse Genopole has built up the AF genechip "Biochip" that covers about 9600 Open Reading Frames from genome of strain AF293, sequenced by JCVI (TIGR). Evaluation of the performances of A. fumigatus Biochip microarray compared to JCVI microarray was initiated in response to difficulties encountered by some of the partners while performing transcriptomic analysis. The Toulouse Genopole platform is equipped with spotter machine for production of DNA chips, with Affimetrix machinery, Agilent 2100 system to check RNA quality, a hybridizing automate, a high resolution scanner and the Genepix software to analyse images (Figure 2). DNA Biochips from Toulouse bear 9.588 oligos of 50 bp length designed by the ROSO software, whereas the JCVI chips are made with 70 bp oligos for 9.654 genes. Toulouse biochip sequences match well with cDNA (93%) and genomic DNA (87%). For the technical validation three steps were followed: 1) total RNA of several samples (different origins) were pooled, 2) labelled with Cy3 and Cy5 dyes and 3) cohybridized on the same slide for each type of microarray. On both chips, more than 92% of the spots were visible with respect of gene intensity, experiments were reproducible with slight gene-dye effect and targeted genes intersection included 8.967 genes for both chips. Biochip and JCVI chip at least gave similar responses, suggesting they were equally appropriate for biological validation.







## 2. From RNA extraction to slide preparation

A high variation between experimental conditions was seen for RNA extraction, labelling and hybridization among the different laboratories. RNA extraction was done either by using phenol procedure (partner 11), Trizol (partner 1 and 16), which seemed to produce less DNA contaminations, RiboPure Yeast kit (Applied Bioscience; partner 3 and 6) or MasterPure

(Epicentre; partner 3). Protocols which include a column purification step, such as the Quiagen column, allow minimal DNA contamination. Quality was controlled by Nanodrop measurement followed by Bioanalyser (Agilent). Labelling was performed by using a kit such as Amersham CyScribe or Chipshot kit Promega. Cy3 and Cy5 are mainly used through a "dye swap design". Finally labelled DNAs are hybridized on the slides at either 42 or 45 °C.

## 3. Transcriptomic analysis on microarrays from Toulouse Genopole and JCVI

Omar Loss from Imperial College London (partner 11) has given the first example of biological comparison between the JCVI and the Toulouse experience, by analysing transcriptomal consequences of cytoplasmic calcium spiking and alkaline pH. Calcium signalling is one of the key pathways to the versatility of *A. fumigatus* to adapt to different environmental conditions. *A. fumigatus* was grown in liquid minimal medium (MM) pH 5.0 for 14h and mycelia was then shifted to MM containing calcium chloride and/or pH 8.0. RNAs were extracted by using the phenol procedure. Transcriptomic analysis of the regulation process was performed on the Biochip in parallel with the JCVI chips at various times after calcium addition, until 60 min. Calcium effect happens shortly after addition (10 min), in contrast pH effect is seen after 1h. Different results could be observed; more genes were found to be down or up regulated with JCVI chip compared to Biochips (Figure 3).



<u>Figure 3:</u> Genomic response of *A fumigatus* following cytoplasmic calcium spiking at pH 8.0 and comparison of the results obtained with the Biochip (Toulouse) and the JCVI (TIGR) method. More genes were found to be differentially expressed with JCVI.

Very few common genes were observed from one chip to the other and some genes presented opposite regulations. JCVI results were validated by QRT-PCR and correlated well (65%) with a previous study published by Goldman and colleagues (Molecular Microbiology, 2008, 67, 1274–1291). On the contrary Biochip results, obtained with a different experimental design, could not be validated by QRT-PCR.

Collaboration between partner 1 (Institut Pasteur - Paris) and partner 4 (Complutense University –Madrid) was undertaken to analyse gene expression during growth in shaken conditions versus static agar conditions. RNAs were extracted by using Trizol (Invitrogen manufacturer protocol slightly modified), and controlled with Agilent bioanalyser, labelled

and hybridized, either in Toulouse or in Madrid. Acquisition of the image was performed with GenePix microarray scanner. 497 and 550 genes were induced on Biochip in Toulouse and in Madrid respectively, this may be due to a low labelling efficiency with Cy3 and Cy5 (Table 1). In addition, overlapping of the genes was too limited (80 genes were found in common). Despite a purification step of the RNAs, labelling efficiency was low (less with *A. fumigatus* than with *S. cerevisiae*). To go further on gene expression analysis a better way of labelling has to be used.

|                                                           | Toulouse               | Madrid                 |  |
|-----------------------------------------------------------|------------------------|------------------------|--|
| Gene number                                               | 497                    | 550                    |  |
| Genes in common                                           | ٤                      | 30                     |  |
| Upregulated                                               | 314 (ratio : ≤ 9)      | 292 (ratio : ≤ 146)    |  |
| Upregulated in common                                     | 47                     |                        |  |
| Repressed                                                 | 182 (ratio : ≥ 0.0244) | 257 (ratio : ≥ 0.0164) |  |
| Repressed in common                                       | 2                      | 29                     |  |
| opposite                                                  | 4                      |                        |  |
| Genes in commun in<br>all analysis<br>(Toulouse + Madrid) | 49 (27 upregulate      | ed + 22 repressed)     |  |

 $\underline{\text{Table 1}}: \text{Gene expression of } A \text{ fumigatus during growth in shaken conditions versus static agar conditions and comparison of the results obtained with the Biochip in Toulouse and in Madrid.}$ 

Gene expression during biofilm formation was investigated after 12h versus 8h and 24h versus 12h of culture by using the Biochip (partner 16). RNAs were extracted with the Trizol method and checked by Agilent analyser. During the first step, from 8h-12h, mainly metabolism related genes were up regulated, while biogenesis genes were most differentially regulated during 12h-24h (Figure 5). Thirty genes only were specific for the 12h-24h period. 17 differentially expressed genes on microarrays could be validated by QRT-PCR.



<u>Figure 5</u>: Gene expression analysis by using the Biochip during biofilm formation after 12h versus 8h and 24h versus 12h of culture.

Partner 18 has investigated the development of biofilm on bronchial epithelial cells. Transcriptomic analysis of the genes, as well as 2D gel electrophoresis followed by MALDI-MS analysis were performed to elucidate proteins involved in biofilm formation after 48h culture versus 24h culture. Following static culture (biofilm formed) 614 and 259 genes were found to be up-regulated by using Biochip and JCVI and 95 genes only were common to both experiments. Although most of the genes have not been identified and matched with proteomic analysis, JCVI results of induced genes fitted well with the 2D gel results (7 genes out of 9 were found to be up-regulated with JCVI and 2D gel electrophoresis method). On the contrary, there was no correlation with Biochip transcriptomic results.

By using Toulouse Biochip, secondary metabolite production or low oxygen condition effects on gene expression (for example co-culture with bacteria) were investigated by partner 3 (Hans-Knoell Institute – Jena), who has good expertise in *Aspergillus nidulans* arrays. Extraction of the RNAs was done by using RiboPure Yeast kit (Applied Bioscience) or MasterPure Yeast kit (Epicentre). After quality control by the Nanodrop and Bioanalyser (Agilent), cDNA were amplified, labelled with Cy dyes and further hybridized at 45°C. GenePix microarray scanner was also used for image acquisition. Proteomic analysis of the same samples showed a difference in expression of a higher number of proteins (101 proteins were differentially expressed), suggesting a lower sensitivity for the transcriptomic method.

Transcriptomic analysis was used to look for genes differentially expressed at different time periods after exposure to granulocytes (partner 6). RNA were extracted by RiboPure kit in Trinity College - Dublin and sent to Toulouse, where they were further processed. Results are still in processing phase.

Biochip (Toulouse) was used to analyse gene expression during nitrogen starvation and inhibition of TORC1 (Target of Rapamycin Complex 1). TORC1 plays a central role in mediating cellular response to nutrient availability and has a prominent role in cell growth and proliferation. RNA were extracted at the University College of Cork (partner 5) and sent to Toulouse for further processing (conversion to cDNA and hybridization). They obtained a good quality signal. 111 genes were up regulated and 104 genes were down regulated during nitrogen starvation (Ammonium versus Urea). 57 genes were up regulated and 32 genes were down regulated when TORC1 pathway was inhibited by Rapamycin. Results were validated on ten genes by semi quantitative RT-PCR. Some expected genes, such as nitrogen transport associated genes, were not seen in this analysis, while MEPA and GAP1 genes were expressed differently like in *S. cerevisiae*. In this study, hybridization signals observed were less intense in *A. fumigatus* compared to *S. cerevisiae* and changes in levels of gene expression are lower in *A. fumigatus* than in *S. cerevisiae*.

Oxidative stress is important during early phases of infection in the macrophage and the neutrophil (partner 12). An oxidative stress was simulated by addition of menadione (0.08mM) at 37°C for 30 min and transcriptomic analysis was performed in Toulouse with the Biochip. Results showed induction of 69 genes, 33 genes were down regulated, 36 genes were up regulated (genes involved in transport, gene expression regulation, oxidative stress, cell wall biogenesis, cellular lipid metabolic process, acetyl-CoA metabolic process). Surprisingly, SOD genes, which are known to be associated to oxidative stress regulation, were not modulated. However, results were not checked by QRT-PCR.

Hubertus Haas and colleagues (partner 14) made use of JCVI microarray analysis to study genes involved in iron regulation in a *A. fumigatus* mutant that exhibits altered siderophore

biosynthesis ( $\Delta sreA$ ). Siderophores are molecules that allow iron transport and their biosynthesis is important for virulence. Transcriptomic experiments showed 8 clusters, among which 7 were belonging to iron regulatory system and siderophore biosynthesis. In addition, gene expression was validated on six genes by northern blot analysis.

## 4. Achievements and perspectives

| Table '  | 2 summarise | the | transcriptome | analysis  | data | obtained to d | ate  |
|----------|-------------|-----|---------------|-----------|------|---------------|------|
| I able . |             | une | uanscriptome  | anary 515 | uata | obtained to u | ale. |

| Partner # | Biochip      | JCVI         | Transcriptome results                               |  |
|-----------|--------------|--------------|-----------------------------------------------------|--|
|           | Toulouse     |              |                                                     |  |
| P11       | $\checkmark$ | $\checkmark$ | Experimental design were different                  |  |
|           |              |              | Correlation between QRT-PCR and transcriptome was   |  |
|           |              |              | good with JCVI, but not with Toulouse, (2x6 genes   |  |
|           |              |              | checked)                                            |  |
|           |              |              | Number of differentially expressed genes common to  |  |
|           |              |              | both experiments was very low                       |  |
| P1+4      | $\checkmark$ |              | Hybridisation and analysis of the microarray,       |  |
|           |              |              | performed in two different places gave results with |  |
|           |              |              | very low overlapping                                |  |
|           |              |              | No validation with QRT-PCR                          |  |
| P16       | $\checkmark$ |              | Very good results, more than 500 genes were showing |  |
|           |              |              | variation of expression                             |  |
|           |              |              | Validation with QRT-PCR on 7 genes                  |  |
| P18       | $\checkmark$ | $\checkmark$ | More than 500 genes showed varying expression       |  |
|           |              |              | Very low overlapping between two arrays             |  |
|           |              |              | Validation by 2D-MS was obtained on 7 proteins for  |  |
|           |              |              | JCVI chips only                                     |  |
|           |              |              | No QRT-PCR verification                             |  |
| P3        | $\checkmark$ |              | Lack of correlation with proteome data              |  |
|           |              |              | Complaints on the spotting and hybridization data   |  |
| P6        | ✓            |              | Correlation with QRT-PCR has not been analysed yet  |  |
| P12       | $\checkmark$ |              | Low number of genes with variation of expression.   |  |
|           |              |              | No validation with QRT-PCR                          |  |
| P14       |              | ✓            | Results in agreement with iron metabolism           |  |
|           |              |              | Good correlation with northern (6 genes checked)    |  |
| P5        | ✓            |              | Nitrogen starvation gave good results               |  |
|           |              |              | Validation with QRT-PCR on 10 genes                 |  |

Table2: First transcriptomic analysis data.

Major problems have been highlighted during the presentations: 1) differences in gene expression observed by analysing slides from Toulouse were not correlating with QRT-PCR (partner 11, 12 and 18); 2) gene expression changes observed by using Biochips were less intense in *A. fumigatus* compared to *S. cerevisiae* and changes in gene expression were low (partner 1,4, 5 and 15). Results obtained by using JCVI chips seemed better validated by QRT-PCR or 2D-gel electrophoresis than Toulouse array data. It has to be pointed out that validation has been performed on a very limited number of genes (always less than 10 genes). The low level of gene expression suggested a low level of cDNA labelling and/or a possible contamination of the RNA with DNA. Experiments that have been performed using Biochip and JCVI chip in parallel (partner 1, 3, 4, 11), were achieved with different experimental

design, various RNA extraction methods, labelling kits and hybridization conditions, making efficient comparison very difficult. As a result, all the participants agreed for the need of setting up a very stringent protocol to validate Toulouse biochip. After lengthly and animated discussion, a protocol was set up and agreed by all the participants for a final validation of the European slides. This validation will include a comparison with the American chip (figure 6).



<u>Figure 6:</u> Biological validation of the transcriptomic analysis of *A. fumigatus* gene expression on Biochip (Toulouse).

Validation will be achieved following two steps. First step will be a comparative analysis of the quality of the microarray produced in Europe and USA using a single set of RNA, prepared by partner 11, and further analysed by JCVI in USA and at the Biochips platform of Toulouse (France). After discussion between W. Nierman's group and E. Bignell, JM François and JP Latgé, it was decided that to fulfil the first step, V. Le Berre (from The Biochips platform – partner 2) will go to JCVI at the end of January to perform the first assays in collaboration with the Nierman's team. Based on the data obtained, a second step will involve the analysis of different biological replicates. For the second step it is anticipated that four RNA biological replicates will be analysed. All RNA samples are prepared by Omar Loss (partner 11) and each RNA batch will be separated into three pools. First pool will be analysed by JCVI and second pool by Toulouse platform. For each step, 18 genes (6 genes only expressed at on JCVI + 6 genes only expressed on Biochip + 6 genes expressed on both slides) up and down regulated (total number of gene is will be 36) will be validated by QRT-PCR by using the same RNA batch (pool 3). Experimental designs, labeling and hybridisation protocols will be the ones currently used by the Toulouse and JCVI QRT-PCR method will be standardized. Laboratories in Europe (partner 1, 3, 5, 6, 7, 9, 11, 12, 15, 16 and 17) agreed to participate and share the work for QRT-PCR showing the willingness of this community to work together. Next meeting to validate the array will be held in Paris in late spring in Paris.

## B. Molecular tools - overexpression or silencing of the genes

Recent methodological improvements from partners of our consortium have been made to generate knockout mutant strains on a large scale and study essential genes.

#### **1.** Large scale gene disruption

Deletion with a resistance cassette is the current way to produce deletion mutants.  $\Delta Ku70/\Delta Ku80$  strains and the use of PCR fusion have shortened the cloning and transformation duration. Hygromycin and phleomycin are dominant antibiotics for transformant selection, while glufosinate, nourseothricin, pyrithiamin are less efficient for *A*. *fumigatus* and auxotrophic markers can affect virulence. Deletion with resistance cassette is limited by the number of selection markers, especially when the gene of interest belongs to a family, which members display functional redundancy (Figure 7).

## Selection Markers in Aspergillus fumigatus

## <u>Dominant</u>

hph - Hygromycin ble - Phleomycin bar - Glufosinate nat1 - Nourseothricin ptrA – Pyrithiamine

#### <u>Auxotrophy</u>

pyrG argB lysB lysF Counter selection pyrG Blaster sC niaD (possible) Cre/lox<sup>-</sup>

#### Figure 7: Resistance and auxotrophic markers in Aspergillus fumigatus.

Partner 15 has developed a recyclable deletion cassette containing a Cre/loxP system that allows successive multiple disruptions. To accomplish excision by site-specific recombination at *loxP* acceptor sites, Cre recombinase is transiently expressed, from a module integrated into the autonomously replicating vector, which carries *AMA1* and the *ptrA* marker allele for plasmid maintenance in the presence of pyrithiamine. After removal of the deletion cassette, the same resistance marker can be reused for another gene deletion (Figure 8).

Making a knockout in a nutshell



Figure 8: Deletion cassette containing a Cre/loxP system.

## 2. Study of essential genes

Modulation of gene expression through an inducible promoter can be used to study essential genes. The endogenous promoter can be replaced with an inducible promoter, such as pNiiA (*NiiA*), pAlc (*alcA*), pGla (*glaA*), pAcu (*acuD*) or pCbh (*cbhB*) (Figure 9). Thus, the expression of the gene is switched off by the addition of a specific nutrient to the growth medium. More recently, partner 14 has successfully applied the pXyl (*xylP*) promoter to *A*. *fumigatus* to study *AfZrfB* gene overexpression. They observed a tight repression in glucose containing culture medium and induction of the gene expression in the presence of xylose. However these promoters are all leaky and no promoter is tight enough to study essential genes.

| promoter | organism       | inducer                          |
|----------|----------------|----------------------------------|
| alcA     | A. nidulans    | ethanol / threonine              |
| acuD     | A. fumigatus   | acetate / C <sub>2</sub> sources |
| cbhB     | A. fumigatus   | carboxymethylcellulose           |
| glaA     | A. niger       | maltose                          |
| xyIP     | P. chrysogenum | xylose / xylan                   |

Inducible promoters used in A. fumigatus

Figure 9: Inducible promoters used in A. fumigatus.

Techniques, initially developed to study essential genes in *Aspergillus nidulans*, were presented and the possibility and the feasibility to transpose them to *A. fumigatus* were investigated: 1) AMA1 self replicating vector or gene overexpression, AMA1 library is available at The Fungal Genetics Stock Center (FGSC); 2) heterokaryon rescue for essential genes, which is facilitated by working in a NHEJ-deficient genetic background, and 3) parasexual rescue is performed to prove that a gene is essential (the last one is not useful for *A. fumigatus* because of important deletion during transformation). (Figure 10)

What's out there in the A. nidulans world?



Figure 10: Transposable genomic tools from A. nidulans to A. fumigatus.

The conclusion of these presentations was that overexpression of genes in *A. fumigatus* has been under looked and may be very useful functional analysis of genes.

## 3. In vivo analysis and medicinal applications

All mutants of *A. fumigatus* have to be tested in an animal model. The most adapted animal model for screening virulence was developed at partner 17 and agreed by all the partners. Mice CD1 were immuno-suppressed by injecting cyclophosphamide and cortisone acetate followed by intra-nasal inoculation of spores ( $10^4$  suspended in 30 µl Tween 0.01% saline solution). Cell count was checked by plating onto solid medium. Presence of the fungi was checked in lung. Then survival was measured (Figure 11).



Figure 11: The most adapted animal model for screening virulence

Production of recombinant proteins is useful for further characterization of the protein structure, analysis of enzymatic activity, antifungal drug/inhibitors testing or antibody preparation. Partner 1, who has a good expertise in recombinant protein preparation, has presented the *Pichia pastoris* system. This system allows high quantity and purity of the protein produced and was successfully applied to several *A. fumigatus* antigen and enzymes production (Gelp family, Catalase, Dipeptidypeptidase...).

## C. Impact of the event on the future direction of the field

Thanks to ESF, 18 European research groups have joined their effort to develop new transcriptomic and genomic tools to better understand the establishment of aspergillosis and improve the management of Invasive Aspergillosis in patients. The first annual meeting offered the opportunity to all participants, especially young scientists, to expose their transcriptomic and genomic studies. A major achievement of the meeting was the sharing of all protocols, problems and advances in the *A. fumigatus* science. Collaborations at the EU level were either started or fastened at this meeting in a very friendly and cooperative atmosphere.

Main effort was made to improve the *A. fumigatus* Biochip from Toulouse. Transcriptomic and genomic data on *Af*, obtained by each partner, will be gathered in a common database. Partner 3 has already established a catalogue covering 80% of the proteins and providing functional information on *Af* proteome. A script will be further adapted for all the partners to have a quick and easy access to this the database. New genomic solutions were proposed to analyse essential genes or multigenic families (recyclable deletion cassette loxP, interest of the Gateway system). Proteomic and bioinformatics advancements will be the topic of the next scientific meeting.

The question has been asked (but not solved yet) of the necessity to undertake a mass disruption program. A preliminary project would be centred on the disruption of specific *A*. *fumigatus* transcription factors (378 putative transcription factors were found in the genome of Af, 47 were specific to Af), in which four partners were interested.

Next meeting will be held in 2009 and focused on Proteomic and Bioinformatics' tools.

Annexe : Participants List

#### ESF Fuminomics Meeting in Giens – September 17-21, 2008 "Transcriptomics and Molecular Tools" Participants List

| Partner #                       | Title                 | Surname               | First name         | Institution                                                              | Dpt                                                                | Street Address                       | Postal code | City               | Country |
|---------------------------------|-----------------------|-----------------------|--------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|-------------|--------------------|---------|
| P14                             | Prof.                 | Haas                  | Hubertus           | Innsbruck Medical<br>University                                          | Division of Molecular<br>Biology/Biocenter                         | Fritz-Pregl-strasse 3                | A-6020      | Innsbruck          | Austria |
| P14                             | PhD<br>student        | Blatzer               | Michael            | Innsbruck Medical<br>University                                          | Division of Molecular<br>Biology/Biocenter                         | Fritz-Pregl-strasse 3                | A-6020      | Innsbruck          | Austria |
| ESF Science<br>Officer          | Mr                    | Bruhn                 | Thomas             | ESF                                                                      |                                                                    | 1 quai Lezay-<br>Marnésia - BP 90015 | 67080       | Strasbourg         | France  |
| P1<br>coordinator               | Prof.                 | Latgé                 | Jean-Paul          | Institut Pasteur                                                         | Aspergillus Unit                                                   | 25 rue du Docteur                    | 75015       | Paris              | France  |
| P1                              | Admin<br>&<br>Scient. | Clavaud               | Cécile             | Institut Pasteur                                                         | Aspergillus Unit                                                   | 25 rue du Docteur<br>Roux            | 75015       | Paris              | France  |
| P1                              | Dr.                   | Lambou                | Karine             | Institut Pasteur                                                         | Aspergillus Unit                                                   | 25 rue du Docteur<br>Roux            | 75015       | Paris              | France  |
| P2<br>associated<br>coordinator | Prof.                 | François              | Jean-Marie         | INSA                                                                     | Biochips Platform                                                  | 135 avenue de<br>Rangueil            | 31077       | Toulouse           | France  |
| P2                              | Dr                    | Le Berre              | Véronique          | INSA                                                                     | Biochips Platform                                                  | 135 avenue de<br>Rangueil            | 31077       | Toulouse<br>Cedex  | France  |
| P2                              | Dr                    | Trouilh               | Lidwine            | INSA                                                                     | Biochips Platform                                                  | 135 avenue de<br>Rangueil            | 31077       | Toulouse<br>Cedex  | France  |
| P2                              | PhD<br>student        | NGuyen                | Antoine            | INSA                                                                     | Biochips Platform                                                  | 135 avenue de<br>Rangueil            | 31077       | Toulouse<br>Cedex  | France  |
| P12                             | PhD<br>student        | Frealle               | Emilie             | CHRU Faculté de<br>Médecine de Lille                                     | Laboratoire de<br>Parasitologie-<br>Mycologie                      |                                      | 59037       | Lille cedex        | France  |
| P12                             | Dr                    | Delhaes               | Laurence           | CHRU Faculté de<br>Médecine de Lille                                     | Laboratoire de<br>Parasitologie-<br>Mycologie                      |                                      | 59037       | Lille cedex        | France  |
| P13                             | Dr                    | Berkova               | Nadejda            | Ecole Nationale<br>Vétérinaire - Unité<br>de Parasitologie-<br>Mycologie | UMR 956 BIPAR                                                      | 22 rue Curie                         | 94700       | Maisons-<br>Alfort | France  |
| Invité                          | Dr                    | Ruprich-Robert        | Gwenaël            | Université Paris<br>Descartes                                            | Faculté des Sciences<br>Pharmaceutiques et<br>Biologiques de Paris | 4, Avenue de<br>l'Observatoire       | 75270       | PARIS<br>Cedex 06  | France  |
| Invité                          | Dr                    | Chapeland-<br>Leclerc | Florence           | Université Paris<br>Descartes                                            | Faculté des Sciences<br>Pharmaceutiques et<br>Biologiques de Paris | 4, Avenue de<br>l'Observatoire       | 75270       | PARIS<br>Cedex 06  | France  |
| P3                              | Dr                    | Schroeckh             | Volker             | Hans-Knoell-Institute                                                    | Depmt Molecular and<br>Applied Microbiology                        | Beutenbergstrasse<br>11a             | 07745       | Jena               | Germany |
| P3                              | PhD<br>student        | Albrecht              | Daniela            | Hans-Knoell-Institute                                                    | Depmt Molecular and<br>Applied Microbiology                        | Beutenbergstrasse<br>11a             | 07745       | Jena               | Germany |
| P7                              | Dr                    | Loeffler              | Juergen            | University Medical<br>Center Würzburg                                    | Department of<br>Internal Medicine II<br>Gebäude C1                | Josef-Schneider-<br>strasse 2        | D-97080     | Würzburg           | Germany |
| P7                              | PhD<br>student        | Ok                    | Michael            | University Medical<br>Center Würzburg                                    | Department of<br>Internal Medicine II<br>Gebäude C1                | Josef-Schneider-<br>strasse 2        | D-97080     | Würzburg           | Germany |
| P15<br>Workshop<br>supervisor   | Dr.                   | Krappmann             | Sven               | University of<br>Würzburg                                                | Research Center for<br>Infectious Diseases                         | Röntgenring 11                       | D-97070     | Würzburg           | Germany |
| P15                             | PhD<br>student        | Hartmann              | Thomas             | University of<br>Würzburg                                                | Research Center for<br>Infectious Diseases                         | Röntgenring 11                       | D-97070     | Würzburg           | Germany |
| P18                             | Prof.                 | Müller                | Franck-<br>Michael | University of<br>Heidelberg                                              | Dept of Pediatrics III                                             | Im Neuenheimer Feld<br>430           | D-69120     | Heidelberg         | Germany |
| P18                             | PhD<br>student        | Seidler               | Marc               | University of<br>Heidelberg                                              | Dept of Pediatrics III                                             | Im Neuenheimer Feld<br>430           | D-69120     | Heidelberg         | Germany |
| P5                              | Dr                    | Morrissey             | John               | University College of<br>Cork                                            | Department of<br>Microbiology                                      |                                      |             | Cork               | Ireland |
| P6                              | Prof.                 | Rogers                | Tom                | Trinity College<br>Dublin                                                | Department of<br>Clinical Microbiology                             | St James's Hospital                  | 8           | Dublin             | Ireland |
| P6                              | Dr                    | Morton                | Oliver             | Trinity College<br>Dublin                                                | Department of<br>Clinical Microbiology                             | St James's Hospital                  | 8           | Dublin             | Ireland |
| P6                              | Dr                    | Kenny                 | Claire             | Trinity College<br>Dublin                                                | Department of<br>Clinical Microbiology                             | St James's Hospital                  | 8           | Dublin             | Ireland |
| P9                              | Dr.                   | Osherov               | Nir                | Tel Aviv University                                                      | Department of Human<br>Microbiology                                | Sackler School of<br>Medicine        | 69978       | Tel Aviv           | Israel  |

#### ESF Fuminomics Meeting in Giens – September 17-21, 2008 "Transcriptomics and Molecular Tools" Participants List

| P9         | PhD     | Hagag   | Shelly       | Tel Aviv University,  | Department of Human  | Sackler School of    | 69978   | Tel Aviv | Israel  |
|------------|---------|---------|--------------|-----------------------|----------------------|----------------------|---------|----------|---------|
|            | student |         | -            | Sackler School of     | Microbiology         | Medicine             |         |          |         |
|            |         |         |              | Medicine              |                      |                      |         |          |         |
| Member of  | Prof.   | Radu    | Dorel Lucian | National Instit. of   | Immunology           | Spl. Independentei,  | 050096  | Bucarest | Romania |
| Steering   |         |         |              | R&D Microbiology      | Department           | Nr. 103, Sector 5    |         |          |         |
| Committee  |         |         |              | and Immunology        | 1                    |                      |         |          |         |
|            |         |         |              | "Cantacuzino"         |                      |                      |         |          |         |
|            | Dr      | Malic   | Luminita-    | National Instit. of   | Immunology           | Spl. Independentei,  | 050096  | Bucarest | Romania |
|            |         |         | Iuliana      | R&D Microbiology      | Department           | Nr. 103, Sector 5    |         |          |         |
|            |         |         |              | and Immunology        | 1                    |                      |         |          |         |
|            |         |         |              | "Cantacuzino"         |                      |                      |         |          |         |
| P4         | Prof.   | Arroyo  | Javier       | Complutense           | Department of        | Plaza Ramón y Cajal  | 28040   | Madrid   | Spain   |
|            |         |         |              | University            | Microbiology II.     | s/n                  |         |          | 1       |
|            |         |         |              |                       | Faculty of Pharmacy  |                      |         |          |         |
| P4         | PhD     | Alvarez | Sara         | Complutense           | Department of        | Parque Científico de | 28040   | Madrid   | Spain   |
|            | student |         |              | University            | Microbiology II,     | Madrid-UCM           |         |          | -       |
|            |         |         |              | 5                     | Faculty of Pharmacy  |                      |         |          |         |
| P17        | Dr.     | Mellado | Emilia       | Instituto de Salud    | Micology Reference   | Carretera            | 28003   | Madrid   | Spain   |
|            |         |         |              | Carlos III (ISCIII) - | Laboratory           | Majadahonda-         |         |          | 1       |
|            |         |         |              | Centro Nacional de    |                      | Pozuelo, Km2         |         |          |         |
|            |         |         |              | Microbiologia         |                      | · ·                  |         |          |         |
| P17        | PhD     | Alcazar | Laura        | Instituto de Salud    | Micology Reference   | Carretera            | 28003   | Madrid   | Spain   |
|            | student |         |              | Carlos III (ISCIII) - | Laboratory           | Majadahonda-         |         |          | -       |
|            |         |         |              | Centro Nacional de    | -                    | Pozuelo, Km2         |         |          |         |
|            |         |         |              | Microbiologia         |                      |                      |         |          |         |
| P11        | Dr      | Bignell | Elaine       | Imperial College      | Department of        | Armstrong Road       | SW7 2AZ | London   | United- |
| Workshop   |         |         |              | London                | Molecular            |                      |         |          | Kingdom |
| supervisor |         |         |              |                       | Microbiology and     |                      |         |          |         |
|            |         |         |              |                       | Infection            |                      |         |          |         |
| P11        | PhD     | Loss    | Omar         | Imperial College      | Department of        | Armstrong Road       | SW7 2AZ | London   | United- |
|            | student |         |              | London                | Molecular            |                      |         |          | Kingdom |
|            |         |         |              |                       | Microbiology and     |                      |         |          |         |
|            |         |         |              |                       | Infection            |                      |         |          |         |
| P16        | Dr      | Ramage  | Gordon       | Glasgow Dental        | Section of Infection | 378 Sauchiehall      | G2 3JZ. | Glasgow  | United- |
|            |         |         |              | School and Hospital - | and Immunity         | Street               |         |          | Kingdom |
|            |         |         |              | The University of     |                      |                      |         |          |         |
|            |         |         |              | Glasgow               |                      |                      |         |          |         |
| DIC        | DID     |         | E.1. 11      |                       | G .:                 | 270.0 1:1 11         | C2 217  | C1       | XX 1 1  |
| P16        | PhD     | Mowat   | Eilidh       | Glasgow Dental        | Section of Infection | 378 Sauchiehall      | G2 3JZ. | Glasgow  | United- |
|            | student |         |              | School and Hospital - | and Immunity         | Street               |         |          | Kingdom |
|            |         |         |              | The University of     |                      |                      |         |          |         |
|            |         |         |              | Glasgow               |                      |                      |         |          |         |
|            | 1       | 1       | 1            | 1                     | 1                    | 1                    | 1       | 1        | 1       |