
INFTY @ ESSLLI 2011

Scientific and Financial Report

The INFTY Steering Committee had decided in Vienna (February 2010) 
that  INFTY  should  show  some  presence  at  the  European  Summer 
School for Logic, Language and Information ESSLLI. INFTY@ESSLLI2011 
was the first such event and will be followed by INFTY@ESSLLI 2012.

We  see  these  events  as  an  important  step  towards  re-injecting 
mathematical  logic  into  the  programme  of  the  ESSLLI  schools:  In 
recent years, ESSLLI has seen a shift from foundational studies to less 
mathematical  courses  and  workshops.  Several  ESSLLIs  had  so  little 
mathematical  content  that  it  was  not  useful  for  PhD  students  in 
mathematical logic to attend this otherwise very important networking 
event. It is in the interest of the mathematical logic community that 
these summer schools remain interesting for students working in the 
foundations  of  mathematics;  furthermore,  it  is  of  interest  for  us  to 
make sure that mathematical logic remains an important part of the 
community represented at ESSLLI.

Together with Mirna Dzamonja and Grzegorz Plebenek, the applicant 
coordinated  a  course  and  a  workshop  at  ESSLLI  2011.  Course  and 
workshop proposal  were  accepted by  the  programme committee  of 
ESSLLI on 10 June 2010.

The course (level: foundational course) was entitled Basic set-theoretic 
techniques  in  logic and  was  taught  by  Benedikt  Löwe  &  Grzegorz 
Plebanek on five consecutive days. The slides of this course are online 
at 

http://www.math.uni-hamburg.de/home/loewe/INFTY@ESSLLI2011/course.html

and attached to this report  (103 pages).

Many participants of ESSLLI do not have a mathematical background, 
and most set theory courses are aimed at mathematicians and thus 
tend to  be  inaccessible  to  non-mathematicians.  However,  the  basic 
techniques of set theory are important well beyond mathematical logic 
and should be known to all logicians. In our foundational course, we 
offered an introduction to these for a broad audience.

The workshop, organized by Mirna Dzamonja and the applicant had xx 
talks, among them three tutorials aimed at students. The following is 
the schedule of the workshop:



Monday, 1 August 2011 
14:00-14:30 Tutorial 1.1: Combinatorial Set Theory

Jean Larson. University of Florida, U.S.A. 
14:30-15:00 Tutorial 2.1: Descriptive Set Theory

Martin  Goldstern.  Technische  Universität  Wien,  
Austria. 

15:00-15:30 Classification in descriptive set theory
Alberto Marcone. Università di Udine, Italy.

Tuesday, 2 August 2011 
14:00-14:30 Tutorial 3.1: Forcing

Gregor Dolinar. Univerza v Ljubljani, Slovenia.
14:30-15:00 Tutorial 1.2: Combinatorial Set Theory

Jean Larson. University of Florida, U.S.A.
15:00-15:30 Blass's game semantics for linear logic without

the axioms of choice
Zhenhao Li. Universiteit van Amsterdam, The
Netherlands.

Wednesday, 3 August 2011
14:00-14:30 Tutorial 2.2: Descriptive Set Theory

Martin Goldstern. Technische Universität Wien,
Austria.

14:30-15:00 Tutorial 3.2: Forcing
Gregor Dolinar. Univerza v Ljubljani, Slovenia.

15:00-15:30 Half-filling families of finite sets
Grzegorz Plebanek. Uniwersytet Wrocławski,
Poland.

Thursday, 4 August 2011
14:00-14:30 Tutorial 1.3: Combinatorial Set Theory

Jean Larson. University of Florida, U.S.A.
14:30-15:00 Tutorial 2.3: Descriptive Set Theory

Martin Goldstern. Technische Universität Wien,
Austria.

15:00-15:30 MAD families and the projective hierarchy
Yurii Khomskii. Universiteit van Amsterdam, The
Netherlands.

Friday, 5 August 2011
14:00-14:45 Tutorial 3.3: Forcing

Gregor Dolinar. Univerza v Ljubljani, Slovenia.
14:45-15:30 Discussion

The webpage of the workshop can be found at

http://www.math.uni-hamburg.de/home/loewe/INFTY@ESSLLI2011/



The foundational course was very successful with between 20 and 30 
students actively participating. The chair of the programme committee 
of ESSLLI 2012 was present during one of the lectures and informed us 
that  he wanted to  have a similar  mathematical  logic  course at  the 
foundational  level  for  ESSLLI  2012  (this  will  be  realized  by  Bob 
Lubarsky's course).

While we would also consider the workshop a success, it was rather 
difficult to get set theorists to submit to the workshop: the original idea 
was that a larger group of set theorists would create a critical mass. In 
fact, we had only the invited speakers plus two graduate students. For 
ESSLLI 2012, we therefore decided not include a workshop component.

Financial Report.

Travel Expenses. We covered the travel expenses of six participants: 
Mirna Dzamonja (EUR 173), Jean Larson (EUR 694), Zhenhao Li (EUR 
300),  Benedikt  Löwe (EUR 445),  Grzegorz  Plebanek (EUR 373),  and 
Sourav Tarafder (EUR 440).

Total Travel Expenses. EUR 2425.

Accommodation  Expenses. We booked and paid hotel  rooms in  two 
hotels: the Hotel Pri Mraku and the Hotel Slon. In total we paid for 24 
nights for the participants Goldstern, Larson, Löwe, and Plebanek at a 
rate of approximately 75 EUR a night.

Total Accommodation Expenses. EUR 1801.

Meals. The costs of the lecturers' dinner were covered by ESSLLI for 
the lecturers of the course (Löwe and Plebanek) and the organizer of 
the workshop. In order to allow more interaction between the invited 
speakers and the organizers, we covered the costs of the lecturers' 
dinner for our invited speakers.

Total Meal Costs. EUR 122.

Other  costs. As  discussed  in  the  proposal,  we  needed  to  cover 
registration  fees  for  some of  our  invited  speakers  (two fee waivers 
were given as part of the workshop). We paid EUR 700 in registration 
fees to the ESSLLI 2011 organizers.

Total Other Costs. EUR 700.



Ordinals and Cardinals:
Basic set-theoretic techniques in logic

Benedikt Löwe
Universiteit van Amsterdam

Grzegorz Plebanek
Uniwersytet Wroc lawski

ESSLLI 2011, Ljubljana, Slovenia

B. Löwe & G. Plebanek Set-theoretic techniques



This course is a foundational course (no prerequisites) on basic
techniques of set theory. It consists of five lectures (given by BL=
‘Benedikt’ and GP= ‘Grzegorz’):

Programme

Monday General introduction (BL)
Measuring the infinite: Cardinal numbers (GP)

Tuesday Counting beyond infinity: Ordinal numbers (GP)

Wednesday Transfinite recursion and induction (BL)

Thursday The Axiom of choice (GP)

Friday Set-theoretic analysis of infinite games (BL)

No exams:-)
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The two protagonists of set theory.

Cardinal numbers.
Measuring the size of infinity and comparing the sizes of
infinite sets.

Ordinal numbers.
Counting beyond infinity and providing the means of
exhausting infinite sets by iterative processes.

Until the 19th century, infinity had been considered to be a rather
problematic concept.

B. Löwe & G. Plebanek Set-theoretic techniques



Achilles and the tortoise.

Zeno of Elea, c. 490 BC – c. 430 BC

The argument says that it is impossible for [Achilles] to overtake the
tortoise when pursuing it. For in fact it is necessary that what is to
overtake [something], before overtaking [it], first reach the limit from
which what is fleeing set forth. In [the time in] which what is pursuing
arrives at this, what is fleeing will advance a certain interval ... And in the
time again in which what is pursuing will traverse this [interval] which
what is fleeing advanced, in this time again what is fleeing will traverse
some amount ...

Simplicius, On Aristotle’s Physics, 1014.10

B. Löwe & G. Plebanek Set-theoretic techniques



Aristotle and the Actual Infinite.

Aristotle, 384 BC - 322 BC

For generally the infinite has this mode of existence: one thing is always
being taken after another, and each thing that is taken is always finite,
but always different.

Aristotle, Physica, III.6

For the fact that the process of dividing never comes to an end ensures
that this activity exists potentially, but not that the infinite exists
separately.

Aristotle, Metaphysica, IX.6

B. Löwe & G. Plebanek Set-theoretic techniques



Paradoxien des Unendlichen

Bernard Bolzano, 1781–1848

§18 Nicht eine jede Größe, die wir als Summe einer unendlichen Menge
anderer, die alle endlich sind, ist selbst eine unendliche.

Not every magnitude that is a sum of infinitely many finite magnitudes
is itself infinite.

§20 Ein merkwürdiges Verhältnis zweier unendlicher Mengen zueinander,
bestehend darin, daß es möglich ist, jedes Ding der einen Menge mit
dem der anderen so zu verbinden, daß kein einziges Ding in beiden
Mengen ohne Verbindung bleibt, auch kein einziges in zwei oder mehr
Paaren vorkommt.

A remarkable relationship between two infinite sets: it is possible to pair
each object of the first set to one of the second such that every object in
the two sets has a unique partner.

§21 Dennoch können beide unendliche Mengen, obschon mit Hinsicht auf die
Vielheit ihrer Teile gleich, in einem Verhältnisse der Ungleichheit ihrer
Vielheiten stehen, so daß die eine sich nur als ein Teil der anderen
herausstellen kann.

And this situation can occur even if one of the sets is a proper subset of
the other.

B. Löwe & G. Plebanek Set-theoretic techniques



Georg Cantor (1845 – 1918)
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Cardinal numbers.
Measuring the size of infinity and comparing the sizes of
infinite sets.

Cantor, Georg (1874). Über eine Eigenschaft des Inbegriffes aller reellen alge-
braischen Zahlen, Journal für die reine und angewandte Mathematik, 77, 258-
262.

Ordinal numbers.
Counting beyond infinity and providing the means of
exhausting infinite sets by iterative processes.

Cantor, Georg (1872). Über die Ausdehnung eines Satzes aus der Theorie der
trigonometrischen Reihen, Mathematische Annalen, 5, 123–132.
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The dual nature of set theory.

Historically, set theory started as a field of mathematics: the
study of infinite sets and their relationships.

In subsequent years, set theory developed into more than that:
the standard foundations for mathematics.

Ernst Zermelo Abraham Fraenkel Thoralf Skolem John von Neumann
1871–1953 1891–1965 1887–1963 1903–1957

B. Löwe & G. Plebanek Set-theoretic techniques



In our course, we shall ignore the foundational side of set theory,
and rather discuss basic set theory as a technique to deal with
infinities.

A recurring theme of this course will be the fact that you can
exhaust infinite sets by a procedure called transfinite recursion. As
an application, this will be used in our final lecture (Friday) to
produce an algorithm to determine the winner of an infinite game.

B. Löwe & G. Plebanek Set-theoretic techniques



Basic set-theoretic techniques in logic
Part I: Measuring the infinite

Benedikt Löwe
Universiteit van Amsterdam

Grzegorz Plebanek
Uniwersytet Wroc lawski

ESSLLI, Ljubljana August 2011

B. Löwe & G. Plebanek Cardinal numbers



In the real world. . .

. . . sets have finitely many elements, e.g.

W = {Mon,Tue, . . . ,Sat}, |W | = 7;

EU = {Austria,Belgium, . . . ,United Kingdom}, |EU| = 27;

UN = {Afghanistan,Albania, . . . ,Zimbabwe}, |UN| = 193.

In mathematics . . .

. . . many important sets are infinite, e.g.

the set of natural numbers N = {1, 2, 3, . . . , 2011, 2012, . . .};
the set of rational numbers (all the quotients)
Q = {0, 1, 2, 2/3, 7/8, . . .};
the set of all reals R (including Q and many other).

B. Löwe & G. Plebanek Cardinal numbers



Although our world seems to be finite, we need the concept of
infinity to describe it!
Saying that N and R are infinite, or writing |N| = |R| =∞, is not
enough.
In fact the symbol ∞ denotes rather potential infinity, e.g.

1 + 1/2 + 1/3 + . . . =∞,

while we shall discuss the actual infinity, of containing infinitely
many elements. We shall see that infinity has many faces and we
need several names for it.
It is intuitively clear that N is the ‘smallest’ infinite set.
It’s infinite but countable, meaning: in theory, we can imagine
naming all its elements.

B. Löwe & G. Plebanek Cardinal numbers



Definition

We say that a set A is countable if we can write

A = {a1, a2, . . . , an, . . .}

where a1, a2, . . . are all distinct.

We can label all elements of a countable set A by natural numbers,
so we think that A has the same number of elements as N.

Aleph zero

The infinity represented by N is denoted by ℵ0; we write

|N| = ℵ0.

Having introduced ℵ0, we can write |A| = ℵ0 instead of saying that
A has as many elements as N.

B. Löwe & G. Plebanek Cardinal numbers



Why aleph? Why aleph with index 0? Why Borges?

Jorge Luis Borges (1899–1986)

El aleph (1949)

B. Löwe & G. Plebanek Cardinal numbers



Hotel ℵ0
You are the owner of a hotel having inifnitely many rooms
(numbered 1,2,. . . ). Therefore if one day you have infinitely many
guests g1, g2, . . . , gn, . . . then you can provide accomodation for all
of them. Late in the evening another guest arrives? No problem:

g1 → 2, g2 → 3, . . . , gn → n + 1.

You will have the room no 1 free for the late guest.
Next day you face another infinite group of tourists
h1, h2, . . . , hn, . . .. Still no problem:

g1 → 2, g2 → 4, . . . , gn → 2n . . . .

This makes all the rooms with odd numbers free, and

h1 → 1, h2 → 3, . . . , hn → 2n − 1 . . . .

B. Löwe & G. Plebanek Cardinal numbers



Paradoxes of the infinite arise only when we attempt, with
our finite minds, to discuss the infinite, assigning to it
those properties which we give to the finite and limited.
(Galileo)

Paradoxes? Rather theorems: ℵ0 + 1 = ℵ0, ℵ0 + ℵ0 = ℵ0.

B. Löwe & G. Plebanek Cardinal numbers



Properties of countable sets

If A and B are countable then A ∪ B is countable.

If A and B are countable then A× B is countable, too, where

A× B = {〈a, b〉 : a ∈ A, b ∈ B}.

If A1,A2, . . . are all countable then the set

A = A1 ∪ A2 ∪ . . .An ∪ . . .

containing all elements of all those sets, is countable too.

Theorem

The set Q of rational numbers is countable: |Q| = ℵ0.

B. Löwe & G. Plebanek Cardinal numbers



Theorem

The set R of all real numbers is not countable.

Proof.

In fact we shall check that already the interval [0, 1] is not
countable.
Suppose that we have managed to create a list a1, a2, . . . of all real
numbers x ∈ [0, 1].

number 0. 1st 2nd 3rd . . . nth . . .

a1 0. ? x1
a2 0. ? x2
a3 0. ? x3
. . . 0.

an 0. ? xn
. . . 0.

The number 0.x1x2 . . . xn . . . is not on our list!

B. Löwe & G. Plebanek Cardinal numbers



Definition

The cardinality of R is called continuum and denoted by c:

|R| = c.

Why not ℵ1? Be patient!

B. Löwe & G. Plebanek Cardinal numbers



Comparing arbitrary sets

We say that two sets X and Y are equinumerous if there is a
bijection f : X → Y , that is one-to-one correspondence
between all elements of X and all elements of Y .

Equinumerous sets have the same cardinality: |X | = |Y |.
Note that a set X is countable if it is equinumerous with N.

Examples

Every two nonempty intervals (a, b) and (c , d) on the real line
are equinumerous and have cardinality c.

Theorem. The plane R× R is equinumerous with R.

All the Euclidean spaces R1,R2, . . . ,Rd , . . . have cardinality c.

B. Löwe & G. Plebanek Cardinal numbers



Comparing arbitrary sets II

|X | ≤ |Y | if there is a one-to-one function f : X → Y , that is
a bijection between X and some part of Y .

|X | < |Y | if |X | ≤ |Y | but |X | 6= |Y |.

We already know that |N| < |R| , in other words: ℵ0 < c.

Theorem (Cantor-Bernstein)

If |X | ≤ |Y | and |Y | ≤ |X | then |X | = |Y |.

Do not think it’s obvious!

B. Löwe & G. Plebanek Cardinal numbers



A math lecture without a proof is like a movie without a
love scene. (H. Lenstra)

B. Löwe & G. Plebanek Cardinal numbers



Definition

If X is any set we denote by P(X ) the power set of X , that is the
family of all subsets of X .

Example

Let X = {1, 2, 3}. Then

P(X ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} .

If X = {1, 2, . . . , n} then P(X ) has 2n elements.

Definition

If X is a set of cardinality κ then 2κ denotes the cardinality of
P(X ).

B. Löwe & G. Plebanek Cardinal numbers



For a finite set X we have 2|X | > |X | since 2n > n.

Theorem (Cantor)

For every set X the power set P(X ) has more elements than X ; in
other words

2κ > κ,

for any cardinal number.

B. Löwe & G. Plebanek Cardinal numbers



Proof.

We have |X | ≤ |P(X )| since we can define one-to-one function
f : X → P(X ) by f (x) = {x}.
Suppose that g : X → P(X ) is a bijection. Consider the set
A ⊆ X , where

A = {x ∈ X : x /∈ g(x)}.
Then A cannot be associated with any x ∈ X . If we suppose that
A = g(x0) then we have a puzzle whether x0 is in A or not:

if x0 ∈ A then x0 /∈ g(x0) = A;

if x0 /∈ A then x0 ∈ g(x0) = A,

a contradiction!.

Like in a famous Barber paradox:

In some village there was one man who was the only barber and he
was ordered to shave all the men who do not shave themselves.
Should he shave himself?

B. Löwe & G. Plebanek Cardinal numbers



‘Drawing hands’ by Maurits Cornelis Escher
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Conclusions

ℵ0 < 2ℵ0 < 22
ℵ0 < . . .;

there are infinitely many kinds of infinity;

there is no set X which is the biggest one.

What about c? We shall see that

Theorem

c = 2ℵ0

We can also ask if there are only countably many types of
infinity:-)

B. Löwe & G. Plebanek Cardinal numbers



An application: Transcendental numbers

Recall that x ∈ R is rational if x = a/b for some integers a, b,
b 6= 0.√

2 is not rational but it solves the equation x2 − 2 = 0.

x is algebraic if x is a solution of some equation

a0 + a1x + a2x2 + . . . anxn = 0,

for some integers ai and some n.

π and e = limn→∞(1 + 1/n)n are not algebraic, they are
transcendental. But it’s difficult to prove it!

Is there is an easy way of showing that there are
transcendental numbers?

The set of all algebraic numbers is countable; so a typical
number is indeed transcendental.

B. Löwe & G. Plebanek Cardinal numbers



Basic set-theoretic techniques in logic
Part II, Counting beyond infinity:

Ordinal numbers

Benedikt Löwe
Universiteit van Amsterdam

Grzegorz Plebanek
Uniwersytet Wroc lawski

ESSLLI, Ljubliana August 2011

B. Löwe & G. Plebanek Ordinal numbers



Summary of the first lecture:
We have discussed how to measure the infinity, in particular
measuring the size of the set o natural numbers:
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Now for something slightly different. Have you ever counted up to
1000?

1, 2, 3, . . . , 1000.

It takes more than 16 minutes but surely we can do it.
We can also imagine ourselves counting up to 1010

10
though it will

be really time-consuming.
Can we count beyond infinity? If so we need a new name:

B. Löwe & G. Plebanek Ordinal numbers



Having ω (sometimes denoted ω0) at hand we can continue:

0, 1, 2, . . . , 2011, . . . , ω, ω + 1, ω + 2, . . . , ω + ω, . . .

Is there any use of this?

B. Löwe & G. Plebanek Ordinal numbers



Pros and Cons of Hitch Hikinga

aafter Roger Waters, ex Pink Floyd

Suppose you are hitchhiking from A to B.

Pros: should be for free.

Cons: the route may be complicated,

starting from A→ B (0 stops), to

A→ S1 → B (1 stop),

A→ S1 → S2 → B (2 stops),

and so on.

B. Löwe & G. Plebanek Ordinal numbers



Pros and Cons of Hitch Hiking, continued

Suppose that on our way we may be offered a lift by little dwarfs in
their little cars, moving us only a tiny little bit forward:

A→ S1 → S2 → . . .→ Sn → . . .→ B.

Then we may call such a route ω. Can you imagine hitchhiking in
the ω + 1 or ω + ω style?

B. Löwe & G. Plebanek Ordinal numbers



All the hitchhiker’s routes

Denote the collection of all possible routes by ω1;

ω1 = {0, 1, 2, . . . , ω, ω + 1, ω + 2 . . . , ω + ω, ω + ω + 1, . . .}.

Note that 1 + ω is the same as ω but ω + 1 is different.

With every route α we can think of α + 1, so there is no
largest element of ω1.

Every route α has finitely or countably many stops.

If α is a route and X is any nonempty set of stops appearing
in α then X has the first stop.

If α1, α2, . . . is any sequence of routes then there is a route α
which is more complicated than all αn’s.

The set ω1 of all routes is uncountable.

B. Löwe & G. Plebanek Ordinal numbers



Now a serious stuff!

Definition

We say that a set X is linearly ordered by < if for any x , y , z ∈ X

x 6< x ;

x < y and y < z imply x < z ;

if x 6= y then x < y or y < x .

Example

The set R of reals is linearly ordered by the ‘natural’ order.
All words are linearly ordered by the lexicographic order.

B. Löwe & G. Plebanek Ordinal numbers



Definition

A set X is well-ordered by < if it is linearly ordered and

every nonempty subset A of X has a least element.

Example

The set N is well-ordered. Hmmmm, should be obvious. . .
The interval [0, 1] has the least element (= 0) but is not
well-ordered because its subset A = {1, 1/2, 1/3, . . . } does not
contain a least element.

Definition

Two well-ordered sets (X , <) and (Y , <) are isomorphic if there is
a bijection f : X → Y such that

x1 < x2 is equivalent to f (x1) < f (x2);

for any x1, x2 ∈ X .

B. Löwe & G. Plebanek Ordinal numbers



Theorem

1 If (X , <) is well-ordered and f : X → X is an increasing
function then f (x) ≥ x for every x ∈ X.

2 If (X , <) is well-ordered and f : X → X is an isomorphism
then f is the identity function.

Proof.

Suppose that f (x) ≥ x does not hold for all x ; it means that the
set

A = {x ∈ X : f (x) < x}
is nonempty. Take its minimal element x0. Then y0 = f (x0) < x0
(since x0 ∈ A), and f (y0) < f (x0) = y0 (since f is increasing). It
follows that y0 ∈ A, a contradiction with y0 < x0.
By the first part we have f (x) ≥ x for any x . We can also apply
the first part to the inverse function f −1 : X → X :
f −1(x) ≥ x so x = f (f −1(x)) ≥ f (x).
Hence f (x) = x for all x .
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If X is well-ordered and a ∈ X then the set {x ∈ X : x < a} is
called the initial segment of X given by a.

Theorem

Let (X , <) and (Y , <) be two well-ordered sets. Then either

1 X and Y are isomorphic, or

2 X is isomorphic to some initial segment of Y , or

3 Y is isomorphic to some initial segment of X .

Definition

An ordinal number is the order type of some well-ordered set.

If α is the order type of X and β is the order type of Y then

1 α = β,

2 α < β,

3 β < α,

in the corresponding cases.
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Example

0 is the order type of the empty set;

1 is the order type of a set consisting of one element;

ω = ω0 is the order type of {0, 1, 2, . . .};

We may as well think that ω is the set {0, 1, 2, . . .}.

Definition

ω1 is the least order type of a well-ordered uncountable set.

We have α < ω1 whenever α is an order type of a countable set.
We may think that ω1 = {0, 1, 2, . . . , ω, ω + 1, . . . , α, . . .} is the
set of all order types of countable sets.
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Ordinal and cardinal numbers

An ordinal number α is a cardinal number if for every β < α
we have |β| < |α|.
0, 1, 2, . . . are cardinal numbers.

ω is a cardinal number (denoted ℵ0).

ω + 1, ω + ω are not cardinal numbers.

ω1 is the next cardinal number denoted as ℵ1.

ω2 is the least order type of a set of cardinality > ℵ1; ℵ2 = ω2.

We can define ℵ0 < ℵ1 < ℵ2 < . . ..

Then ℵω comes. And so on . . . Do you understand?a

aIn mathematics, you don’t understand things. You just get used to them.
(John von Neumann)
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Handling the continuum

We have an exact list of cardinal numbers
ℵ0 < ℵ1 < ℵ2 < . . ..

Before we defined another list ℵ0 < 2ℵ0 < 22
ℵ0 < . . ..

We also considered c — the cardinality of R.

Let us prove that c = 2ℵ0 .
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2ℵ0 = c.

Note that 2ℵ0 (by the definition the cardinality of P(N)) is the
cardinality of the set {0, 1}N of all infinite sequences of of 0’s and
1’s.
The function f : {0, 1}N → R, where

f (x1, x2, . . .) =
∞∑

n=1

2xn
3n
,

is one-to-one. It follows that 2ℵ0 ≤ c.
Every x ∈ [0, 1] has a unique infinite binary expansion

x = (0, x1x2 . . .)(2).

This shows that [0, 1] admits one-to-one function into {0, 1}N, and
c = |[0, 1]| ≤ 2ℵ0 . Finally c = 2ℵ0 by the Cantor-Bernstein theorem.
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Today...

ℵ0 < ℵ1 < ℵ2 < ...

ℵ0 < 2ℵ0 < 22ℵ0 < ...

1 Mirna’s question: how do you construct an uncountable
ordinal?

2 The Continuum Hypothesis

3 Induction and Recursion on N
4 Transfinite Induction and Recursion

5 A few applications
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Reminder (1).

Two equivalence relations:

|X | = |Y |: X and Y are equinumerous; i.e., there is a
bijection between X and Y .

(X ,R) ' (Y , S): (X ,R) and (Y , S) are isomorphic as ordered
structures; i.e., there is an order-preserving bijection between
X and Y .

The cardinalities are the equivalence classes of the equivalence
relation of being equinumerous; the ordinals are the equivalence
classes of being order-isomorphic.

Note that if (X ,R) ' (Y ,S), then |X | = |Y |. The converse
doesn’t hold: |ω + 1| = |ω|, but ω + 1 6' ω. We called an ordinal κ
a cardinal if for all α < κ, we have |α| < |κ|.
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Reminder (2).

A structure (X ,R) was called a wellorder if (X ,R) is a linear order
and every nonempty subset of X has an R-least element.

Proposition. The following are equivalent for a linear order
(X ,R):

1 (X ,R) is a well-order, and

2 there is no infinite R-descending sequence, i.e., a sequence
{xi ; i ∈ N} such that for every i , we have xi+1Rxi .

Proof. “1⇒2”. If X0 := {xi ; i ∈ N} is an R-descending sequence, then X0 is a
nonempty subset of X without R-least element.

“2⇒1”. Let Z ⊆ X be a nonempty subset without R-least element. Since it is
nonempty, there is a z0 ∈ Z . Since it has no R-least element, for each z ∈ Z ,
the set Bz := {x ∈ Z ; xRz} is nonempty.

For each z , pick an element b(z) ∈ Bz . Now define by recursion zn+1 := b(zn).
The defined sequence {zn; n ∈ N} is R-descending by construction. q.e.d.
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Mirna’s question: how do you construct an uncountable
ordinal?

Hartogs’ Theorem. If X is a set, then we can construct a
well-order (Y ,R) such that |Y | 6≤ |X |.
We’ll prove the special case of X = N and thus prove that there is
an uncountable ordinal:

Consider

H := {(X ,R) ; X ⊆ N and (X ,R) is a wellorder}.

We can order H by

(X ,R) ≺ (Y ,S)

iff (X ,R) is isomorphic to a proper initial segment of (Y ,S).
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How do you construct an uncountable ordinal? (2)

H := {(X , R) ; X ⊆ N and (X , R) is a wellorder}.

(X , R) ≺ (Y , R) iff (X , R) is isomorphic to a proper initial segment of (Y , S).

1 (H,≺) is a linear order.

2 (H,≺) is a wellorder.

3 H is closed under initial segments: if (X ,R) ∈ H and
(Y ,R�Y ) is an initial segment of (X ,R), then (Y ,R�Y ) ∈ H.
So in particular, if α is the order type of some element of H,
then the order type of (H,≺) must be at least α.

4 If α is the order type of some element of H, then α + 1 is.

Claim. H cannot be countable.

In fact, we have constructed a wellorder of order type ω1.
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The continuum hypothesis

ℵ1 is the least cardinal greater than ℵ0.

c is the cardinality of the real line R.

It is not obvious at all that there is any relation between ℵ1

and c, as we do not know whether there is a cardinal that is
equinumerous to R (see the Thursday lecture).

If we assume that c is a cardinal and not just a cardinality,
then we know that c ≥ ℵ1 since cardinals are linearly ordered.

Cantor conjectured (in 1877) that in fact c = ℵ1. This
statement is called the Continuum Hypothesis (CH).

CH was the first problem on the famous Hilbert list (1900).

In 1938, Kurt Gödel proved that there is a model of set theory
in which CH holds.

In 1963, Paul Cohen proved that you cannot prove CH. In
fact, for any n ≥ 1, the statement c = ℵn is consistent. With
a few exceptions (e.g., ℵω), c can be any ℵα.
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Induction on the natural numbers (1).

The induction principle (IP).

Suppose X ⊆ N. If

0 ∈ X , and

n ∈ X implies n + 1 ∈ X ,

then X = N.

Example. The proof of “There are countably many polynomials
with integer coefficients”:

P = P1 ∪ P2 ∪ P3 ∪ ...

If we can show that each Pi is countable, then P is countable as a
countable union of countable sets.

Define
X := {n ; Pn+1 is countable}
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Induction on the natural numbers (2).

X := {n ; Pn+1 is countable}

0 ∈ X . An element of P1 is of the form ax + b for a, b ∈ Z,
so |P1| = Z× Z. Thus P1 is countable, and 0 ∈ X .

if n ∈ X , then n + 1 ∈ X . Suppose n ∈ X , that means that Pn+1

is countable. Take an element of Pn+2. That is of
the form

an+2x
n+2 +an+1x

n+1 +anx
n + ...+a0 = an+2x

n+2 +p

for some p ∈ Pn+1. So, |Pn+2| = |Z× Pn+1|, and
thus (because Pn+1 was countable), Pn+2 is
countable.

The induction principle now implies that X = N, and this means
that Pn is countable for all n.

B. Löwe & G. Plebanek Transfinite Recursion



The least number principle.

The least number principle (LNP).

Every nonempty subset of N has a least element.

This means: (N, <) is a wellorder.

(Meta-)Theorem. If LNP holds, then IP holds.

Proof. Suppose that LNP holds, but IP doesn’t. So, there is some X 6= N
satisfying the conditions of IP, i.e., 0 ∈ X and “if n ∈ X , then n + 1 ∈ X .

Consider Y := N\X . Since X 6= N, this is a nonempty set. By LNP, it has a
least element, let’s call it y0.

Because 0 ∈ X , it cannot be that y0 = 0. Therefore, it must be the case that
y0 = n + 1 for some n ∈ N. In particular, n < y0. But y0 was the least element
of Y , and thus n /∈ Y , so n ∈ X .

Now we apply the induction hypothesis, and get that y0 = n + 1 ∈ X , but
that’s a contradiction to our assumption. q.e.d.
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Recursion on the natural numbers (1).

The recursion principle (RP).

Suppose that f : N→ N is a function and n0 ∈ N. Then there is a
unique function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

Two ways to define addition and multiplication on the natural
numbers:

1 “cardinal-theoretic”: n + m is the unique natural number k such that any set
that is the disjoint union of a set of n elements with a set of m elements has k
elements.

2 “recursive”: Fix n. Define a function addton by recursion (“Grassmann
equalities”):

addton(0) := n, and

addton(m + 1) := addton(m) + 1.

Define n + m := addton(m).

B. Löwe & G. Plebanek Transfinite Recursion



Recursion on the natural numbers (1).

The recursion principle (RP).

Suppose that f : N→ N is a function and n0 ∈ N. Then there is a
unique function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

Is RP obvious?

No, since the recursion equations are not an allowed form of
definition: in the definition of the objection F , you are referring to
F itself.

Proof. We’ll prove RP from IP.

What do we have to prove? We need to give a concrete definition
of F , i.e., a formula ϕ(n,m) that holds if and only if F (n) = m.
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Recursion on the natural numbers (2).

Preliminary work:

If g : {0, ...,m} → N is a function such that

g(0) = n0, and

g(n + 1) = f (g(n)) for any n < m,

we call it a germ of length m.

1 The function g0 : {0} → N defined by g0(0) := n0 is a germ of length 0.

2 If g is a germ of length m and k < m, then g�{0, ..., k} is a germ of
length k.

3 If g is a germ of length m, then the function g∗ defined by

g∗(k) :=

{
g(k) if k ≤ m,

f (g(m)) if k = m + 1.

is a germ of length m + 1.

4 For every n ∈ N, there is a germ of length n.

5 If g , h are germs of length n, then g = h.
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Recursion on the natural numbers (3).

(RP) Suppose that f : N→ N is a function and n0 ∈ N. Then there is a unique
function F : N→ N such that

F (0) = n0, and

F (n + 1) = f (F (n)) for any n ∈ N.

What do we have to prove? We need to give a concrete definition of F , i.e., a formula
ϕ(n,m) that holds if and only if F (n) = m.

We have proved that for every n ∈ N, there is a unique germ of
length n, let’s call it gn. Here is our definition of F :

ϕ(n,m) ⇐⇒ m = f (gn(n)).
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Counting beyond infinity.

We have defined the ordinals (essentially) as wellorders, i.e., sets
that satisfy what we called the least number principle. For N, we
showed that LNP implies IP, so maybe we can prove a transfinite
induction principle?

First attempt at a transfinite induction principle.

Suppose α is an ordinal and X ⊆ α. If

0 ∈ X , and

β ∈ X implies β + 1 ∈ X ,

then X = α.

Can this be true? Let α = ω + 1 = {0, 1, 2, 3, ..., 2011, ..., ω} and
consider X = {0, 1, 2, 3, ..., 2011, ...}. Then X satisfies the two
conditions in the induction principle, but X 6= ω + 1.

So, our first attempt didn’t work.
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That’s strange...

We proved that LNP implies IP (for N) and all ordinals satisfy
LNP, so why don’t they also satisfy IP?

We need to analyse what goes wrong in our proof in the case of
ω + 1 and X :

Proof of “LNP implies IP”.

Suppose that LNP holds, but IP doesn’t. So, there is some X 6= N satisfying the
conditions of IP, i.e., 0 ∈ X and “if n ∈ X , then n + 1 ∈ X .

Consider Y := N\X . Since X 6= N, this is a nonempty set. By LNP, it has a least
element, let’s call it y0.

Because 0 ∈ X , it cannot be that y0 = 0. Therefore, it must be the case that
y0 = n + 1 for some n ∈ N. In particular, n < y0. But y0 was the least element of Y ,
and thus n /∈ Y , so n ∈ X .

Now we apply the induction hypothesis, and get that y0 = n + 1 ∈ X , but that’s a
contradiction to our assumption. q.e.d.
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We proved that LNP implies IP (for N) and all ordinals satisfy
LNP, so why don’t they also satisfy IP?
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Successor ordinals and limit ordinals.

We say that an ordinal α is a successor ordinal if there is some β
such that α = β + 1. If that is not the case, then α is called a
limit ordinal.

Examples.

1 = 0 + 1

17 = 16 + 1

2001 = 2010 + 1

ω + 17 = (ω + 16) + 1

But ω, ω + ω, ω + ω + ω, and also ω1, ω2 etc. do not have this
property, and thus are limit ordinals.
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Transfinite induction (1).

Transfinite induction principle.

Suppose α is an ordinal and X ⊆ α. If

0 ∈ X ,

β ∈ X implies β + 1 ∈ X , and

if λ < α is a limit ordinal and for all β < λ, we have β ∈ X ,
then λ ∈ X ,

then X = α.

B. Löwe & G. Plebanek Transfinite Recursion



Transfinite induction (2).

Proof of TIP. Suppose α is an ordinal, i.e., wellordered, but TIP
doesn’t hold. So, there is some X 6= α satisfying the conditions of
TIP, i.e.,

0 ∈ X ,

β ∈ X implies β + 1 ∈ X , and

if λ < α is a limit ordinal and for all β < λ, we have β ∈ X ,
then λ ∈ X .

Consider Y := α\X . Since X 6= α, this is a nonempty set. By the
fact that α is wellordered, it has a least element, let’s call it y0.

The element y0 has to be either a successor or a limit ordinal. If it
is a successor, then y0 = β + 1 for some β ∈ X , but then y0 ∈ X .
If it is a limit, then all of its predecessors are in X , and thus
y0 ∈ X . This gives the desired contradiction. q.e.d.
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Transfinite recursion.

Suppose that α is an ordinal. We call a function s : β → Ord a
segment if β < α. Suppose that you have an ordinal α0, a function
f : Ord→ Ord and a function g assigning an ordinal to every
segment.

Then there is a unique function F : α→ Ord such that

1 F (0) = α0,

2 F (β + 1) = f (F (β)), if β + 1 ∈ α, and

3 F (λ) = g(F �λ) if λ ∈ α is a limit ordinal.

The proof is a homework exercise.
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Global version of transfinite recursion.

Suppose that you have an ordinal α0, a function f : Ord→ Ord
and a function g assigning an ordinal to every segment.

Then there is a unique set operation F : Ord→ Ord such that
1 F (0) = α0,
2 F (β + 1) = f (F (β)), for every β, and
3 F (λ) = g(F �λ) if λ is a limit ordinal.

First application:

ℵ0 := ω,

ℵβ+1 := the least ordinal γ such that |ℵβ | < |γ|,
ℵλ := the least ordinal γ such that |ℵβ | < |γ| for all β < λ.

i0 := ω,

iβ+1 := |2iβ |
iλ := the least ordinal γ such that |iβ | < |γ| for all β < λ.
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Ordinal arithmetic (1).

Two ways to define ordinal addition:

1 “order-theoretic”: α+ β is the unique ordinal corresponding to the wellorder of
the disjoint union of α and β where all elements of α precede all elements of β.

2 “recursive”: Fix α. Define a function addtoα by recursion:

addtoα(0) := α,

addtoα(β + 1) := addtoα(β) + 1,

addtoα(λ) := the least γ bigger than all addtoα(β) for β < λ.

Define α+ β := addtoα(β).

And based on this, ordinal multiplication:

multα(0) := 0,

multα(β + 1) := multα(β) + α,

multα(λ) := the least γ bigger than all multα(β) for β < λ.

α · β := multα(β).
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Why axioms?

If we start playing with sets without any care we are in trouble:

The Russell paradox

Suppose that there is a set X such that

X = {a : a /∈ a}.

Then X ∈ X ⇐⇒ X /∈ X , which is a false sentence.

Therefore we start by a list of axioms naming some legitimate
operations.
The Russell paradox show that it is not always possible to form a
set of the form {x : ϕ(x)}.
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Some axioms of Zermelo-Fraenkel (ZF)

Union: For any sets X and Y there is a set, denoted X ∪ Y ,
containing all elements of X and all elements of Y .

Separation: If A is a set and ϕ is some property then there is
a set {x ∈ A : ϕ(x)}.
Power set: For every set X there is a set {A : A ⊆ X}
(denoted P(X )).

Infinity: There is an infinite set.

The axiom of choice (AC)

For every family A of nonempty sets there is a choice function f ,
such that f (A) ∈ A for every A ∈ A.

ZF+ AC=ZFC.
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Equivalent forms

1 The axiom of choice.

2 Zermelo’s theorem: Every set can be well-ordered.

Proof.

(1)−→(2) Take any set X . We shall show that X = {xα : α < γ}
for some ordinal number γ.
Let f be a choice function for the family of all nonempty subsets of
X . We define

xα = f (X \ {xβ : β < α}),
until it is possible. Then take γ to be the first ordinal number for
which the set X \ {xα : α < γ} is empty.
(2)−→(1) If A is any family of nonempty sets then we can order
the union X =

⋃A of all of them and define f (A) to be the first
element of A.
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Zorn’s lemma, Tuckey style

Theorem

Let X be a set and A be a family of its subsets. Assume that A
has finite character, i.e. B ∈ A if and only if all finite subsets of B
belong to A.
Then for any A ∈ A there is M ∈ A such that A ⊆ M and M is
maximal, i.e. for every M ′ ∈ A satisfying M ⊆ M ′ we have
M ′ = M.

Proof.

Let X = {xα : α < γ}. Define M by

xα ∈ M ⇔ A ∪ {xβ ∈ M : β < α} ∪ {xα} ∈ A.

Then M ∈ A because all the finite subsets of M are in A.
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Application: Hamel basis

A set {x1, x2, . . . , xn} of reals is linearly independent over Q if for
any qi ∈ Q, if q1x1 + q2x2 + . . .+ qnxn = 0 then qi = 0 for all
i ≤ n.

Example

{1,
√

2,
√

3} is linearly independent over Q.

Remark

If {x1, x2, . . . , xn} is l.i. while {x1, x2, . . . , xn, y} is not then
y = q1x1 + . . . qnxn for some qi ’s.

Theorem

There is a maximal linearly independent over Q set H ⊆ R. Every
x ∈ R has the unique representation x =

∑
i≤n qihi , where n ∈ N,

qi ∈ Q, hi ∈ H.
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Application: Vitali sets

For x , y ∈ R, say that x ∼ y if x − y ∈ Q. The relation is
equivalence relation on R, that is x ∼ x , x ∼ y ⇔ y ∼ x and
x ∼ y , y ∼ z ⇒ x ∼ z for any x , y , z . The relation ∼ divides R
into disjoint nonempty sets, where each set is of the form
{y : y ∼ x} for some x . Let V be a selector for that partition.
Then

(q + V ) ∩ V = ∅ for every rational q 6= 0; otherwise, if
x ∈ (q + V ) ∩ V then x = y + q for some x , y ∈ V , which
gives x ∼ y , x 6= y , a contradiction.⋃

q∈Q(q + V ) = R.

We can assume that V ⊆ [0, 1). Then

[0, 1) ⊆
⋃

q∈Q∩[−1,1)
(q + V ) ⊆ [−1, 2).
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Is Axiom of Choice controversial?

Banach-Tarski paradox

The ball of radius 1 (in R3) can be, by AC, decomposed into 5
pieces. Using those sets one can, using rotations and translations,
form two balls of radius 1.

It follows that 1=2 so there must be something wrong with AC.
. . . Or with you intuition concerning the volume. Why do you
assume that you can measure the volume of every set in R3?
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Thank yor for your attention!

David Hilbert:

No one shall expel us from the Paradise that Cantor has
created.

Georg Cantor:

The essence of mathematics lies entirely in its freedom.

B. Löwe & G. Plebanek The axiom of choice



Basic set-theoretic techniques in logic
Part V, Infinite Games

Benedikt Löwe
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B. Löwe & G. Plebanek Infinite Games



Let’s play chess...

Ernst Zermelo (1871–1953)

Ernst Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels,

What is a chess configuration?

There are 64 squares on a chess board:

There are 13 possible ways to fill a square.

X

Thus, there are at most 6413 possible configurations of chess. Most of
them are illegal.
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Chess as a mathematical object (1).

We can think about playing chess as playing a sequence of natural
numbers that stand for these at most 6413 configurations:

n0
white−→ n1

black−→ n2
white−→ n3 → ...

where n0 corresponds to

and each of the other numbers represents something like

or .
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Chess as a mathematical object (2).

We can think of the entire game tree to be the infinite
6413-branching tree (i.e., a finitely branching tree). There are a
number of different types of nodes in this tree:

1 Nodes that end in an illegal position,

2 nodes in which white has lost,

3 nodes in which black has lost,

4 nodes that determine that the game is a draw,

5 nodes in which neither of the following cases has occurred.

If the same configuration occurs twice for the same player, then a
game is counted as a draw. So, any sequence of 2 · 6413 + 1 moves
in chess in which neither of 1., 2., or 3. has occurred is a draw.
That means that we can cut off the tree at 2 · 6413 + 1 and obtain
a finite tree.
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Chess as a mathematical object (3).

Let’s prune the tree:

1 Nodes that end in an illegal position,

2 nodes in which white has lost,

3 nodes in which black has lost,

4 nodes that determine that the game is a draw,

5 nodes in which neither of the following cases has occurred.

Step 1. If the last position of a node p is an illegal position,
search backwards to the root and find the first position p∗ in that
sequence that is illegal. Cut off the tree after that node.

Step 2. If p is a node in which white or black has lost or the
game is a draw, cut off the tree after that node.

In the resulting tree T , the terminal nodes are exactly those in
which it is determined whether white won, black won or the
game is a draw.
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Chess as a mathematical object (4).

Define depth(p) to be the length of the longest path from p to a
terminal node. Note that for every p ∈ T , depth(p) ≤ 2 · 6413 + 1.
Note furthermore that a node p is terminal if and only if
depth(p) = 0.

Define a function label by recursion:

If p is terminal, and t is a loss for white, then let label(p) = black.

If p is terminal, and t is a loss for black, then let label(p) = white.

If p is terminal, and t is a draw, then let label(p) = draw.

If p is terminal, and the last position is illegal, then if the last move was
for white, then let label(p) = black; if the last move was for black,
then let label(p) = white.

This defines label on all nodes of depth 0. The label determines
the outcome of the game if the game reaches that node.
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Chess as a mathematical object (5).

Suppose label is define for all nodes of depth i . Let p be a node of
depth i + 1 where white has to move. All successors of p already
have labels.
Case 1. If at least one of them is labelled white, then label p white as well.

Case 2. If none of them is labelled white, but at least one is labelled draw, then
label p draw.

Case 3. If all of them are labelled black, then label p black.

Now let p be a node of depth i + 1 where black has to move.

Case 1. If at least one of them is labelled black, then label p black as well.

Case 2. If none of them is labelled black, but at least one is labelled draw, then
label p draw.

Case 3. If all of them are labelled white, then label p white.

By the recursion principle, label is a total function on T , and thus
the root has a label.
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Chess as a mathematical object (6).

Theorem. If the root has label white, then white has a winning
strategy; if the root has label draw, then both players have a
drawing strategy; if the root has label black, then black has a
winning strategy.

Corollary. One of the following three cases holds:

1 white has a winning strategy in chess,

2 black has a winning strategy in chess,

3 both players have a drawing strategy in chess.

Of course, to this day, it is not known which of the three cases
holds.
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Infinite games.

We fix an arbitrary set X of possible moves. We have two players,
I and II. I plays in the even rounds (0,2,4,...) and II plays in the
odd rounds (1,3,5,7,...).

Together, they produce an infinite sequence

x0, x1, x2, x3, x4, ...

i.e., a function x : N→ X .

We fix a payoff function A : XN → {I, II,draw}.
Combinatorially, think of this as the infinitely long X -branching
tree TX in which the two players move by alternatingly producing
an infinite branch.
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Chess as a special case.

Let X = 6413, and consider the finite pruned tree we constructed
before as TChess ⊆ TX . Suppose that x is an infinite branch
through TX . Then it passes through a unique terminal node of
TChess.

Now define
AChess(x) := label(tx).
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Some simplifying conventions.

From now on, we’ll let X = N, and we’ll ignore the option draw.
That means in our games, exactly one of the players wins.

This means that we do not really need a payoff function anymore,
but can instead use a payoff set A ⊆ NN, interpreting an outcome

x ∈ A

as a win for player I and an outcome

x /∈ A

as a win for player II.
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Strategies.

Let T I be the set of nodes of TX = TN of even length; in other
words, those nodes where player I has to play. Similarly, let T II be
the set of nodes of TX = TN of odd length.

A strategy for player I is a function σ : T I → N, and a strategy for
player II is a function τ : T II → N.

If σ and τ are such strategies, we can let them play against each
other and recursively define σ ∗ τ :

(σ ∗ τ)(2n) := σ((σ ∗ τ)�2n)

(σ ∗ τ)(2n + 1) := τ((σ ∗ τ)�2n + 1)

A strategy σ for player I is winning if for all τ , we have σ ∗ τ ∈ A.

A strategy τ for player II is winning if for all σ, we have σ ∗ τ /∈ A.
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Strategies as trees (1).

A strategy σ defines a tree Tσ ⊆ TN by the following recursive
definition:

if s ∈ T I ∩ Tσ, then sσ(s) ∈ Tσ;

if s ∈ T II ∩ Tσ, then sx ∈ Tσ for any x ∈ N.

If τ is any strategy for player II, then σ ∗ τ is a branch through Tσ.

We can now reformulate: σ is winning for I if every branch through
Tσ is in A.

Let’s investigate Tσ. Let Zσ be its set of branches. We’ll show
that |Zσ| = c.
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Strategies as trees (2).

Proof. It’s easy to see that |NN| = c. Since Zσ ⊆ NN, we get |Zσ| ≤ c.

For the other direction, we only need to produce an injection from the power
set of N to Zσ. As before, we identify the power set of N with {0, 1}N by

M 7→ xM

with

xM(n) =

{
1 if n ∈ M,
0 otherwise.

We define a strategy for player II as follows. If s ∈ T II and the length of s is
2n + 1, we let

τM(s) := xM(n).

Now consider σ ∗ τM . Clearly, if M 6= M ′, then σ ∗ τM 6= σ ∗ τM′ . So,

M 7→ σ ∗ τM

is an injection from the power set of N into Zσ. q.e.d.
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Strategies as trees (3).

Using the same technique, you can show that there are exactly c
many strategies.

Proof. Homework.

Corollary.

1 If A is countable, then I cannot have a winning strategy in the
game with payoff set A.

2 If the complement of A is countable, then II cannot have a
winning strategy in the game with payoff set A.
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An application (?)

Theorem (Morton Davis). For each A ⊆ NN there is a game G∗
A

such that

1 If I has a winning strategy in G∗
A, then |A| = c.

2 If II has a winning strategy in G∗
A, then |A| ≤ ℵ0.

Corollary. If we can show that all games have a winning strategy
for one of the two players, then the Continuum Hypothesis holds.
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Existence of non-determined sets.

Theorem. The Axiom of Choice implies the existence of a set
such that neither of the players has a winning strategy.

Proof. We had seen that there are c many strategies. Use the
Axiom of Choice to list them in a wellordered list {σα ; α < c}.
We also saw that for each of these strategies σα, its set of
branches Zα has c many elements.

Recursively define disjoint sets A and B such that each strategy
contains an element of A and B. Then there can be no winning
strategy for either play in the game with payoff set A. q.e.d.
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Gale-Stewart theorem.

A set A is called finite horizon if there is a set W ∈ TN such that

x ∈ A if and only if ∃p ∈W (x passes through p).

Theorem. For every finite horizon game there is either a winning
strategy for player I or for player II.

Isn’t this just like in the chess example?

You prune the tree after the nodes p ∈W, then these
nodes become terminal nodes, and you label them with I.
Then you run the recursion and if the root gets label I,
then I has a winning strategy; if not then II has a winning
strategy.

Well, it’s not so simple since we now have infinitely branching trees.
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