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3   Hydrodynamic simulations 
The quadratic cutout of the segmented microtomographic image stack of the sea-ice samples 
(Figure 2.1 (c)) is taken to conduct hydrodynamic simulations with the program 'GeoDict' in 
order to determine the permeability in the vertical direction of the sample. In these virtual flow 
experiments a Newtonian fluid (in this case water at 0°C) flows through the sample. The 
permeability of the sample is calculated from Darcy’s law: 
 

 
 

Q corresponds to the total discharge in m3/s, k to the permeability of the sample in m2, A to the 
cross-sectional area of the sample in m2, (Pb-Pa) to the pressure drop, µ to the viscosity of the 
water in Pa/s, and L corresponds to the length of the sample in m (Wiegmann (2012)). Darcy’s 
law is only valid for very slow flows with a Reynoldsnumber less than 1, that follow the Stokes 
equation. This means that the relation between pressure drop and the flow velocity is linear. 
Therefore, the permeability can only be calculated for samples with small pore diameters since 
the flow through the pores has to be laminar. For the calculation of the permeability several 
equations for pressure and velocity values are solved iteratively at each voxel. The stopping 
criterion for the calculation is the stationarity of the process, which means a relative 
improvement in the permeability smaller than the chosen accuracy from one iteration to the next 
one. Additionally, a value for maximal iterations and the maximal run time is chosen, at which 
the calculation of the permeability stops, even though stationarity might not be reached yet. In 
addition to the permeability, some microstructural quantities of the sample, such as the pore size 
distribution and the porosity, are derived with GeoDict. 
The results of the hydrodynamic simulations with GeoDict can not be presented in this report, 
since they are not finished yet. The permeability calculation for one sea-ice sample can last 
several days. 
 
4   3D print models of sea ice 
An ‘UP! Plus 3D printer’ was used to print the 3D sea-ice models (Figure 4.1 (a)). It is possible 
to print 14x14x13.5cm³ large objects with this printer, which is in the range of the sizes planned 
to print. The printer builds up a 3D object in 0.2mm thick layers of plastic. Therefore, a 1.75mm 
thick ABS (Acrylonitrile butadiene styrene) filament is melted at 260°C and given through a 
nozzle onto a heated perfboard, which is fixed with screws on the printer platform (Figure 4.1  
(c)). Since the melted plastic is pushed into the perforations, the printed object is better fixed to 
the printer platform and does not lift easily. Moreover, a preheating of the perfboard for 15 
minutes before printing also prevents the object to lift from the platform. Besides the 3D object 
itself, base and support material is printed. The base layers are first printed onto the perfboard 
(Figure 4.2 (b)) for an easier detachment of the 3D object from the perfboard after printing. 
Support material is printed for stabilization as a first layer onto the base layers before printing the 
3D object (Figure 4.2 (c)). Moreover, support material is printed underneath overhanging parts of 
the 3D object and inside the object. The interior of the 3D object is never completely filled with 
plastic, but with a scaffold structure. In a very hollow structure support material can be printed 
inside the 3D object to strengthen the surface and bottom of the object. The outer wall thickness 
of the printed 3D object is 1.5mm. 
The 3D printer can only print so-called stl-files (‘StereoLithography’), in which the surface of 
the 3D object is represented by many triangular surfaces. These stl-files are loaded into the 
printer program, where they can be scaled and placed at the right position on the printer platform 
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and some oil started flowing out of the tube. A plastic box was placed on scales underneath the 
tube. By measuring the weight every second the change in oil height above the print model can 
be calculated during the flow. Before letting the oil flow through the print model by pulling away 
the plastic lid, the oil height above the print model was marked with a little piece of tape on the 
tube. With these measurements the permeability of the print models could be calculated from 
Darcy's law. 
Due to lack of time only few experiments were performed. During the experiments some 
problems occurred so that there are no results to be shown yet. In the experiment with the 
idealized sample the oil was flowing too fast through the print model (within two to three 
seconds) so that a detailed measurement of the weight difference was not possible. Therefore, the 
two simplified sea-ice print models were printed more than twice as thick as the idealized sea-ice 
print model and a bit more oil was filled into the tube. But still there occurred some problems 
during the measurements. Sometimes the oil started already flowing out of the tube before the 
begin of an experiment. Additionally, some oil was lost on the table around the scales by pulling 
away the lid. Hence, the oil height was differently between experiments and had to be marked 
newly in each experiment. Marking the oil height was not easy on the oily plexiglas tube while 
holding the lid underneath the sea-ice print model, which gives inaccurate values. Another 
technique for holding the oil back during filling the oil into the tube should be invented. 
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