

SCIENTIFIC REPORT

First Les Houches school in computational physics : soft condensed matter June 20th-July 1st, 2011

Organizers: J-L. Barrat, R. Everaers, W. Krauth

Lecturers : J. Baschnagel, T. Biben, R. Everaers, W. Kob, I. Pagonabarraga

Seminar speakers : W. Krauth, P. Kestener

Technical support and practical works: O. Benzerara, C. Calugaru, E. Quemener

SUPPORTED BY

Centre Blaise Pascal, Ecole Normale Supérieure de Lyon

SUMMARY

The school received more than 70 applications before the deadline set to March 15th. While the organizers originally intended to limit the number of students to 40 for practical reasons, the quality of the applications lead to increase this number to 48. The participants also included 2 research engineers from Lyon and Strasbourg who provided technical and pedagogical support for the practical work, 5 lecturers and 2 organizers .

The school took place during two weeks of intense work for the students and lecturers. The vast majority of participants were first or second year PhD. Students from all countries, and the lecturers had a very pedagogical approach starting from the basics and taking the students trough the details of the methods used in simulation of soft matter. The courses were given in part in the form of powerpoint presentation, but also to a large extent on the blackboard, a formulation that was The courses were supplemented by practical work supervized by the lecturers and two staff members. The interaction about practical work was created trough a wikispace were the content of the courses and exercises were posted. A standardized computation environment in the form of a "virtual machine" was provided for students using their own laptop, Extra laptops were provided by Centre Blaise Pascal for the students who did not bring their own.

The content of the lectures is described in detail below. They were completed by 10 presentations given by participants, and two research seminars of 1.30 each. Many of the students will make use of the credits provided by the school to validate master courses or graduate courses required by their graduate school.

The wiki space is accessible on http://houches2011.no-ip.org (login: jbarrat ; passwd: 12994521) A satisfaction poll was realized after the school. The poll is accessible on http://www.cbp.ens-lyon.fr/tiki-index.php?page=EvaluationForm. The results are commented in the ''IMPACT'' section below.

Finally, we note that the school was generously supported by ESF, but also by the Rhône-Alpes node of CECAM, by the Ecole des Houches itself, and that it was granted the label ''predoc school'' which corresponds to a reduced accommodation rate. This support made it possible to offer the students a full accommodation at a very low cost of 350 euros (for full board during two weeks). Moreover, all master students and all students coming from overseas or from less developed countries were fully supported for their accommodation.

SCIENTIFIC CONTENT

Lecture 1 : Introduction to Monte-Carlo and Molecular Dynamics, Walter Kob

1) Monte Co	arlo Technique
<u></u>	master equations and detailed balance the Monte Carlo Method
2) Molecula	ur Dynamics
	Basic idea and various issues
	The Verlet algorithm
3) Practical	! Issues

<u> </u>	periodic boundary conditions
<u></u>	neighbor lists
	random number generators
4) Advanced t	echniques
	simulation at constant pressure, temperature
	Gibbs ensemble technique
	rare events
Lecture 2 : S	oft Matter on a Lattice : From generic properties to semi-quantitative models,
Ralf Everaer	s
1) Generic Po	olymer models / Monte Carlo techniques
	Exact Enumeration
	Simple Sampling

2) 1d Poland-Sheraga model of cooperatively folding biopolymers

Dynamic Algorithms / Importance Sampling

Configurational Bias, Rosenbluth, PERM

3) 2d Lattice models of biomembranes

Dimerization

- 4) 3d Lattice models of biopolymers
 - Generic aspects of protein folding

potential and forces

A semi-quantitative lattice model of RNA and DNA melting, folding & association

Performance of the different algorithms for simulating self-avoiding walks

Lecture 3 : *Molecular simulation approaches to polymer systems*,

J. Baschnagel

This course intends to give an introduction to molelcular simulation approaches of polymer systems. The computational study of the physical properties of polymers is challenging because of the extremely broad spectra of length and time scales governing their structure and dynamics. Therefore, the simulation models used in current research are obtained by some kind of coarse-graining procedure, designed to eliminate fast degrees of freedom. The resulting models can address phenomena over a specific window of time and length scales. This model-building step can take different levels of complexity, ranging from chemicallly realistic models over generic bead-spring models to coarse-grained representations of polymer systems inspired by self-consistent field theory or similar theoretical concepts and also tohierachical models encompassing many interconnected levels. After a brief introduction to polymer physics, serving as a justification for the coarse-graining idea, the course will discuss each level of modeling alluded to above, present adapted simulation strategies, and give example applications.

Lecture 4 : Coarse-grained dynamics,

Ignacio Pagonnabaraga

In these lectures I will describe the physical basis of kinetic based coarse grained methods to describe the dynamics of materials in the mesoscale. In particular, I will analyze the relationship between lattice gases and the lattice Boltzman approaches. I will explore the flexibility that these approaches offer to model a variety of complex fluids, including binary mixtures, colloidal

suspensions and electrolytes.

I will also address kinetically based methods which build on the knowldege of molecular modelling. In particular, MPCD combine the insight of Bird's approach to the Boltzmann equation with the knowledge developed in past decades on molecular modelling. Understanding the basic collision process from a more general perspective, MPCD can be applied to dense fluid systems, in regimes far beyond those which can be covered with the original Boltzmann equation. Momentum conserving thermostats (like dissipative particle dynamics or lowe-anderson thermostat) offer natural alternatives to model coarse grained fluids, and constitutive natural venues to explore the dynamics of complex fluids in the mesoscale . I will analyze critically the different approaches, their potentialities and limitations discussing representative examples.

Lecture 5: *Phase field models*,

Thierry Biben

Phase field models are very efficient tools to investigate the dynamics of a system undergoing a phase transition, or simply to solve a problem with free boundaries (moving interfaces for example). They are essentially based on two ingredients: the phase-field, a local order parameter field, and the corresponding dynamical equations. The goal of this lecture is to give an overview of the wide range of problems that can be treated with these models and to provide a practical experience on the way to design phase field models and to avoid the main dangers. We shall thus illustrate the different parts of the lecture with examples, and use the problem of the dendric growth as a basic example.

Outline:

- 1 Introduction: why and when is it interesting to use phase-field models?
- 2 The Phase-Field:
- a Interfaces: Phase equilibrium, the square gradient theory and surface tension.
- b Allen-Cahn and Cahn-Hilliard equations.
- 3 Conservation equations.
- 4 An elementary example: Dendritic growth and implementation.
- 5 Control of the model.
- a The Sharp Interface limit.
- b The "smooth interface problem" and possible solution.
- 6 Various examples involving hydrodynamics, elasticity or heat transfer.

SEMINARS

Melting of hard disks

Werner KRAUTH, Département de Physique, Ecole Normale Supérieure, Paris

The hard-disk model has exerted outstanding influence on computational physics and statistical mechanics. Decades ago, hard disks were the first system to be studied by Markov-chain Monte Carlo methods and by

molecular dynamics. It was in hard disks, through numerical simulations, that a twodimensional melting transition was first seen to occur even though such systems cannot develop long-range crystalline order. Scores

of theoretical, computational, and experimental works have analysed this fundamental melting transition, without being able to settle its nature.

The first-order melting scenario between a liquid and a solid (as in three dimensions), and the

Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) scenario with an intermediate hexatic phase separated by

continuous transitions from the liquid and the solid have been mainly focussed upon.

Recently, we showed by large-scale simulations using the powerful Event-chain Monte Carlo algorithm that the hard-disk system indeed possesses a narrow hexatic phase, where orientational order is maintained across large samples while positional order is short-ranged. However, in difference with the KTHNY scenario, the liquid-hexatic phase transition is proven to be first-order.

In this talk, I will give a general introduction to the field, present the new (and also the old) algorithms, and then discuss results, insights and possible generalizations.

An overview of modern GPU computing: from architectures to applications. Pierre KESTENER, de la Simulation, Saclay

PRESENTATIONS BY PARTICIPANTS

THURSDAY,	June 30th CHA	IR: RALF EVERA	FDC
10.40-11.00 am	Mechanisms of DNA Oligonucleotide Hybridization.	Dan Hinckley	Department of Chemical and Biological Engineering University of Wisconsin- Madison
11.00-11.20	Hydrodynamic interactions of 2 vesicles in a linear creeping shear flow	Pierre-Yves Gires	Laboratoire Interdisciplinaire de Physique Université Joseph Fourier, Grenoble
11.20-11.40	Testing non-equilibrium statistical mechanics in a 1D driven model	Milos Knezevic	Physics Department, University of Belgrad
11.40-12.00	"Early Stage aggregation studies of human amylin in solution"	Sadanand Singh	Department of Chemical and Biological Engineering University of Wisconsin- Madison
12.00-12.20	Non-affine droplets and shear deformation in a crystalline solid	Tamoghna Das	S.N.Bose National Centre for Basic Sciences, Kolkata
FRIDAY, Jul	v 1 st	CHAIR: JOERG B	SASCHNAGEL
99.20am	Synthesis and characterisation of new biobased high-performance polyamide. Use of molecular modeling as a properties investigation tool	Thibaut Cousin	Institut des Matériaux Polymères, INSA Lyon
9.20-9.40	Surface effects of EMIM/FSI on LiFePO4	Volker Lesch	Department of physical chemistry, University of Münster
9.40-10.00	Coarse-grained modelling of DNA burnt-bridges motors	Peter Sulc	University of Oxford
1010.20	Dynamic Self Assembly of Photo-Switchable Nanoparticles	Prateek Kumar Jha	Chemical and Biological Engineering

			Northwestern University
10.20-10.40	Models of flowing amorphous media	Kirsten Martens	University of Lyon 1

IMPACT

The reactions and comments of the student, directly during the school and in the poll, indicated that they felt the event will be important for the development of their PhD thesis and corresponds to a real need. Numerical methods, as compared to theory or lab work, receive comparatively little attention in the curriculum of most students in physics and chemistry. The lectures given exposed them to the theoretical basis of the methods, but also to the more technical aspects which they could effectively put into practice during the afternoons. This scheme proved quite effective, especially with a relatively limited number of lecturers who were given enough time to get into the details of their topic.

We note that in spite of the fact that at least two similar schools are organized regularly in Europe (one in Amsterdam, and one by CCP5 in the UK) the number of applications and the level of applicants were excellent, which shows the need for such events.

The impact on the student is best summarized by quoting the answers obtained from the poll, which are summarized below. The list of questions is rather longs, with answers in the range 0 (strongly disagree) to 4 (strongly agree). The average of the 38 answers collected (out of 48) is given below for some of the most relevant questions (a complete response is available from the organizers on request):

The Summer School broadened my understanding of concepts and principles in the field of Computational physics and soft matter: 3.58/4

The Summer School improved my ability to carry out original research in the field of Computational physics and soft matter: 3.05/4

The Summer School taught me techniques directly applicable to my career: 3.25/4

The School helped me to meet new people working in my field: 3.37/4

The instructors explained the material well: 3.27/4

The practical work sessions were important for the learning process in the summer School: 3.05/4

The cost of the School was reasonable: 3.77/4
The Summer School was well organized: 3.68/4

Overall, the Summer School met my expectations: 3.47/4

Overall the satisfaction of the students appears to have been quite high, with as only weak point the connection of the school to the internet with an insufficient bandwidth.

FINAL PROGRAM

	8 20 8 15	8415 10415	104/5 12415	1/h 16h	17515 105	105/15 77k
	0.50-0.75	01177-101117	10117-121110	1711-1011	1/1115-1211	201170-2211
Monday, June 20th				Arrival	Arrival	
Tuesday, June 21st	Introduction	KOB 1	EVERAERS 1		KOB 2	
Wednesday, June 22nd		BASCHNAGEL 1	KOB 3	Practical work	BIBEN 1	
Thursday June 23rd		BASCHNAGEL 2	KOB 4	Practical work	EVERAERS 2	
Friday June 24th		BIBEN 2	BASCHNAGEL 3	Practical work	PAGONABARRAGA 1	KRAUTH
Saturday June 25th		PAGONABARRAGA 2	EVERAERS 3			
Monday June 27th		PAGONABARRAGA 3	EVERAERS4	Practical work	KOB 5	KESTENER
Tuesday June 28th		BASCHNAGEL 4	EVERAERS 5	Practical work	BIBEN 3	
Wednesday June 29th		BASCHNAGEL 5	BIBEN 4	Practical work	PAGONABARRAGA 4	
Thursday June 30th		BIBEN 5	Presentations by participants		PAGONABARRAGA 5	
Friday July 1st		Presentations by participants	Presentations by participants		Departure	

LIST OF PARTICIPANTS

	0	RGANIZERS AND L	ECTURERS
BARRAT	Jean- Louis	Université Joseph Fourier, Grenoble	jean-louis.barrat@ujf-grenoble.fr
EVERAERS	Ralf	Ecole Normale Supérieure de Lyon	ralf.everaers@ens-lyon.fr
KRAUTH	Werner	Ecole Normale Supérieure, Paris	werner.krauth@ens.fr
BASCHNAGEL	Jörg	Institut Charles Sadron, Uni- versité de Strasbourg	jorg.baschnagel@ics-cnrs.unis- tra.fr
BENZERARA	Olivier	Institut Charles Sadron, Uni- versité de Strasbourg	olivier.benzerara@ics-cnrs.unis- tra.fr
BIBEN	Thierry	LPMCN, Uni- versité Claude Bernard, Lyon1	thierry.biben@univ-lyon1.fr
KESTENER	Pierre	Maison de la Simulation, Saclay	pierre.kestener@cea.fr
КОВ	Walter	Université de Montpellier 2	Walter.KOB@univ-montp2.fr
PAGONABAR- RAGA	Ignacio	University of Barcelona	ipagonabarraga@ub.edu
QUEMENER	Em- manuel	Ecole Normale Supérieure de Lyon	emmanuel.quemener@ens-lyon.f

	I	PARTICIPAN	TS
AHMADY	Ben	University College London	ahmady.ben@gmail.com
ALARCÓN	Francisco	Facultad de Fis- ica, Barcelona University	falarcon@ffn.ub.es
ANWAR	MUHAMMA D	University of Lux- embourg	muhammad.anwar@uni.lu
BOIX DEUDERO	Miguel	University of Tar- ragona Chemical Engineering De- partment	miguel.boix@urv.cat
BOSSON	Maël	INRIA, Grenoble	mael.bosson@inria.fr
BRIDGWATER	Sally	University of War- wick	s.bridgwater@warwick.ac.uk
CLOSA	Fabien	Laboratoire de Phisico-Chimie Theorique, ESPCI	fabien.closa@espci.fr
COUSIN	Thibault	IMP, INSA de Lyon	thibault.cousin@insa-lyon.fr
D'ADAMO	Giuseppe	Physics Depart- ment-L'Aquila University	giuseppe.dadamo@aquila.infn.i
DAMASCENO BORGES	Daiane	CEA-Grenoble	daianefis@gmail.com
DAS	Tamoghna	S N Bose National Center for Basic Sciences	pinch.of.salt@gmail.com
DASANNA	Anil Ku-	Laboratorie de Physique The- orique, Université de Toulouse	anil.dasanna@irsamc.ups- tlse.fr
DUBOIS	Remy	Unité Matériaux et Transforma- tions, Université de Lille	remy1.dubois@ed.univ-lille1.fr
FIOCCO	Davide	ITP-EPFL University of Cali-	davide.fiocco@epfl.ch
FOLEY	Thomas	fornia, Santa Bar- bara,	ttfoley@gmail.com
FUSCO GAILLARD	Diana Philippe	Duke University institut Matériaux	diana.fusco@duke.edu philippe.gaillard@im2np.fr
		Microélectronique Nanosciences de	primppe.gamara@imznp.ii

	1	Provence, Uni-	
		versité de Mar-	
		seille	piorro-vyos giros@uif-
GIRES	Pier- re-Yves	Université Joseph Fourier, Grenoble	pierre-yves.gires@ujf- grenoble.fr
GIRES	16 1763	Tourier, Grenoble	grenosiem
GONZALEZ	RAQUEL	TECNALIA	rgonte@gmail.com
		M.V. Lomonosov Moscow State	
GUSEVA	Daria	University	guseva@polly.phys.msu.ru
		Institut Curie,	
HANNEZO	Edouard	Paris	edouard.hannezo@ens.fr
		University of Wis-	
HINCKLEY	Daniel	consin-Madison	dhinckley@wisc.edu
ЈНА	Prateek	Northwestern	prateek@northwestern.edu
JUN	гіацеек	University	praceek@norchwestern.edd
JULIEN	Grégoire	CNRS	gjulien.phys@gmail.com
		Universite Paul	osman.kahraman@umail.univ-
KAHRAMAN	Osman	Verlaine Metz	metz.fr
		Charles University in Prague, Faculty	
		of Mathematics	
KAISER	Vojtech	and Physics Faculty of Phys-	mail@vojtechkaiser.eu
		ics, University of	
KNEZEVIC	Milos	Belgrade	milos.knezevic@gmail.com
KOZIATEK	Pawel	SIMAP, INP Gren- oble	pkoziatek@gmail.com
ROZIATER	rawei	Department of	proziatek@gmail.com
		physical chem-	
LESCH	Volker	istry, University of Münster	volkerlesch@web.de
		University of	
LOCATELLI	Emanuele	Padova	emanuele.locatelli@pd.infn.it
		LPMCN, Université Claude Bernard,	
MARTENS	Kirsten	Lyon1	kirsten.martens@univ-lyon1.fr
		University of Ox-	christian.matek@merton.ox.ac.
MATEK	Christian	ford	uk
MCCARTY	1	University of Ore-	imacart4@uaragan adu
MCCARTY	James	gon	jmccart4@uoregon.edu
LANGELOTH	Michael	Technische Uni- verstät Darmstadt	m.langeloth@theo.chemie.tu- darmstadt.de
		Institute of Phys-	
MLADENOVIC	Marko	ics, University of Belgrad	markoml019@yahoo.com
MÜLAYIM	Murat	Institut für Theor-	muelayim@theorie.physik.uni-
		etische Physik	goettingen.de
		Georg-August Universität, Göt-	
			-

		T	1
		tingan	
		tingen	
		Forschungszen-	
MUTHMANN	Matthias	trum Jülich	m.muthmann@fz-juelich.de
		Institut Charle Sadron, Uni-	
		versité de Stra-	
NAM	Gi-Moon	siourg	skarlans80@gmail.com
		Universität Kon-	simon.papenkort@uni-
PAPENKORT	Simon	stanz	konstanz.de
_		Polymères, Uni-	Achutha.Prabhu.Etu@univ-
PRABHU	Achutha	versité du Maine	lemans.fr
-	7.0.10.10		
RODRIGUEZ LAZARO	Guillermo	University of Bar- celona	grolazaro@gmail.com
LAZARO	Guilleithio		groidzaro@gman.com
CTNCU	Cadanand	University of Wis-	ssingh7@wiss odu
SINGH	Sadanand	consin Madison	ssingh7@wisc.edu
		University of Brit-	
SMESSAERT	Anton	ish Columbia	anton@physics.ubc.ca
		University of Ox-	
SULC	Petr	ford	petr.sulc@univ.ox.ac.uk
		Ecole Normale Supérieure de	
THORNER	Gentien	Lyon	gentien.thorner@ens-lyon.fr
	33	T .	
TREMENT	Sébastien	Université Par- is-Sud, Orsay	sebastien.trement@gmail.com
	Schastieff	15 Juu, Olsuy	22223GITTE CITICITE GITTAIN CONT
VARRATO	Francesco	 EPFL	francesco.varrato@epfl.ch
VARRATO	rancesco		
	\	IM2NP Ecole	vianhin vu@im2nn fr
XU	Xianbin	Centrale Marseille	xianbin.xu@im2np.fr