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. DESCRIPTION OF THE WORK CARRIED OUT AND THE RESULTS OBTAINED

The main aim of the project was to develop, extend, and ted$ to simulate the evolution

of quantum spin systems and quantum many-body systems stribvegly correlated regime.

In a later stage of the project, we want to apply these toosfiodies of dynamical properties,
and especially entanglement properties, of ultracold tywmamases in optical potentials in the
strongly correlated regime.

In what follows we will shortly comment on the numerical medls we have implemented
(sec. A). Afterward we will describe the various projectdldwupon these methods which we
have initiated to study spin-systems and especially mamtigle bosonic systems in various
scenarios (sec. B-D).

A. Development of numerical algorithms to study strongly correlaed many-body systems

The major purpose of the stay was to construticient numerical algorithms to study the
dynamical evolution of strongly correlated many-body egst. To this aim, we implemented

algorithms along the line of Matrix Product State (MPS) noetthas described by F. Verstraete
et al. [1], which use entanglement properties of the systentfiiociently reduce the size of the

Hilbert space. All the programming has been carried out il&ia several checks have been
done by comparing the numerical results with analytic tsdiolr simple cases or with results

from exact diagonalization.

Firstly we have constructed an algorithm capable of sinmgathe non-dissipative dynamics
of one-dimensional spin/2 systems with open boundary conditions for arbitrary de-and
nearest-neighbor Hamiltonians. This algorithm can be get study real-time dynamics
under time-independent and time-dependent Hamiltoniadgi§ to search for ground states
by imaginary time evolution. We have checked the accuradii@tlgorithm for both types of
applications by comparison with exact results from, e.gamgum Ising-type Hamiltonians, as
well as by comparison to direct diagonalization for smaditeyns.

Secondly we have extended the algorithms to include alsogierboundary conditions, and
again we have checked the correctness of the results frdranmé@amaginary time evolution by
comparing them with, e.g., analytic results for the XY model

Thirdly, we have included the possibility to simulate highpins in the one-dimensional lattice,
which especially allows to study systems of bosons by stg the maximal number of parti-
cles per site to a certain fixed value. As a first test we havéeaapihe algorithms to study the
transition from the superfluid to the Mott-Insulator phasethe Bose-Hubbard Hamiltonian by
calculating the ground state for various values of the patars of the Hamiltonian. For small
system sized we could again use this to compare our findingstdts from exact diagonaliza-
tion.

To go beyond pure one-dimensional systems, we have appi@gdeated our code for quasi-
two-dimensional settings as spin ladders or zig-zag chadinis should allow us to studyffects
related to frustration,féective magnetic fields, etc. Also it allows, following theds of [2], to
simulate certain types of disorder in a one-dimensionaihcimean dtective way.
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Figure 1: Propagation of an atom injected on top of the multi-particle groutelista one-dimensional
chain of 100 sites as the ratigy J of on-site interactiont) and tunneling) is changed. The red squares
show the (constant) slope of the standard deviation and thus the velocitgpeEgation of the injected
atom. Blue squares show the standard deviation of the on-site particle nufiesystem is in the
superfluid (Mott) state for small (larg&)/ J, the shading indicates the intermediate region.

B. Transport properties in the Bose-Hubbard model

The bose-Hubbard Hamiltonian is a paradigmatic Hamiltonracondensed matter physics
which describes a variety of physical phenomena. For a anemgional chain it has the form

U A ata
HBH_—JZ a1a,+aa. +—Zn.(n.—1)+,uZn., hi = &4, (1)

<ij>

where< ij > indicates nearest neighbor sites, aﬁc{a) creates (annihilates) a boson at site
i. Hgy reflects the competition between tunneling of atoms (th& femoportionald) and on-
site interactions (the term proportiondl). An ultracold atomic gas confined in an optical
lattice can be brought to form a practically perfect redi@aof such a Hamiltonian (though
usually a shallow confining potential has to be included) o several other experimental
methods to trap and manipulate cold neutral atoms as, etgzab[4, 5] or magnetic microtraps
[6, 7], allow — in principle — to realize the Bose-Hubbard Hiamian and to control properties
as the tunneling between certain chosen sites, or even siraoh”exotic” configurations as
ring-shaped or beam splitter-like arrangements. We hantest to study especially transport
properties in such systems, focusing on the transport @ctie{as, e.g., an injected additional
particle) on top of the ground state of the Bose-Hubbard Hamdan for a certain ratio of
on-site interaction and tunneling.

The aims of this project are to study (i) how the type of thearhying ground state — i.e.,
whether it is superfluid, Mott, or in an intermediate regimehanges transport properties; and
(i) how entanglement can bétectively generated in such a scenario.

With respect to the first point, a simple scenario is to cagrside propagation of a single atom
injected on top of the ground state of a one dimensional cliamm bosonic enhancement the
propagation in the Mott case (i.&J,/J — o) is larger by a factor of 2 than in the superfluid
case U/J — 0). As an initial analysis, and also as a further test for amaes, we have studied
the transition between both cases for a chain of 100 siteBngfdrom the ground state with
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Figure 2: Propagation of an atom injected on top of the multi-particle grounel ista beam-splitter
configuration. (a) The logarithmic negativity as a function of time measureckipdpulation number
basis forU/J = 40 for two nodes, one in each outgoing arm. (b) The maximal logarithmic négati
asU/J is varied between the superfluid and the Mott regime. The inset sketchdeadne splitter

configuration.

the mean number of particles per s{t¢) = 1 and for diferent values of the ratity/J. We
assume to inject an additional particle at one site, andutatks how the standard deviation

o= \/Zi(x,?pi - X pi), pi = (M), X = ai, evolves in time. Especiallyr grows linearly in time,
and the velocity of propagation is measured by the slopg()f As visible in Fig. 1, the slope

is nearly constant in the Mott regime, before in the interiaedregion it starts to decrease
exponentially.

We have also studied ftierent cases as, e.g., ladder-type configurations whiclv &lanclude
an dfective magnetic flux into the system and thus to significamibgify transport properties.

A beam-splitter arrangement (see inset of Fig. 2) allowsadpce entanglement between nodes
in the two outgoing arms. If an atom is injected into the lefsthnode (as before on top of the
ground state having a mean number of particles of one pgr #ite split at the junction. We
use the logarithmic negativity (LN) in the occupation numib&sis to measure the entanglement
generated in this way. Fig. 2 (a) shows how the LN changesna forU/J = 40, i.e., well in
the Mott regime, while Fig. 2 (b) give the maximal LN for cenaalues ofu/J. Clearly, the
entanglement is largest in the Mott case, and it drops rapadtero in the intermediate regime
between Mott and superfluid.

After extending these results to include several other situations, a publication is planned in
order to summarize the results of this project. Parts of it have been presented in a talk given at
the Workshop on Quantum Information at University of Darmstadt (December 2005).

C. Ultracold F = 2 spinor gas in an optical lattice in the strongly correlated regime

Recently there has been a strong interest, theoreticallyedisas/experimentally, in ultra-cold
atomic spinor gases. As several experimental groups anaiplgto confine a spinor BEC into
an optical lattice, we have studied magnetic propertieh@fMott-Insulating phase df = 2
bosons (thd= = 1 case has been studied in [8]).

The corresponding Hamiltonian has a form similar to the Bdabbard Hamiltonian (1), but
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next to the terms representing tunneling and on-site iotenas, it contains terms representing
the energy associated with spin configurations within otieasite. In the limit of stficiently
weak tunneling, anféective interaction between neighboring sites can be obtiperturba-
tively. The ground state of the unperturbed Hamiltoniandzanneling) is determined by the
scattering lengths for the fiierent channels. Starting from the ground state for one opave
ticles per site, anféective spin-spin interaction Hamiltonian is obtained, ethcan be written
as a sum of projectoi8s onto states with a certain total sgn

Smax

H = Z AsPs, (2)
S=0

where all1s can be taken non-negative (by adding a number times the apgyator to the
Hamiltonian). The energy ffierences between various channels are again determinec by th
scattering lengths, and can to some extend be tuned throgpgtiteng Feshbach resonances.

In an optical lattice, tuning the experimental paramet#osva to bring the system to a regime
of a certain fixed number of atoms per site. States with onevoratoms per lattice site are
most interesting, as they do notBr from three-body losses. For one atom per site, exploiting
Feshbach resonances allows extensive control over thenptees ofH,, with the restriction
that alwaysi; = A3 are largest. For this reason, ground states should belotigetsymmet-
ric subspace, and especially we have looked for groundsstat®ng ferromagnetic (nematic)
states, Nel-type states [9], and valence bond solids with singlatslifierent pairs (dimers).
For certain regions in parameter space, ground states caadilg found in this manifold of
states, while in other cases we have applied variationahookst The phase diagram arising
in this case (see Fig. 3) can be refined by numerically saagdioir an MPS minimizing the
energy through imaginary time evolution. This allows toritify the region where the ground
state is indeed nematic, see the gray region in Fig. 3.

The situation is dferent for the case of two atoms per site if states with total Bp= 2 are
assumed as the on-site ground states of the unperturbedtblsiam. Then the order of the
parametersls in H, is essentially fixed to be descending, dddcannot be tuned as freely
through exploiting Feshbach resonances as in the case @aftomeper site. For this reason, in
this case only ferromagnetically ordered ground statepassible.

A publication summarizing the results of this research project is currently in progress: . Zaw-
itkowski, A. Sanpera, K. Eckert, and M. Lewenstdifitracold atomic F = 2 spinor gasin an
optical lattice, to be submitted February 2006.

D. Detection of quantum phase transitions/ia geometric phases

As it has recently been found [10, 11], the geometric phashefground state in the spin-

1/2 XY model obeys a certain scaling behavior in the vicinityaauantum phase transition.
This behavior, which indeed is a general feature in manyylsgdtems [11], can thus be used to
detect quantum phase transitions. A possible advantage&g@pect to applying Matrix Product

States as a numerical tool is that it is not necessary to ¢hesquantum phase transition to
detect it, thus avoiding the region where these tools mighte dficient anymore. We have

started to set up algorithms to determine the geometricepbbtained as a loop in parameter
spaced is performed around a critical region. We firstly aimeproducing the result found in

[10, 11] for the XX-criticality, before applying it to othariticalities in several models, as to
the Ising-criticality in the XY-chain.
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Figure 3: Phase diagram comparing phases with nematic oréetdxder, and valence bond solids with
singlets on dierent pairs (dimers) for the case of a single atom per gjtgcorrespond to the parameters
in Hamiltonian 2, furthermord; = A3 = 1, and1p = 0. Néel-type states turn out to be never optimal.
The gray shading indicates the region where the ground state is indeetimye@®dound by numerical
imaginary time evolution using MPS in a chain of 50 sites with open boundaryittmmd

E. Other results

The support of QUDEDIS has also allowed to finish two othedipabons which however are
not in direct relation with the project:

(i) K. Eckert, J. Mompart, G. Birkl, M. Lewensteiithree level atom opticsin dipole traps and
waveguides, submitted to Opt. Comm. (2005); also quantgid11195 (2005).

(i) R. Garda-Manraver, K. Eckert, R. Corlih, and J. MompartA deterministic source of
polarization entangled photon pairs, in preparation.

. FUTURE COLLABORATION

In all the projects listed above, a cooperation between tisednd the researcher will continue.
With respect to part A the long-term goal is an extensionue two-dimensional systems. With
respect to B, we plan to analyze further configurations, eyincluding spinors or dierent
initial perturbations to the system. Concerning part C wéhwisanalyze how to detect certain
types of ground states in an experiment. Finally, for part ®will study the applicability of
our numerical method to the Ising-criticality in the XY modad eventually extend it to other
models.

. FURTHER COMMENTS

KE thanks the Theoretical Physics Group at the UniversitagbAoma de Barcelona for hospi-
tality and J. Calsamigla, J.I. Garcia-Ripoll, M. Lewenstdinylompart, G. Morigi, O. Romero-
Isart, A. Sanpera, and t. Zawitkowski for many useful disooiss.
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