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I. DESCRIPTION OF THE WORK CARRIED OUT AND THE RESULTS OBTAINED

The main aim of the project was to develop, extend, and test tools to simulate the evolution
of quantum spin systems and quantum many-body systems in thestrongly correlated regime.
In a later stage of the project, we want to apply these tool forstudies of dynamical properties,
and especially entanglement properties, of ultracold quantum gases in optical potentials in the
strongly correlated regime.

In what follows we will shortly comment on the numerical methods we have implemented
(sec. A). Afterward we will describe the various projects build upon these methods which we
have initiated to study spin-systems and especially many-particle bosonic systems in various
scenarios (sec. B-D).

A. Development of numerical algorithms to study strongly correlated many-body systems

The major purpose of the stay was to construct efficient numerical algorithms to study the
dynamical evolution of strongly correlated many-body systems. To this aim, we implemented
algorithms along the line of Matrix Product State (MPS) methods as described by F. Verstraete
et al. [1], which use entanglement properties of the system to efficiently reduce the size of the
Hilbert space. All the programming has been carried out in Matlab, several checks have been
done by comparing the numerical results with analytic results for simple cases or with results
from exact diagonalization.

Firstly we have constructed an algorithm capable of simulating the non-dissipative dynamics
of one-dimensional spin-1/2 systems with open boundary conditions for arbitrary on-site and
nearest-neighbor Hamiltonians. This algorithm can be used(i) to study real-time dynamics
under time-independent and time-dependent Hamiltonians and (ii) to search for ground states
by imaginary time evolution. We have checked the accuracy ofthe algorithm for both types of
applications by comparison with exact results from, e.g., quantum Ising-type Hamiltonians, as
well as by comparison to direct diagonalization for small systems.

Secondly we have extended the algorithms to include also periodic boundary conditions, and
again we have checked the correctness of the results from real and imaginary time evolution by
comparing them with, e.g., analytic results for the XY model.

Thirdly, we have included the possibility to simulate higher spins in the one-dimensional lattice,
which especially allows to study systems of bosons by restricting the maximal number of parti-
cles per site to a certain fixed value. As a first test we have applied the algorithms to study the
transition from the superfluid to the Mott-Insulator phase for the Bose-Hubbard Hamiltonian by
calculating the ground state for various values of the parameters of the Hamiltonian. For small
system sized we could again use this to compare our findings toresults from exact diagonaliza-
tion.

To go beyond pure one-dimensional systems, we have applied and tested our code for quasi-
two-dimensional settings as spin ladders or zig-zag chains. This should allow us to study effects
related to frustration, effective magnetic fields, etc. Also it allows, following the lines of [2], to
simulate certain types of disorder in a one-dimensional chain in an effective way.



Figure 1: Propagation of an atom injected on top of the multi-particle ground state in a one-dimensional
chain of 100 sites as the ratioU/J of on-site interactionsU and tunnelingJ is changed. The red squares
show the (constant) slope of the standard deviation and thus the velocity of propagation of the injected
atom. Blue squares show the standard deviation of the on-site particle number.The system is in the
superfluid (Mott) state for small (large)U/J, the shading indicates the intermediate region.

B. Transport properties in the Bose-Hubbard model

The bose-Hubbard Hamiltonian is a paradigmatic Hamiltonian in condensed matter physics
which describes a variety of physical phenomena. For a one dimensional chain it has the form

HBH = −J
∑

<i j>

[

â†i â j + â†j âi

]

+
U
2

∑

i

n̂i(n̂i − 1)+ µ
∑

i

n̂i, n̂i = â†i âi, (1)

where< i j > indicates nearest neighbor sites, and ˆa†i (âi) creates (annihilates) a boson at site
i. HBH reflects the competition between tunneling of atoms (the term proportionalJ) and on-
site interactions (the term proportionalU). An ultracold atomic gas confined in an optical
lattice can be brought to form a practically perfect realization of such a Hamiltonian (though
usually a shallow confining potential has to be included) [3]. Also several other experimental
methods to trap and manipulate cold neutral atoms as, e.g., optical [4, 5] or magnetic microtraps
[6, 7], allow – in principle – to realize the Bose-Hubbard Hamiltonian and to control properties
as the tunneling between certain chosen sites, or even to construct ”exotic” configurations as
ring-shaped or beam splitter-like arrangements. We have started to study especially transport
properties in such systems, focusing on the transport of defects (as, e.g., an injected additional
particle) on top of the ground state of the Bose-Hubbard Hamiltonian for a certain ratio of
on-site interaction and tunneling.

The aims of this project are to study (i) how the type of the underlying ground state – i.e.,
whether it is superfluid, Mott, or in an intermediate regime –changes transport properties; and
(ii) how entanglement can be effectively generated in such a scenario.

With respect to the first point, a simple scenario is to consider the propagation of a single atom
injected on top of the ground state of a one dimensional chain. From bosonic enhancement the
propagation in the Mott case (i.e.,U/J → ∞) is larger by a factor of 2 than in the superfluid
case (U/J → 0). As an initial analysis, and also as a further test for our codes, we have studied
the transition between both cases for a chain of 100 sites starting from the ground state with
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Figure 2: Propagation of an atom injected on top of the multi-particle ground state in a beam-splitter
configuration. (a) The logarithmic negativity as a function of time measured in the population number
basis forU/J = 40 for two nodes, one in each outgoing arm. (b) The maximal logarithmic negativity
as U/J is varied between the superfluid and the Mott regime. The inset sketches thebeam splitter
configuration.

the mean number of particles per site〈n̂i〉 = 1 and for different values of the ratioU/J. We
assume to inject an additional particle at one site, and calculate how the standard deviation

σ =

√

∑

i(x2
i pi − xi pi), pi = 〈n̂i〉, xi = ai, evolves in time. Especially,σ grows linearly in time,

and the velocity of propagation is measured by the slope ofσ(t). As visible in Fig. 1, the slope
is nearly constant in the Mott regime, before in the intermediate region it starts to decrease
exponentially.

We have also studied different cases as, e.g., ladder-type configurations which allow to include
an effective magnetic flux into the system and thus to significantlymodify transport properties.

A beam-splitter arrangement (see inset of Fig. 2) allows to produce entanglement between nodes
in the two outgoing arms. If an atom is injected into the leftmost node (as before on top of the
ground state having a mean number of particles of one per site), it is split at the junction. We
use the logarithmic negativity (LN) in the occupation number basis to measure the entanglement
generated in this way. Fig. 2 (a) shows how the LN changes in time forU/J = 40, i.e., well in
the Mott regime, while Fig. 2 (b) give the maximal LN for certain values ofU/J. Clearly, the
entanglement is largest in the Mott case, and it drops rapidly to zero in the intermediate regime
between Mott and superfluid.

After extending these results to include several other situations, a publication is planned in
order to summarize the results of this project. Parts of it have been presented in a talk given at
the Workshop on Quantum Information at University of Darmstadt (December 2005).

C. Ultracold F = 2 spinor gas in an optical lattice in the strongly correlated regime

Recently there has been a strong interest, theoretically as well as experimentally, in ultra-cold
atomic spinor gases. As several experimental groups are planning to confine a spinor BEC into
an optical lattice, we have studied magnetic properties of the Mott-Insulating phase ofF = 2
bosons (theF = 1 case has been studied in [8]).

The corresponding Hamiltonian has a form similar to the Bose-Hubbard Hamiltonian (1), but
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next to the terms representing tunneling and on-site interactions, it contains terms representing
the energy associated with spin configurations within one lattice site. In the limit of sufficiently
weak tunneling, an effective interaction between neighboring sites can be obtained perturba-
tively. The ground state of the unperturbed Hamiltonian (zero tunneling) is determined by the
scattering lengths for the different channels. Starting from the ground state for one or twopar-
ticles per site, an effective spin-spin interaction Hamiltonian is obtained, which can be written
as a sum of projectorsPS onto states with a certain total spinS :

HI =

S max
∑

S=0

λS PS , (2)

where allλS can be taken non-negative (by adding a number times the unityoperator to the
Hamiltonian). The energy differences between various channels are again determined by the
scattering lengths, and can to some extend be tuned through exploiting Feshbach resonances.

In an optical lattice, tuning the experimental parameters allows to bring the system to a regime
of a certain fixed number of atoms per site. States with one or two atoms per lattice site are
most interesting, as they do not suffer from three-body losses. For one atom per site, exploiting
Feshbach resonances allows extensive control over the parameters ofHI, with the restriction
that alwaysλ1 = λ3 are largest. For this reason, ground states should belong tothe symmet-
ric subspace, and especially we have looked for ground states among ferromagnetic (nematic)
states, Ńeel-type states [9], and valence bond solids with singlets on different pairs (dimers).
For certain regions in parameter space, ground states can beeasily found in this manifold of
states, while in other cases we have applied variational methods. The phase diagram arising
in this case (see Fig. 3) can be refined by numerically searching for an MPS minimizing the
energy through imaginary time evolution. This allows to identify the region where the ground
state is indeed nematic, see the gray region in Fig. 3.

The situation is different for the case of two atoms per site if states with total spin F = 2 are
assumed as the on-site ground states of the unperturbed Hamiltonian. Then the order of the
parametersλS in HI is essentially fixed to be descending, andHI cannot be tuned as freely
through exploiting Feshbach resonances as in the case of oneatom per site. For this reason, in
this case only ferromagnetically ordered ground states arepossible.

A publication summarizing the results of this research project is currently in progress: Ł. Zaw-
itkowski, A. Sanpera, K. Eckert, and M. Lewenstein, Ultracold atomic F = 2 spinor gas in an
optical lattice, to be submitted February 2006.

D. Detection of quantum phase transitionsvia geometric phases

As it has recently been found [10, 11], the geometric phase ofthe ground state in the spin-
1/2 XY model obeys a certain scaling behavior in the vicinity ofa quantum phase transition.
This behavior, which indeed is a general feature in many-body systems [11], can thus be used to
detect quantum phase transitions. A possible advantage with respect to applying Matrix Product
States as a numerical tool is that it is not necessary to crossthe quantum phase transition to
detect it, thus avoiding the region where these tools might not be efficient anymore. We have
started to set up algorithms to determine the geometric phase obtained as a loop in parameter
spaced is performed around a critical region. We firstly aim at reproducing the result found in
[10, 11] for the XX-criticality, before applying it to othercriticalities in several models, as to
the Ising-criticality in the XY-chain.
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Figure 3: Phase diagram comparing phases with nematic order, Néel order, and valence bond solids with
singlets on different pairs (dimers) for the case of a single atom per site.λ2,4 correspond to the parameters
in Hamiltonian 2, furthermoreλ1 = λ3 = 1, andλ0 = 0. Néel-type states turn out to be never optimal.
The gray shading indicates the region where the ground state is indeed nematic, as found by numerical
imaginary time evolution using MPS in a chain of 50 sites with open boundary conditions.

E. Other results

The support of QUDEDIS has also allowed to finish two other publications which however are
not in direct relation with the project:

(i) K. Eckert, J. Mompart, G. Birkl, M. Lewenstein,Three level atom optics in dipole traps and
waveguides, submitted to Opt. Comm. (2005); also quant-ph/0511195 (2005).

(ii) R. Garćıa-Manraver, K. Eckert, R. Corbalán, and J. Mompart,A deterministic source of
polarization entangled photon pairs, in preparation.

II. FUTURE COLLABORATION

In all the projects listed above, a cooperation between the host and the researcher will continue.
With respect to part A the long-term goal is an extension to true two-dimensional systems. With
respect to B, we plan to analyze further configurations, e.g.,by including spinors or different
initial perturbations to the system. Concerning part C we wish to analyze how to detect certain
types of ground states in an experiment. Finally, for part D we will study the applicability of
our numerical method to the Ising-criticality in the XY model and eventually extend it to other
models.

III. FURTHER COMMENTS

KE thanks the Theoretical Physics Group at the Universitat Autònoma de Barcelona for hospi-
tality and J. Calsamigla, J.I. Garcia-Ripoll, M. Lewenstein,J. Mompart, G. Morigi, O. Romero-
Isart, A. Sanpera, and Ł. Zawitkowski for many useful discussions.
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