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1 Introduction

Ultracold bosons are usually described by the Bose Hubbard model [1]. Adding
a static force can cause Bloch oscillations of bosons on the lattice [2]. When the
other two control parameters of the model, i.e. the tunnelling amplitude and the
onsite interaction strength have comparable values, the energy spectrum as a
function of the force acquires chaotic properties. The level spacing distribution is
given by the Wigner-Dyson statistics, in contrast to the regular case described
by the Poissonian distribution [3]. As an immediate consequence the Bloch
oscillations are destroyed [4]. A visual signature of quantum chaos is presence
of wide and overlapping avoided crossings in the energy spectrum. For a wide
range of the static field values, a distinct group of energy levels is, however,
noticeable. They have approximately constant slopes and exhibit only narrow
avoided crossings with other levels, being recovered even after passing a region
dense with avoided level crossings.

During my stay at the group of prof. Buchleitner in Freiburg I studied these
levels visualizing the corresponding eigenvectors, I showed underlying particle
localization that is responsible for their stability, and proved their clear dy-
namical distinction from the surrounding chaotic sea [5]. Moreover, my results
indicate a possibility of establishing an interesting link between our system of
small particle filling fractions with larger systems described by mean field equa-
tions such as the discrete nonlinear Schrédinger equation [6]. The system I was
considering was one dimensional, and with the filling fraction of the order of one
half. For moderate particle numbers exact diagonalization of the Bose Hubbard
hamiltonian was available by means of numerical algorithms.

We are planning to publish our results within the next few months. The
manuscript is now in preparation.

2 Regular levels of the Bose Hubbard hamilto-
nian with the static field

Asg the first part of my research project I analyzed eigenvectors of the Bose
Hubbard hamiltonian with the static field. The eigenstates corresponding to the
straight lines in the spectrum have been identified as states with approximately



all particles occupying single lattice sites. The most robust level corresponds to
the localization of particles in the lowest lattice well. Simultaneously, since it
has the highest negative slope, it crosses the highest number of other, “chaotic”
levels. The upper straight lines exhibit slightly lower localization, which was
indicated by smaller overlap values with the respective Fock basis states. The
described behaviour comes together with a high localization in the basis. The
constant slope values are approximately given by derivatives of the hamiltonian
with respect to the static field.

The origin of the localization could have been a particular choice of boundary
conditions. I assumed open boundary conditions, i.e. a hard wall potential
outside the periodic optical lattice. Actually closed boundary conditions do not
make sense here, since the hamiltonian with the static field is not translationally
invariant. I will address this issue in the following sections.

We expect the described property of small Bose Hubbard systems to be
preserved also in cases of much higher filling fractions, i.e. where the exact
diagonalization is not available due to an enormous size of the Hilbert space.

3 Translationally invariant hamiltonian

In order to address the question concerning the role of the boundary conditions
I studied a transformed hamiltonian. In contrast to the original hamiltonian, its
interaction representation with respect to the static field term is translationally
invariant [3]. Then it is possible to apply both open and closed (periodic)
boundary conditions. The closed boundary conditions mean, however, that the
transformed hamiltonian corresponds to a different system. That is, we are
considering now an optical lattice on a ring with time dependent phase shifts
additionally describing the tunnelling between adjacent lattice sites.

Application of the closed boundary conditions makes it possible to introduce
a new quantum number, so called quasimomentum [3]. The Hilbert space fac-
torizes then to subspaces with different values of the quasimomentum. There
is no coupling between the subspaces, therefore there are no avoided crossings
between energy levels corresponding to different quasimomenta. This signifi-
cantly reduces a computational effort required. What is more important, an
intuitive definition of the momentum and the occupation space is then appli-
cable. We decided to take advantage of these properties, loosing on the other
hand the clear connection between the original and the transformed system. We
will finally clarify this issue in our publication.

The transformed hamiltonian is explicitly time dependent and periodic in
time. The main part of my project was to find solutions of the Schrédinger
equation by means of the Floquet ansatz [7]. By using a Fourier expansion and
an appropriate cut-off of the basis I have diagonalized the Floquet operator. T
have analyzed Floquet quasienergy spectra and corresponding eigenvectors. I
have identified quasienergy levels having similar properties as the regular levels
of the untransformed hamiltonian. As a variable control parameter I used the
tunnelling amplitude or the inverse of the static field value, taking care that



the other two parameters ensure the chaotic properties of the spectrum. The
“regular” eigenvectors were now superpositions of N particles sitting in all lattice
sites, where N is the total number of particles in the system.

I compared the Floquet method of finding the time evolution operator with
a method implemented and used in the group of prof. Buchleitner earlier. The
flexibility guaranteed by the two completely different methods is extremely im-
portant especially in the chaotic domain of the problem.

Varying the system size I found as a generic property that the quesienergy
spectra corresponding to different quasimomenta are the same. Indeed, we
proved existence of a unitary transformation between the blocks of the time
dependent hamiltonian. As a consequence the respective Floquet eigenvectors
are related by a matrix multiplication.

4 Atom dynamics

The presence of regular energy and quasienergy levels surrounded by the chaotic
sea suggests that an underlying classical phase space should have a mixed struc-
ture with regular islands surrounded by chaos. Consequently, eigenstates be-
longing to those two classes should exhibit completely different kinds of dy-
namics. I have studied the time evolution of the Floquet eigenstates in the
momentum and in the occupation space. The former is defined by a single
quasimomentum subspace, whereas the latter corresponds to eigenstates being
superpositions over all quasimomenta. Also vicinities of avoided crossings be-
tween regular and chaotic levels have been analyzed.

The mean momentum over one period of motion for the "regular” eigenstates
reveals clear oscillations, when calculated in a single quasimomentum subspace.
The period of these oscillations is a fraction of the Bloch period that defines the
time periodicity of the hamiltonian. In contrast, the time dependence of the
mean momentum of chaotic eigenstates is much more complex.

To study the dynamics in the real space I have calculated mean occupation
numbers of individual wells of the lattice over one Bloch period. Here limiting
to only one quasimomentum would imply always the same number of particles
in each well, due to the quasimomentum subspaces definition. The two sorts of
eigenstates are again easily distinguishable. The regular dynamics amounts to
correlated oscillations of particles in different lattice wells. In addition, there
are cases of particle localization in one of the wells, which suggests a link be-
tween the regular eigenstates in the chaotic sea and the phenomenon of discrete
breathers [6]. Since discrete breathers are present in nonlinear systems, where
the nonlinearity can occur as a consequence of interparticle interactions, they
would correspond to a mean field limit of our system. The possibility that it
is the underlying mixed structure of the phase space that causes the breather
behaviour we find very promising.



5 Further remarks

I find my stay in Freiburg extremely stimulating and fruitful. Apart from my
main research project, I had an opportunity to take part in many discussions
and seminars devoted to ultra-cold atoms, classical and quantum chaos, infor-
mation theory and many other subjects. I appreciate discussions with guests
and members of the group, concerning also technical aspects of my project, as
well as projects that T had finished earlier in Krakéw. An outcome of this inter-
action are a few interesting research ideas, investigated hopefully in future with
participance also of other members of the two groups. I am sure that my ex-
change grant will foster the cooperation, not to mention an opportunity to finish
my PhD next year as a joint binational PhD project with dr hab. Krzysztof
Sacha and prof. Andreas Buchleitner as my supervisors on the Polish and the
German side, respectively.

I am particularly grateful to those members of the Freiburg group, with
whom I have worked on the Bose Hubbard problem: Hannah Venzl, Moritz
Hiller, Florian Mintert, Tobias Zech and especially Andreas Buchleitner.
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