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Abstract

The aim of the original proposal (6 months) was to combine my exper-
tise with those of the host institution in order to build a theoretical tool
to study ultracold Bose-Fermi mixtures and their connection with polaron
physics. The results achieved during my 3 months stay are twofold: on
one side we developed a better theoretical understanding of the connec-
tions between the well established Holstein description of polarons and the
Bogoliubov approach to the bosonic component in Bose-Fermi mixtures.
On the other side and in order to validate quantitatively this connection,
we then implemented a computer code which provides static and dynamic
properties of bosonic and fermionic degrees of freedom in a finite cluster.

1 Introduction and Motivations

The problem of electrons interacting with lattice vibrations is a long standing
one in condensed matter and, despite of the advances achieved in the theoretical
understanding of this subject, a quantitative agreement between theory and
experiments is still missing, particularly in systems in which electron-electron
correlations are relevant.

There are several reason behind these disagreements. Indeed a fair descrip-
tion of real materials, where a number of phononic modes are excited simulta-
neously, requires very complex theoretical models. On the other hand, even the
simplest models introduced so far for describing electron-phonon interactions,
like e.g. the Holstein model [1] where phonons only couple to the electronic
density, defied so far an exact solution in the whole parameter range. In order
to disentagle these two sources of error one would clearly need better theoretical
results about these models, together with experiments focusing on systems so
simple to be well described by these simple models.

As mentioned in the original proposal, it has already been shown (e.g. in [2])
that ultracold atomic gases are the ideal candidates to investigate similar issues,
since the experimental parameters can be tuned to regimes where simplified
model Hamiltonians provide a very accurate description of the system. The same
kind of control is hardly attainable in analogous condensed matter experiments.

Bose-Fermi mixtures with spin-polarized fermions tuned to a suitable pa-
rameter regime are the natural candidates to realize the Holstein model in ex-
periments. Indeed, assuming the mixture to be well described by a Bose-Fermi
Hubbard model1, whose Hamiltonian is given by Ĥ = ĤB + ĤF + ĤBF and

ĤB = −JB
∑

<i,j>

b̂
†
i b̂j − µBN̂B +

UBB

2

∑

i

n̂Bi (n̂
B
i − 1) (1)

ĤF = −JF
∑

<i,j>

ĉ
†
i ĉj − µF N̂F (2)

ĤBF = UBF
∑

i

b̂
†
i b̂iĉ

†
i ĉi (3)

it is immediately evident that the bosonic atoms are coupled to the fermionic
density as in the Holstein model. However, as already remarked in [3], the

1See [3] for a detailed explanation of the notation in use.
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analogous role of the phonons in condensed matter is not played by the orig-
inal bosonic particles (atoms), but by the Bogoliubov modes of the conden-
sate. In this respect therefore the phonons in the Bose-Fermi mixtures are
dynamic quasiparticles whose properties are well defined only in suitable pa-
rameter regimes. For example, as shown in [3], due to the interplay between the
condensate depletion and the thermal population of the Bogoliubov modes for
increasing temperature, the temperature dependence of the polaronic damping
is in principle richer than in the corresponding condensed matter case, where
there is no softening of the phononic modes with the temperature. Therefore
the connection between the polaron problem and ultracold Bose-Fermi mixtures
has to pass through the Bogoliubov approach of the bosonic component in the
Bose-Fermi mixture. This point of view was already taken in Ref. [3], where
however we chose to restrict our considerations to a specific regime, in order to
focus rather on the connection with the current experiments in ultracold gases.
A better understanding of this issue in the general case was the main focus of
the analytic part of the results (see Sec. 2.1) during my stay in Lund.

Since most of the experimental methods proposed so far to study polarons
in Bose-Fermi mixtures are based on observing the system dynamics (typically
cloud expansions or trap oscillations), an extension of the existing approaches
to the real-time domain is needed in order to directly compare with real exper-
iments. To this aim we developed a numeric approach which is able to address
both equilibrium and non-equilibrium properties of a Holstein model on a fi-
nite cluster. This will allow in the next future both to benchmark the analytic
approach and its assumptions in the static case, and also to address real-time
properties. Details about the numeric approach and the computer code we
developed are provided in Sec. 2.2.

2 Details of the Work carried out

2.1 Analytics Results

Let’s consider the fermionic particles in a Bose-Fermi mixture as impurities
immersed in a bosonic condensate 2. In these conditions we can describe the
system within the Bogoliubov approach in the presence of impurities. The
treatment assumes most of the bosonic particles to be in the condensate, suitably
described by a macroscopic wavefunction ψi, and includes the first quantum
corrections. The shape of the condensate wavefunction ψi is determined by
replacing the bosonic operators b̂i with a classical complex field ψi and imposing
the (classical) energy of the system to be minimal. This is equivalent to imposing
the condensate wavefunction to satisfy the Gross-Pitaevskii (GP) equation.

If there are no fermions in the system the condensate wavefunction is trans-

lationally invariant, i.e. ψi = n0, and the GP equation
∂H0

B

∂(ψ0
i
)∗

= 0 is given

by[5, 6]

−JB
∑

j∈nni

√
n̄0 + UBBn̄0

√
n̄0 = µB

√
n̄0 (4)

where µB = UBBn̄0 − JBz fixes the actual value n̄0 of the unperturbed conden-

2Both the fraction of fermions and the Hamiltonian parameters in the mixture can be easily
tuned to a regime where these conditions are fulfilled (see [3, 4]).
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sate density and the corresponding energy is given by3 (H)n0=n̄0 = −Ns UBB

2 n̄4
0

In presence of impurities (assumed to be static for simplicity at this stage and
described by the classical distribution function fi) instead the GP equation
becomes

−JB
∑

j∈nni

ψ̄j − µBψ̄i + UBB|ψ̄i|2ψ̄i + UBF ψ̄ifi = 0 (5)

where the impurity distribution acts a source term on the condensate wave-
function. It is clear that the presence of impurities breaks the translational
invariance of the lattice. Moreover we also realized, since the GP equation is
nonlinear in the field ψi, that it is also not possible to obtain a generic solution
corresponding to a generic fi, since the Green function method used in Ref. [7]
and implicitly in Ref. [3] does not apply anymore4. We however demonstrated
that the GP energy corresponding to ψ̄i which solves the GP equation assumes
in general the same espression of the unperturbed case, provided one replaces
n̄0 with ψ̄i, i.e.

(H)ψi=ψ̄i
= −UBB

2

∑

i

|ψi|4 (6)

The Bogoliubov approach corresponds then to further expanding the bosonic
operators as b̂i = ψi + θ̂i, keeping only the leading order terms in the quantum
fields, i.e. only terms involving the condensate. Within these approximations,
one obtains the following Hamiltonian for the bosonic part Ĥ ≈ H + Ĥθ where

Ĥθ = −JB
∑

<i,j>

θ̂
†
i θ̂j−µB

∑

i

θ̂
†
i θ̂i+2UBB

∑

i

|ψ̄i|2θ̂†i θ̂i+
UBB

2

∑

i

(θ̂†i ψ̄i)
2+(θ̂iψ̄

∗
i )

2

(7)
The Bogoliubov modes are now inhomogeneus because of the impurities, even
though they depend on the impurity distribution only through the condensate
wavefunction ψi. The Hamiltonian Ĥθ is however quadratic and can be diag-
onalized using a generalized Bogoliubov transformation (see Ref. [8] for the
explicit form of the Bogoliubov-De Gennes equations), obtaining

Ĥθ =
′

∑

ν

~ων β̂
†
ν β̂ν +∆E (8)

where ∆E is the quantum correction to the classical ground state energy. Ac-
cording to the Bogoliubov prescription therefore, the Bogoliubov modes are not
directly coupled to the fermionic density, since the Bogoliubov Hamiltonian Ĥθ

does not depend explicitly on fi, though ψ̄i clearly depends on fi. Moreover,
as already noted in Ref. [9] in the context of BEC in presence of disorder, is at
least not justified (if not incorrect) within the Bogoliubov approach to neglect
the effect of the impurities on the condensate wavefunction and directly expand
the bosonic operators around the unperturbed condensate wavefunction as in
Refs. [10].

The simultaneous solution of the GP+Bogoliubov-De Gennes equations pro-
vides the explicit form of the condensate wavefunction and of the Bogoliubov
modes for a given impurity distribution. Work in the direction of extending the

3Ns is the number of lattice sites.
4This is particularly crucial since the fermions are in general dynamic impurities and their

distribution function is not fixed a priori.
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treatment to the case of dynamic impurities, where the fermionic distribution
function fi is replaced by the quantum operator n̂i, is currently under way.
Though feasible in principle, we are anyway not specifically interested here in
the solution of this problem (which is somehow already discussed in literature
(e.g. in Ref. [9] in the context or disordered BEC)). Our focus was instead in
understanding what is the connection between the Bogoliubov approach above
and an effective descriptions in terms of a suitable Holstein model, since this
connection would allow an explicit link between the physics of Bose-Fermi mix-
tures and the Holstein polaron.

To this aim suppose now we start again from the Bose-Fermi Hubbard Hamil-
tonian and apply a prescription analogous to the one used in solid state physics
to describe the lattice vibrations in terms of phonons. The bosonic operator
are written as sum of a C-number (the equilibrium position of the ion in a
solid) + a quantum part representing the displacement operators with respect

to the equilibrium position. Following a similar procedure for the operator b̂i
which creates a bosonic atoms at the lattice site i would correspond to separate
the ”unperturbed” condensate (in the absence of impurities) and keep only the

small quantum fluctuation around them to the lowest order, i.e. b̂i ≈
√
n0 + θ̂i.

This would result in the following hamiltonian Ĥ ≈ H0 +H0
θ̂
+ Ĥlin where

H0 = −Ns
[

UBBn̄
2
0

2

]

+ UBF n̄0

∑

i

fi (0-th order) (9)

H0
θ̂

= −JB
∑

<i,j>

θ̂
†
i θ̂j − µB

∑

i

θ̂
†
i θ̂i + 2UBBn̄0

∑

i

θ̂
†
i θ̂i + (10)

UBB

2
n̄0

∑

i

(θ̂†i )
2 + θ̂2i (11)

Ĥlin = UBF
√
n̄0

∑

i

[θ̂†i + θ̂i]fi (12)

By using now the unperturbed Bogoliubov transformation from θ̂i to β̂k, one can
introduce the unperturbed Bogoliubov modes which are perfectly analogous to
the phonons in condensed matter, obtaining Ĥ ≈ H0 +H0

β̂
+ Ĥlin, where

Ĥ0
β =

′
∑

k

~ωkβ̂
†
kβ̂k +∆0E

and

Ĥlin =
∑

i

′
∑

k∈FBZ

~ωk[Mi,kβk +M∗
i,kβ

†
k
]fi (13)

Mi,k = UBF

√

n̄0ǫ
∗
k

Ns(~ωk)3
eik·Ri (14)

One can easily realize that this Hamiltonian expression is pretty different from
the Bogoliubov approach above. Indeed they correspond to different orders of
approximation since the equilibrium position of the expansion is not affected
by the impurities at this level, while it was in the GP approach in Eq. 5. If
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one sticks to the static impurities case with JF = 0, the bosonic and fermonic
parts in the expressions above can be made indipendent with a suitable change
of basis, corresponding to use the Lang-Firsov (LF) transformation [11]

Ĥβ
LF−→ Ĥβ − Ĥlin + V (15)

Ĥlin
LF−→ Ĥlin − 2V (16)

V =
∑

i,j

Vi,jfifj where Vi,j =

′
∑

k∈FBZ

~ωkM
2
k
cos [k · (Ri −Rj)](17)

The Lang-Firsov transformed Hamiltonian has therefore no coupling between
phonons and fermions, while the latters now interact through a density-density
interparticle potential V . In the final expression the Bogoliubov modes are not
affected by the impurities, contrarily to the Bogoliubov approach above. We
demonstrated however that, at least in the static case, the two treatments give
the same result whenever one includes the additional condition

α =
UBF (UBBn0)

D

2 −1

(2JB)
D

2

≪ 1

on the Bose-Fermi Hubbard Hamiltonian. Under this condition, which con-
straints the model parameter and is in principle independent of the valid-
ity of the Bogoliubov approach, the GP equation can be linearized and b̂i ≈√
n0 + δi + θ̂i where δi ≪

√
n0 is the distorsion of the condensate wavefunction

induced by the impurities. Since the corresponding GP equation for δi (already
derived in Ref. [3] for the static impurities case)

∑

j∈nni
(δj − δi)

l2
− 2UBBn0

JBl2
δi =

UBF
√
n0

JBl2
fi (18)

is now linear, it allows for a generic solution using the Green function method
and it is easier to generalize to the case of dynamic impurities. By formally
solving the equation, one obtains that, in the static case, the (linearized) Bo-
goliubov approach including the condition α ≪ 1 is identical to write down a
Holstein Hamiltonian for the Bose-Fermi mixture. This suggest therefore that,
under suitable constraints over the model parameters, the Bose-Fermi mixture
are well described by this simplified model for electron-phonon interaction in
condensed matter. The extension to the dynamic case, where fi → n̂i and
J 6= 0, of this formal equivalence it currently under investigation since there is
no analogous of the Lang-Firsov transformation for finite J in order to decouple
bosonic and fermionic degrees of freedom. In this respect, a numerical valida-
tion of the results obtained with different Hamiltonians would be very useful to
assess the equivalence of the two treatment in the general case which defies a
simple analytical solution. See the discussion about the numerics in Sec. 2.2.

In conclusion, we demostrated analytically, at least in the static case with
JF = 0, that the Bogolioubov approach to the bosonic component in a Bose-
Fermi mixture is equivalent to a Holstein model only in a suitable parameter
regime, which is smaller then the regime of validity of the Bogoliubov approach
itself. Indeed it is necessary to include the additional condition α ≪ 1 on the
Hamiltonian parameters, which allows to linearize the GP equation and makes
the Bogoliubov spectrum unaffected by the fermionic impurities.
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Figure 1: Typical shape of the Bogoliubov spectrum ωk (Left Panel) and of the
matrix elements Mk (Right Panel) for D = 2 (JB = 1).

2.1.1 From dispersive to Einstein modes

Stimulated by the fact that for practical reasons most of the investigations of
the Holstein model in the literature deal with phononic modes only in Einstein
approximation, we also investigated the possibility of reducing the Bogoliubov
modes to an equivalent Einstein mode. However, as one can immediately realize
by looking at Fig. 1, the Bogoliubov modes are intrinsically acoustic, since the
unperturbed Bogoliubov dispersion is given by [6] ~ωk =

√

ǫ∗
k
(ǫ∗

k
+ 2UBBn0)

and therefore ~ωk → 0 for k → 0 5 . The reduction to Einstein modes is
better suited for the case of optical phononic bands where there is a finite
minimum energy for the phonons. Since the presence of soft modes is expected
to strongly affect the physics of the system, it is not clear to us if one can
find a suitable Einstein mode able to mimick the dispersive modes results in the
whole parameter regime. We realized however that, at least at strong coupling, a
possible strategy is to compare systems with the same value of the polaron shift,
which is supposed to be the relevant energy scale in this regime. This still leaves
space for a suitable choice of the equivalent coupling g between the effective
Einstein mode and the fermion to replace the matrix elements Mi,k. We are
currently investigating if this assumption can be extended to smaller coupling
regimes, expecially since this would also strongly reduce the computational effort
to simulate the dynamics in the numerics, due to the exponential reduction of
the relevant phononic Hilbert space size.

2.2 Numerics

As already outlined in the original proposal, most of the ongoing experiment
devised to study polaronic effects within Bose-Fermi mixtures are intrinsically
dynamic in character, the easiest setup being the expansion of the fermionic
cloud in the optical lattice once the trapping potential is removed. Therefore
in order to directly simulate the experimental results, we developed a computer

5ǫ∗
k
= ǫk + zJB = 2JB

∑
D

i=1
(1 − cos (kil)) ≥ 0 is the (shifted) single particle spectrum in

tight-binding approximation
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code which is able to address the real-time dynamics of bosonic and fermionic
degrees of freedom simultaneously. Moreover, we are going to use the same
code in the static case to complement the prediction coming from the analytic
approach also in regimes where an explicit solution is not available and further
approximations are needed.

Our method of choice is to use exact diagonalization on a finite cluster. While
the method does not have any limitation in principle with respect to the Hamil-
tonian parameters, since it is expected to be accurate in any regime of coupling,
the main drawback is given by finite-size effects due to having a finite Hilbert
space. This problem, which is already present in purely fermionic systems, is
further complicated by the presence of phonons, whose number-per-mode is not
bounded by the Pauli principle. In order to cope with the rapid increase of
the Hilbert space size with the cluster size, we used the Lanczos algorithm [12],
which allows to compute the extremal eigenvalues of large sparse matrices with
relatively small effort compared to brute-force exact diagonalization. While this
method is usually employed to deal with zero or very low temperature properties
of physical systems in equilibrium, it can be used in principle also to study the
real-time evolution of a given initial configuration [13], and is therefore suitable
to be used to describe cloud expansions.

The code at the moment is implemented to deal with the Holstein Hamilto-
nian in presence of Einstein (i.e. not dispersive) phonons. As already mentioned
above, since in principle the number n of phonons in each mode is unbounded,
we must proceed to a truncation procedure in the boson number per-mode. The
nature of the problem and the strength of the parameters significantly affect the
convergence rate of the truncated expansion. With a partial use of symmetry,
it turns out that with N = N↑ +N↓ fermions on L lattice sites, and interacting
with M boson modes (each i-th mode with truncated occupation Mi), the size
of the basis set in the Fock space is

Ntot =

(

L

N↑

)(

L

N↓

) M
∏

i=1

(Mi + 1) (19)

On a ordinary workstation, the Lanczos method is able to deal with large
matrices up to several millions of elements. This would fix the maximum size of
the system we can address. For a single fermion the largest size we can address
is strongly bounded from the maximum number of phonons-per-mode allowed.
For example, allowing a phononic mode per lattice site and up to 2 phonons per
mode the maximum cluster size addressable is rapidly saturating for L = 5, 6.
However, at the moment we are also considering different procedures to improve
the code efficiency in dealing with the phononic Hilbert space. For example in
presence of dispersive phonons which have different energy in different modes,
an energy cut-off Λ would be much more efficient, since soft modes are more
likely to be created then hard modes.

The code is fully functional at the moment and we are going to test it against
known results for the polaron problem in order to understand the relevance of
finite-size effects in different parameter regimes. In order to give the reader an
intuitive idea about how the Lanczos algorithm works in the practice, we briefly
sketch it below.

7



2.2.1 Lanczos method for temporal evolution

Suppose we wish to determine the time evolved state

|Φt〉 = e−iHt|Φ0〉 =
∞
∑

k=0

(−it)k
k!

|vk〉, |vk〉 = Hk|Φ0〉. (20)

According to the Lanczos method [12], the space spanned by the vector sequence
{|vk〉} is also spanned by the orthonormal Lanczos sequence {|Vk〉}, obtained
by building the Lanczos sequence starting from |Φ0〉 ≡ |V0〉. The associated
expression for the Hamiltonian H is tridiagonal in the {|Vk〉} basis and we can
write:

|Φt〉 =
ML
∑

k=0

|Vk〉 〈Vk|e−iHLt|V0〉, |V0〉 = |Φ0〉, (21)

with ML ≤ M . We have renamed H by HL to make explicit that we are in
the full Lanczos basis. Now, the basic approximation is to truncate the Lanczos
chain (sequence) {|Vk〉} to a maximum vector |VK〉 (K < ML), and similarly

to consider HL into this truncated subspace, i.e. HL → H
(K)
L . Naturally, H

(K)
L

still maintains its tridiagonal structure. Under this approximation we can write

|Φt〉 =
K
∑

k=0

|Vk〉 〈Vk|e−iH
(K)
L

t|V0〉. (22)

The key point is that such procedure is useful when i) K its significantly smaller
than the dimension M of the full space, and ii) when K is within the range of
numerical diagonalization procedures but M is not, which applies to large scale

problems. In this case, we can now numerically diagonalize H
(K)
L ; and inserting

a complete (in the truncated K-space) set of eigenstates |λ〉 of H(K)
L :

|Φt〉 =
K
∑

k=0

|Vk〉
[

∑

λ

〈Vk|λ〉e−iǫλt〈λ|V0〉
]

. (23)

If, in the original basis , |Φ0〉 =
∑

m cm(0)|m〉, |Φt〉 =
∑

m cm(t)|m〉, we easily
find:

cm(t) =

K
∑

k=0

〈m|Vk〉
[

∑

λ

〈Vk|λ〉e−iǫλt〈λ|V0〉
]

, |V0〉 = |Φ0〉, (24)

where 〈m|Vk〉 is aM × (K+1) matrix formed by projecting in the original basis
{|m〉} the states {|Vk〉} generated during the Lanczos recursion.

3 Conclusions and Perspectives

During my stay in Lund, we have developed two complementary tools in order to
better understand the connection between Bose-Fermi mixtures experiments and
the Holstein polaron problem in condensed matter. On one side we have shown
analytically in the case JF = 0 that only by adding the additional condition
α ≪ 1 (which allow to linearize the GP equation) the Bogoliubov approach to
the bosonic component of the mixture results in an Hamiltonian identical to the
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Holstein model. On the other side we have developed a computer code which
allows to deal simultaneously with bosonic and fermionic degrees of freedom
in a finite cluster. The code is fully functional and can address both systems
in thermal equilibrium at low or zero temperature and also real-time dynamics
starting from a given initial configuration. We are at the moment involved
in testing the code against known results for the Holstein model, in order to
quantify finite-size effects, and in extending the analytical approach to the case
of dynamic impurities.

We have already envisaged in the early future, by combining the two methods
we have developed, to publish theoretical results which will be directly compa-
rable with cloud expansion experiments in Bose-Fermi mixtures. Conversely we
should be able to use the inverse mapping in order to obtain accurate estimates
for the polaronic crossover in the Holstein model from ultracold gases experi-
ments. The research visit has been extremely fruitful and we are grateful to the
ESF-POLATOM for the opportunity given us to strengthen the collaboration
between Lund University and the SISSA in Trieste.
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