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The visit was intended on strengthening the established collaboration between the groups 
lead by Prof. Baumberg at Cambridge University and Prof. Savvidis at FORTH, Crete on 
the development and study of new class of strongly coupled semiconductor microcavities 
in which the strength of polariton-polariton interactions can be tuned by controlled 
electronic tunneling in asymmetric double quantum wells (ADQWs).  Application of an 
electric field to the structure, allows the alignment of electronic levels of neighboring 
QWs into resonance where the spatially direct and indirect excitons become coupled. As 
a result the indirect exciton transition acquires oscillator strength and both excitons 
couple to light forming symmetric and asymmetric polariton states. Furthermore due to 
tunneling of electrons polaritons in these structures possess enhanced dipole moments in 
the growth direction. The later can be exploited to enhance polariton-polariton 
interactions responsible for relaxation and scattering of polaritons making these structures 
very promising for studies of nonlinearities and the demonstration of many types of 
optoelectronic devices. In the following, a short description of the progress performed 
during these six months is given in the field of the asymmetric QWs.  

Sample description-Fabrication methods 

The microcavities used in the experiments consist of a n-doped bottom DBR and a p-
doped top DBR, separated by an undoped cavity layer as shown in fig.1b. The active 
region is made up of pairs of QWs spaced by a thin tunneling barrier of a few nanometers 
in width. The InGaAs QWs in each pair have slightly different In content, so at flatband 
conditions the ground energy levels in each QW are separated, activating only the DX 
transition in the left QW. Reverse bias voltage brings the two levels into resonance 
(fig.1a), so that the tunneling rate of electrons into the right QW and back enhances the 
IX coupling to the polariton modes and leading to the formation of dipolaritons with out-
of-plane dipole moment, fig.1d.  

The samples are grown by molecular beam epitaxy on highly n-doped GaAs (001) 
substrates. The p-i-n microcavity structure consists of a highly n-doped lower DBR (21 
GaAs/AlAs periods) and a highly p-doped upper DBR (17 GaAs/AlAs periods). The 5λ/2 
undoped cavity contains 4 sets asymmetric double QWs (ADQWs) of In0.1Ga0.9As/GaAs/ 
In0.08Ga0.92As (10nm/LB/10nm), placed at the antinodes of the electric field. Three sample 
wafers with barrier width LB of 4nm, 7nm and 20nm are fabricated to access different 
coupling strengths. Cylindrical mesas of 200, 350 and 500μm diameter are processed into 
the samples using BCl3/Cl2 reactive ion etching. Ti/Pt p-type contacts were formed in a 
ring-shaped geometry at the edge of the mesas after an etching ohmic recess step to 
reduce the series resistance of the top DBR bringing the contact closer to the cavity. 
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Moreover, we found that different mesas on the same sample start tuning at different bias 
voltage, an observation we have no explain so far. For all the above mentioned reasons, it 
is not possible to relate tha applied bias voltage directly to the intracavity electric field 
strength F.  

There are several ideas to improve the current sample design. The most obvious is the 
introduction of a 8nm wide AlAs potential barrier to both sides of the ADQW to prevent 
the electron from escaping the coupled QW system. Basic simulations, obtained by 
calculationg the electron wavefunction in the QW system under presence of a static 
electric field as in [2], have shown a reduction of the electron escape rate by 3-4 orders of 
magnitude with this AlAs barrier. Based on these simulations a new sample was grown 
with LB = 7nm, and diodes fabricated following the same processing procedure described 
at the beginning.  
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