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Purpose of the visit

Background. Let (M,ω) be a symplectic manifold. A smooth map s : (M,ω) → B is a Lagrangian
fibration if s−1(b) is a Lagrangian submanifold of (M,ω) for each regular value b ∈ B. Such maps arise
naturally in the study of completely integrable Hamiltonian systems via the Liouville-Mineur-Arnol‘d
theorem (cf. [Dui]), and in mirror symmetry via the SYZ conjecture (cf. [GS]). Examples range
from toric manifolds to the well-known fibration of a K3 surface over CP1 with 24 singular fibres (cf.
[Sym]). Henceforth, a Lagrangian fibration is assumed to be proper and have connected fibres unless
otherwise stated.

Under these assumptions and in the absence of singular fibres, a Lagrangian fibration is a torus
bundle and its topological and symplectic invariants are known (cf. [Dui]). The rigidity of Lagrangian
bundles (i.e. fibrations with no singularities) is reflected in the following lemma (cf. [Dui]).

Lemma 1. A manifold B is the base of a Lagrangian bundle if and only if it admits a smooth atlas A
whose changes of coordinates are constant on connected components and are restrictions of integral
affine transformations of Rn, i.e. elements of

AffZ(Rn) := GL(n;Z) nRn.

A pair (B,A) as in Lemma 1 is an integral affine manifold and the atlas A is an integral affine
structure. Given (B,A), the proof of Lemma 1 provides a technique to construct a reference Lagrangian
bundle

Tn ↪→ (T∗B/ΛA, ω0)→ B

which

i) induces the given integral affine structure on B;
ii) admits a globally defined Lagrangian section;
iii) provides the semiglobal symplectic model for any other Lagrangian bundle (M,ω)→ B which

induces the atlas A on B, i.e. in a neighbourhood of each fibre of (M,ω) → B there exists a
local symplectomorphism (M,ω)→ (T∗B/ΛA, ω0) which preserves the bundle structures.

The Lagrangian submanifold ΛA ⊂ (T∗B,Ω) (where Ω denotes the canonical symplectic form on
T∗B) is the total space of a Zn-bundle over B whose fibre is the integral span of the differentials of local
integral affine coordinates given by A; it is known in the literature as the period lattice associated
to the integral affine manifold (B,A) (cf. [Dui]). The topological (resp. symplectic) invariants of
a Lagrangian bundle (M,ω) → B inducing the atlas A on B can be interpreted as obstructions
to the existence of a global topological (resp. symplectic) isomorphism between (M,ω) → B and
(T∗B/ΛA, ω0) → B (cf. [Dui]). Therefore, any Lagrangian bundle over a given manifold B can be
constructed by specifying the following data (cf. [DD, Dui, Sep]): –

A) an integral affine structure A on B;
B) a cohomology class c ∈ H2(B;P), where P denotes the sheaf of sections of the period lattice

ΛA. This is the topological invariant determining the isomorphism class of the bundle and it
must satisfy an ‘integrability’ condition related to the obstruction to constructing a symplectic
form on the total space of the corresponding torus bundle;

C) a cohomology class α ∈ H2(B;R) which gives the symplectic invariant of the bundle.

The above provides a solution to the construction problem of Lagrangian fibrations with no singu-
larities. However, most Lagrangian fibrations arising from completely integrable Hamiltonian systems
and mirror symmetry have singular fibres which are associated to interesting mathematical and phys-
ical phenomena (cf. [Dui, Gro1]). The focus of this report is on fibrations which occur frequently
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in integrable Hamiltonian systems and have so-called non-degenerate singularities. Such singularities
decompose (topologically) as products of the following building blocks (cf. [Zun1]): –

• elliptic singularities (e.g. toric manifolds);
• hyperbolic singularities (e.g. mathematical pendulum);
• focus-focus singularities (i.e. the Lagrangian counterpart of nodal singularities in Lefschetz

fibrations).

While [Zun2] provides a topological and symplectic classification theory for Lagrangian fibrations
with such singularities which generalises [DD, Dui], there is no general method to construct Lagrangian
fibrations over a given base manifold B and, therefore, there is a dearth of explicit examples (cf.
[CBM1, GS]).

Objective. The purpose of the visit was to work on the construction problem of Lagrangian fibrations
and, in particular, on understanding whether any Lagrangian fibration over a manifold B can be
recovered by specifying data as in the case with no singularities. The data associated to a Lagrangian
fibration over B necessarily include the following (note that this list may not be exhaustive): –

a) a singular locus ∆ ⊂ B, i.e. a closed subset which determines the singular values of the
fibration;

b) an integral affine structure A0 on B0 = B \∆;
c) symplectic invariants defined near ∆ which determine the ‘fibred’ symplectic topology near

the singularities (cf. [CB, VN]);
d) appropriate generalisations of the topological and symplectic invariants of Lagrangian bundles

to the case with singularities.

In the context of non-degenerate singularities, several aspects of the classification and construction
problems have been studied in [LS, PVN, Sym, VN] under the restrictions that dimM = 4 and
in the absence of hyperbolic singularities. A crucial tool is the local integral affine structure of
neighbourhoods of singular loci, which is determined by the non-degeneracy of the singularities (cf.
[MZ]). The approach that this project takes is complementary to the one which underlies most of
the literature in completely integrable Hamiltonian systems, since it assumes that there is no given
Lagrangian fibration, but rather aims to construct such objects. In this sense, this project shares ideas
with work on the SYZ conjecture carried out in [CBM1, GS, Gro2] and with work on constructing
semitoric integrable systems (cf. [PVN]); however, seeing as the construction problem has not been
studied in dimensions higher than 6, this research aims to expand and enrich known construction
techniques to provide new examples of Lagrangian fibrations with many non-trivial topological and
symplectic invariants. Moreover, it proposes to construct natural reference Lagrangian fibrations over
B (once some extra data have been specified) which simplify the classification theory of [Zun2], as the
topological and symplectic invariants defined therein are relative to a choice of a reference Lagrangian
fibration.

Work carried out during the visit

The first step taken during the visit was to break the construction problem for Lagrangian fibrations
down into smaller questions, which are listed below.

Step 1 Define an appropriate notion of integral affine manifolds with singularities which allows for a
construction of a smooth reference Lagrangian fibration as in Lemma 1 above. This technique
should allow to determine the topology of singular fibres of the reference Lagrangian fibration
by considering the integral affine structure near the singular locus;

Step 2 Compactify the singular fibres using normal forms for non-degenerate singularities (cf. [MZ]).
This involves studying a gluing problem whose solution will give rise to a generalisation of
symplectic invariants in a neighbourhood of hyperbolic and focus-focus singularities (cf. [CB,
DVN, VN]). Particular attention will be paid to gluing hyperbolic singularities in, as this case
has not yet been considered in the existing literature; the techniques of stitched Lagrangian
fibrations developed in [CBM2] are a starting point to solve this problem;

Step 3 Prove that any Lagrangian fibration with non-degenerate singularities can be constructed
starting from the data determined in Step 1 and Step 2 above. The construction process is, in
some sense, inverse to the classification theory of Lagrangian fibrations developed in [Zun2]; as
such, the topological and symplectic invariants constructed in [Zun2] are going to correspond
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to the data needed to construct a Lagrangian fibration. Moreover, this approach will shed
light on the reasons behind the assumptions used to develop the theory in [Zun2].

Step 4 Relate these construction techniques with other classification and construction results in the
literature (e.g. [CBM1, GS, LS, PVN]).

During the visit, most of the work concentrated on solving Step 1 above; the results that were
obtained are briefly described in the next section. It is important to remark that the techniques
developed thus far only allow to deal with integral affine manifolds with singularities which arise from
Lagrangian fibrations without hyperbolic blocks. The reason for this restriction is that if s : (M,ω)→
B is a Lagrangian fibration whose singularities have hyperbolic components, the singular locus ∆,
i.e. the subset of B consisting of singular values of s, is locally given by the intersection of finitely
many closed submanifolds of codimension 1. In particular, no point x ∈ ∆ admits a neighbourhood
U whose intersection with B0 = B \ ∆ is path-connected: this condition is key to the construction
outlined below. However, it is expected that the results of next section can be extended to deal with
locally codimension 1 singular loci by studying how to glue the structures constructed below along
these subsets (cf. [CBM2]).

Description of the main results obtained

In this section the problem of defining a notion of integral affine manifold with singularities which
allows to construct reference Lagrangian fibrations as in Lemma 1 is briefly discussed. Such a notion
is suggested in Definition 4 and is used to prove Theorem 1, whose proof is only sketched here. It is
important to notice that what is presented below is still work in progress.

There are various definitions of integral affine manifolds with singularities in the literature (cf.
[CBM1, GS]) and the one given below is an adaptation of some of these to the purposes of this report.

Definition 1. An integral affine manifold with singularities is a triple (B,∆,A0), where B is a
smooth manifold, ∆ ⊂ B is closed and locally a union of finitely many locally closed submanifolds of
codimension at least 2, and A0 is an integral affine structure on the complement B0 = B \ ∆. The
subset ∆ is called the singular locus of (B,∆,A0).

Remark 1. If s : (M,ω)→ B is a proper Lagrangian fibration with connected fibres and set of singular
values ∆, then the proof of the Liouville-Mineur-Arnol‘d theorem in [Dui] implies that B0 = B \ ∆
inherits an integral affine structure A0. Therefore the triple (B,∆,A0) is an integral affine manifold
with singularities as defined above, provided ∆ satisfies the condition of Definition 1.

The above definition of integral affine manifolds with singularities does not give sufficient control
of the behaviour of integral affine structures near the singular loci to obtain the result of Theorem 1.
Therefore, further conditions are needed; before stating these conditions, it is necessary to recall some
results from integral affine geometry, which are only stated here (cf. [GH, GS]).

Definition 2. Let (B,A) be an integral affine manifold. A (possibly locally defined) smooth function
f : B → R is said to be integral affine if in local integral affine coordinates a1, . . . , an it is given by

f(a1, . . . , an) =

n∑
i=1

kia
i + c,

where ki ∈ Z for i = 1, . . . , n and c ∈ R is a constant.

Proposition 1. To an n-dimensional integral affine manifold (B,A) and a point b ∈ B can be
associated a representation

a : π1(B; b)→ AffZ(Rn)

called the affine holonomy of (B,A). The composite

l := Lin ◦ a,
where Lin : AffZ(Rn) → GL(n;Z) is the natural projection, is called the linear holonomy of (B,A).
The obstruction for a to admit a fixed point is a cohomology class

r(B,A),b ∈ H1(π1(B);Rn
l ) ∼= H1(B;Rn

l )

called the radiance obstruction of (B,A) (with respect to a choice of base point b ∈ B).



4 DANIELE SEPE

Definition 3. An integral affine manifold (B,A) whose radiance obstruction r(B,A),b vanishes is said
to be radiant.

Remark 2. The notion of a radiant integral affine manifold is independent of the choice of base point
b ∈ B needed to construct the affine and linear holonomies.

With Definitions 2 and 3 in hand, the notion of suitable integral affine manifolds with singularities
is suggested below, inspired by some results in [GS].

Definition 4. An integral affine manifold with singularities (B,∆,A0) is suitable if every x ∈ ∆
admits an open, contractible neighbourhood U ⊂ B satisfying the following conditions

1) every locally defined integral affine function

f : U \∆︸ ︷︷ ︸
:=U0

→ R

admits a smooth extension to U ;
2) the integral affine manifold (U0,A0|U0) is radiant.

Remark 3. To the best of the author’s knowledge, almost all integral affine manifolds with singu-
larities arising in the literature regarding Lagrangian fibrations are suitable (cf. [CBM1, GS, PVN]).
Moreover, [GS] gives a method to construct examples of such manifolds, with the difference that B is
only assumed to be a topological manifold.

Suitable integral affine manifolds with singularities admit period lattices as in the regular case and,
therefore, it is possible to construct reference Lagrangian fibrations over such manifolds. This is the
content of the following theorem, which is the main result obtained during the visit.

Theorem 1. Let (B,∆,A0) be a suitable integral affine manifold with singularities. There exists a
smooth closed Lagrangian submanifold Λ ⊂ (T∗B,Ω) called the period lattice associated to (B,∆,A0).
The quotient T∗B/Λ inherits a symplectic form ω0 and there exists a Lagrangian fibration

(T∗B/Λ, ω)→ B

which admits a globally defined Lagrangian section.

Sketch of proof. Given a suitable integral affine manifold with singularities (B,∆,A0), consider the
period lattice Λ0 ⊂ (T∗B0,Ω0) associated to the integral affine manifold (B0,A0). This is the total
space of a Zn-bundle over B0 which is spanned by locally exact forms; therefore, Λ0 is a Lagrangian
submanifold of (T∗B0,Ω0). The idea is to extend Λ0 smoothly over the singular locus ∆ so as to define
a Lagrangian submanifold of (T∗B,Ω).

Let pr0 : Λ0 → B0 denote the projection and, for x ∈ B0, let Λ0,x = pr−10 (x). Note that for every
point x ∈ B0 and any element σx ∈ Λ0,x there exists an open neighbourhood U ⊂ B0 and a locally

defined smooth section σU : U → pr−10 (U) with σU (x) = αx. Existence of such sections allows to prove
that Λ0 is a closed submanifold of T∗B and that the quotient T∗B0/Λ0 obtained from the fibrewise
action defined by translating along elements of Λ0 is a smooth manifold (cf. [Vai]). If these last two
properties hold for Λ, then T∗B/Λ is a manifold. Therefore, it suffices to define Λ so that the existence
of local sections as above holds to endow T∗B/Λ with a smooth structure.

Let x ∈ B0. There exists a coordinate neighbourhood U ⊂ B0 with local integral affine coordinates
a1U , . . . , a

n
U . Define

(1) Λ|U = {(y,p) ∈ T∗U : p ∈ Z〈da1U , . . . ,danU 〉}(= Λ0|U ).

As in the case with no singularities, this definition is independent of the choice of integral affine
coordinates near x. It now remains to define Λ near the singular locus ∆. Let x ∈ ∆ and let U ⊂ B
be an open neighbourhood of x as in Definition 4. Set U0 = U \∆ and denote the sheaf of sections
of Λ0|U0 by P0. By the local structure of ∆ specified in Definition 1, U0 is path-connected. Consider
H0(U0;P0), the group of global (over U0) sections of P0. The sheaf P0 is a local system of coefficients
with stalk isomorphic to Zn and twisted by a representation

ρ0 : π1(U0; y)→ GL(n;Z),
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where y ∈ U0 and ρ0 is the inverse transposed of the linear holonomy of the integral affine manifold
(U0,A0|U0) with respect to the base point y. Then H0(U0;P0) is the subgroup of Zn which is invariant
under the local monodromy action of π1(U0) defined above. Since sections of Λ0 are locally exact
forms, elements of H0(U0;P0) are closed 1-forms defined on U0. The aim is to show that these extend
to 1-forms defined over U .

Let q0 : Ũ0 → U0 denote the universal covering and fix θ ∈ H0(U0;P0). Set θ̃ = q∗0θ. Since Ũ0 is

simply connected, there exists a function f : Ũ0 → R such that

θ̃ = df.

Since θ̃ ∈ q∗0Λ0|U0 , it follows that f can be chosen so that it is an integral affine function on Ũ0. In fact,

this function is invariant under the action of π1(U0) on Ũ0 by deck transformations; this fact follows
from the fact that (U0,A0|U0) is radiant or, equivalently, that the affine holonomy has no translational

component. Therefore, f descends to an integral affine function h0 : U0 → R. Note that q∗0dh0 = θ̃;
since q0 is a local diffeomorphism, q∗0 is injective, which implies that θ = dh0, thus proving that θ is
an exact 1-form whose potential can be chosen to be an integral affine function on U0. Since θ is ar-
bitrary, it follows that all global sections of Po are the differential of some integral affine function on U0.

Thus set

H0(U0;P0) = Z〈dh10, . . . ,dhk0〉,

for some integral affine functions h10, . . . , h
k
0. Since (B,∆,A0) is suitable, the integral affine functions

h10, . . . , h
k
0 admit unique smooth extensions h1, . . . , hn : U → R. The exact 1-forms dh1, . . . ,dhk

defined on U extend dh10, . . . ,dh
k
0. By shrinking U if needed, it may be assumed that U is a coordinate

neighbourhood for B. Define

(2) Λ|U := {(y,p) ∈ T∗U : p ∈ Z〈dh1, . . . ,dhk〉}.

Since h1, . . . , hk restrict to integral affine functions on U0, it follows the definitions of Λ given by
equations (1) and (2) agree on U0. This shows that Λ is well-defined.

As above, let pr : Λ→ B be the natural projection and, for x ∈ B, let Λx := pr−1(x). The definition
of Λ implies that for any x ∈ B and any element σx ∈ Λx there exists a local section σU : U → pr−1(U)
with σU (x) = αx. Using the same argument as in the regular case (cf. [Vai]), it follows that Λ is a closed
submanifold of T∗B and that T∗B/Λ is a smooth manifold. Since local sections of Λ are closed 1-forms,
the fibrewise action defined by translating along Λ is by symplectomorphisms of (T∗B,Ω). Therefore,
T∗B/Λ inherits a symplectic form ω0 which makes the fibration (T∗B/Λ, ω0) → B Lagrangian. The
zero section z : B → T∗B descends to a Lagrangian section σ of (T∗B/Λ, ω0) → B and the result of
the theorem follows. �

Future collaboration with host institution

The work carried out during the visit was simply the first step in a much larger project that aims
at understanding completely integrable Hamiltonian systems and generalisations thereof (including
non-commutative integrable systems on Poisson manifolds). Thus there will certainly be future col-
laboration with Rui Loja Fernandes, Miguel Abreu and other people at Istituto Superior Técnico in
Lisbon.

Projected publications

Below are listed the two projected publications arising from the work carried out during the visit
in Lisbon.

1) Sepe, D. The integral affine geometry of isotropic bundles;
2) Sepe, D. Construction of Lagrangian fibrations.
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