SCIENTIFIC REPORT

MICHAEL BRANDENBURSKY

1. Purpose of the visit

The purpose of the visit was to continue a scientific collaboration with Jarek Kedra, which has started in 2011 and resulted in two published papers, see [1, 2].

2. Description of the work and main results

Let $\mathbf{G} := \operatorname{Diff}^{\infty}(\mathbf{D}, \partial \mathbf{D}, \operatorname{area})$ be the group of C^{∞} area-preserving diffeomorphisms of the unit disc \mathbf{D} in the plane, which are identity near the boundary $\partial \mathbf{D}$. It is a known fact that for every $g \in \mathbf{G}$ there exists $k \in \mathbf{N}$ such that $g = h_1 \circ \ldots \circ h_k$, where h_i , here $1 \ge i \le k$, is a time-one flow generated by some C^{∞} function $H_i : \mathbf{D} \to \mathbf{R}$, i.e. each h_i is an autonomous diffeomorphism. Let us define a bi-invariant norm $\|\cdot\|_{\operatorname{Aut}}$ on \mathbf{G} as follows: $\|g\|_{\operatorname{Aut}}$ is a minimal number k, such that $g = h_1 \circ \ldots \circ h_k$, where each h_i is an autonomous diffeomorphism. This norm induces a bi-invariant metric on \mathbf{G} , i.e. $\mathbf{d}_{\operatorname{Aut}}(f, g) := \|fg^{-1}\|_{\operatorname{Aut}}$.

Recall that a homogeneous quasi-morphism on a group K is a function $\varphi \colon K \to \mathbf{R}$ which satisfies the homomorphism equation up to a bounded error: there exists $D_{\varphi} \geq 0$ such that $|\varphi(ab) - \varphi(a) - \varphi(b)| \leq D_{\varphi}$ for all $a, b \in K$, and in addition for every $n \in \mathbf{Z}$ we have $\varphi(a^n) = n\varphi(a)$. Denote by $Q(\mathbf{G}, \operatorname{Aut})$ the space of homogeneous quasi-morphisms on \mathbf{G} that are identically zero on all autonomous diffeomorphisms. Our main results include the following:

Theorem 1. The vector space $Q(\mathbf{G}, \operatorname{Aut})$ is infinite-dimensional.

As a corollary we obtain

Corollary. The metric space $(\mathbf{G}, \mathbf{d}_{Aut})$ has an infinite diameter.

A similar result to ours for the group of area-preserving diffeomorphisms of a 2-sphere \mathbf{S}^2 was proved by Gambaudo-Ghys in [3]. Before proceeding we need the following

Definition. Let (K, \mathbf{d}_K) and $(K', \mathbf{d}_{K'})$ be two metric groups. A function $f: K \to K'$ is a bi-Lipschitz embedding if it is an injective homomorphism, and there exists a constant $C \ge 1$ such that

 $C^{-1}\mathbf{d}_K(g,h) \le \mathbf{d}_{K'}(f(g),f(h)) \le C\mathbf{d}_K(g,h).$

Let \mathbf{Z}^n be a free Abelian group of rank n. We equip it with a word metric, which of course is bi-invariant. Now we are ready to present our main theorem.

Theorem 2. For every $n \in \mathbf{N}$ the group $(\mathbf{G}, \mathbf{d}_{Aut})$ contains bi-Lipschitz embedded \mathbf{Z}^n .

The group \mathbf{G} may be equipped with the famous Hofer metric [4, 5]. Similar results to ours with respect to the Hofer metric were obtained by Py and Usher, see [6, 7]. In addition, in the upcoming paper we plan to discuss the relation between this bi-invariant metric, the Hofer metric and the fragmentation metric.

3. PROJECTED PUBLICATIONS

We (Brandenbursky and Kedra) have started to write the paper "The autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc", which will include the results discussed above and which were obtained during a visit of Michael Brandenbursky to Aberdeen. ESF will be acknowledged in this paper.

References

- Brandenbursky M.: Quasi-morphisms and L^p-metrics on groups of volumepreserving diffeomorphisms, to appear in the Journal of Topology and Analysis.
- [2] Brandenbursky M., Kedra J.: *Quasi-isometric embeddings into diffeomorphism groups*, to appear in Groups, Geometry and Dynamics.
- [3] Gambaudo J.M., Ghys E.: Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591–1617.
- [4] Hofer H.: On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1-2, 25–38.
- [5] Lalonde F., McDuff D.: The geometry of symplectic energy, Ann. of Math. (2) 141 (1995), no. 2, 349–371.
- [6] Py P.: Quelques plats pour la métrique de Hofer, J. Reine Angew. Math. 620 (2008), 185–193.
- [7] Usher M.: Hofer's metric and boundary depth, ArXiv:11074599, 2011.

Department of Mathematics, Vanderbilt University, Nashville, TN *E-mail address:* michael.brandenbursky@vanderbilt.edu