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1 Purpose of the visit

The aim of this study is first to prepare some simulation codes for the imminent launching of the Gaia
satellite (expected on October 2013). It is important to assess the applications of the data that will be
delivered to the astronomer community throughout the five years of mission. This visit also aimed to
continue and to strengthen the collaboration already established with the DAG group in the Institut of
Astronomy of University of Vienna.

2 Description of the work done and main results obtained

2.1 Comparison of existing numerical integrators

In this section, I describe the work done for the comparison of four numerical integrators: Runge Kutta
order 5th, Bulirsch-Stoer, Gauss-Radau and Lie integrators (for a description of each integrator, see Eggl
and Dvorak [2010], Everhart [1974], Stoer and Bulirsch [1980]). These integrators are the main one
used for the dynamical study of objects for short or long term integrations. Existing optimised codes for
Gauss-Radau and Bulirsch-Stöer were used. The algorithm for Lie was implemented following Bancelin
et al. [2012] and the algorithm for Runge Kutta is from Press et al. [1992]. Our aim was to test the
accuracy of one integrator when a close encouter of an asteroid with the Earth occurs. This test was done
with a backwards and forwards integration; the elapsed time between the backwards and forwards time
integration should contain a close encounter with the Earth. The tested Near-Earth Objects were choosen
according to their relative deep close distance with the Earth. These objects are (99942) Apophis, 2012
DA14, 2007 UD6 and 2008 TC3. For each asteroid and each integrator, we computed the dispersion
on the semi-major axis value ∆a = a0 − a′0 where a0 is the initial value of a and a′0 is the initial value
of a after the backwards and forwards integration. Table 1 contains the results obtained with the four
integrators mentionned above. We listed the mininum distance for each asteroid (Min. Dist.), the value
∆a for each integrator and the nominal uncertainty on the semi-major axis σa. As seen on the table, the
order of magnitude of ∆a is related to the current 1σ value of the semi-major axis. As a matter of fact, for
a well-known orbit – e.g. asteroid Apophis with 1σa ∼ 10−12 – the divergence after the close encounter
is quite small, with ∆ a ∼ 10−12 - 10−11, even for a deep close encounter. For comparable distance but
with a higger 1σa, the divergence is more significant as the ∆a ∼ 10−10.

Table 1: Divergence ∆a for integrator Gauss-Radau (GS), Runge-Kutta (RK5), Bulirsch-Stoer (BS) and
Lie (LIE). σa is for the current semi-major axis uncertainty.

Asteroid Min dist ∆aGS ∆aRK5 ∆aBS ∆aLIE σa

[AU] [UA] [AU] [AU] [AU] [AU]
Apophis 2.56×10−4 9.65×10−12 2.33×10−11 1.01×10−11 9.73×10−12 1.27×10−12

2012 DA14 2.27×10−4 3.35×10−10 7.82×10−10 4.21×10−10 3.42×10−10 6.11×10−8

2007 UD6 6.92×10−4 3.87×10−10 9.41×10−10 4.42×10−10 3.90×10−10 1.02×10−4

2008TC3 3.91×10−5 7.81×10−10 1.73×10−9 8.23×10−10 7.83×10−10 4.28×10−6
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Figure 1 shows the performance for each integrator for the value indicated on Tab.1. We can see that
Gauss-Radau (numbered 1) and Lie (numbered 4) integrators show similar performances whereas Runge
Kutta integrator (numbered 2) presents the weakest performances.
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Figure 1: Divergence ∆a for each integrator: 1 is for Gauss-Radau, 2 for Runge Kutta, 3 for Bulirsch-
Stoer and 4 for Lie.

2.2 Orbital adjustment

The satellite Gaia will provide an unprecedented high astrometry for Solar System Objects. Data will be
delivered throughout the five years of mission. A pipeline to identify objects entering the field of view
of the satellite is implemented an rely on an auxiliary database of astorb [Bowell, 2011]. This database
contains all the known asteroid and their relative orbital elements. For those which will be classified as
known by the pipeline, a process of orbital adjustment will start. This process is fundamental for the
mission because the database will continually be updated.
For this task, I implemented an algorithm for orbital adjusment using ground-based data (optical and
range/range rate) and Gaia data. The orbital fit process is based of the minimisation of the residuals
(Observed minus Computed data – hearafter O-C). The minimisation of this function is performed using
the so famous Linear Least Square method (hearafter LLS). I used the algorithm of Press et al. [1992]
for its implementation.
The computation of the O-C for optical data is trivial but not for radar and range rate data. For those
data, I implemented the algorithm described Yeomans et al. [1992]. I used an existing code provided
by a member of the Gaia-DPAC consortium1 (private communication) to compute the barycentric posi-
tion of the Gaia satellite during the 5-years mission. It mainly relies on an interpolation method using
Tchebychev polynomial. The optical data are taken from the Minor Planet Center 2 and the radar data

1http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction
2http://minorplanetcenter.net/
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are from the JPL website3. No Gaia data are available but they can be simulated. For this purpose, I used
a Java simulator provided by the Gaia-DPAC to simulate observational rendez-vous between the asteroid
and the satellite.
The object choosen for this study is the asteroid (99942) Apophis. Figure 2 shows the distribution of the
Gaia observations obtained with the Java simulator. This shows that only half the orbit of Apophis would
be covered by the satellite.

Figure 2: Left panel: Time distribution of Apophis observations. The abscissa are expressed as a function
of the number of years after the beginning of the mission. Right panel: Spatial distribution of the Gaia
observations of Apophis projected on the ecliptic plane and centered in the Sun (•).

This set of Gaia observations were used together with the optical and radar data for the orbital fit
process described above and fully implemented. The input format for the Gaia data matches with those
of the MPC4. Last but not least, the code observatory is required to assess the position of the observer.
For an Earth-based observatory, it a combination of three characters (letters and/or numbers). For the
Gaia satellite, this code is set to GAI. Considering a 5 mas astrometric accuracy for the Gaia data, I used
the orbital fit process to assess the orbital improvement for Apophis, regarding the uncertainty on the
keplerian elements. Table 2 shows the ratio of 1σ value for the keplerian elements considering Gaia data
(σO+G) and without Gaia data (σO). This test shows that Gaia data will enable to gain a factor 1000 of
accuracy on the semi-major axis.

The implementation of this pipeline for orbital fit is ready for running as soon as data coming from
the satellite (∼ 48h to send data to Earth) will be sent to the Earth.

3http://ssd.jpl.nasa.gov/?radar&fmt=html&grp=ast
4http://www.minorplanetcenter.net/iau/info/OpticalObs.html
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Table 2: 1σ improvement of Apophis keplerian elements using Gaia data (O+G) or not (O).

σO/σO+G

a [AU] ∼ 1000
e ∼ 10

i [◦] ∼ 10
Ω [◦] ∼ 10
ω [◦] ∼ 10
M [◦] ∼ 100

2.3 Variational equations for Lie series

The integration of the equations of motion in gravitational dynamical systems – either in our Solar System
– or for extra-solar planetary systems – being non integrable in the global case, is usually performed by
the means of numerical integration. Among the different numerical techniques available for solving
ordinary differential equations, the numerical integration using Lie series has shown advantages. In
its original form [Hanslmeier and Dvorak, 1984], it was limited to the N-body problem where only
gravitational interactions are taken into account. In the paper of Bancelin et al. [2012], the relativistic
perturbation and Yarkovsky effect were added so that this integrator can be used for the integration of
near-Earth objects and impact risk computation. Nevertheless, it is impossible to assess the accuracy of
an orbit or the stability of a system with this integrator because it is necessary to propagate the variational
equations i.e. the partial derivatives of the orbital solution w.r.t. the components of the initial state vector.
The purpose of this task is to develop a recurrence formula for the variational equations particular to the
Lie series.
Considering a particule ν with barycentric coordinates xν ,vν , we remind that, according to Bancelin
et al. [2012], this coordinates, expressed as a Taylor expansion, are:

xν(τ) = eτDxν(0) =

(
∞

∑
n=0

τnDn

n!

)
xν(0) (1)

vν(τ) = eτDvν(0) =

(
∞

∑
n=0

τnDn

n!

)
vν(0) (2)

where D is the generalised Lie operator defined as:

D =
N

∑
µ=1

[
vµ ·

∂ ·
∂xµ

+Hµ ·
∂ ·

∂vµ

]
(3)

where H is the contribution of all the accelerations derived from the forces acting on a particle
µ . Here, N denotes the number of bodies involved in the system. The variationnal equations are thus
deduced from Eq. (1) and Eq. (2):

∂xν(τ)
∂ (x,v)

∣∣∣∣
ν ,0

=
∞

∑
n=0

τn

n!
∂ (Dnxν(0))

∂ (x,v)

∣∣∣∣
ν ,0

(4)

∂vν(τ)
∂ (x,v)

∣∣∣∣
ν ,0

=
∞

∑
n=0

τn

n!
∂ (Dnvν(0))

∂ (x,v)

∣∣∣∣
ν ,0

(5)

The initial conditions of our system, i.e. at time τ = 0, of the partial derivatives of xν and vν are:
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∂xν(0)
∂ (x,v)

∣∣∣∣
ν ,0

= (I O)

∂vν(0)
∂ (x,v)

∣∣∣∣
ν ,0

= (O I)

For n≥2, the partial derivatives are non trivial. As a matter of fact, for n≥2:


∂ (Dnxν)

∂ (x,v)

∣∣∣∣
ν ,0

=
∂ (Dn−2Hν)

∂ (x,v)

∣∣∣∣
ν ,0

∂ (Dnvν)

∂ (x,v)

∣∣∣∣
ν ,0

=
∂ (Dn+1xν)

∂ (x,v)

∣∣∣∣
ν ,0

(6)

According to Eq. (6), the next step consists on developping a formula for the partial derivatives of
DnH. In Bancelin et al. [2012], three accelerations are considered. In this work, we mainly focused on
the gravitational and relativistic acceleration .

2.3.1 Partial derivatives for the gravitational acceleration

The gravitational acceleration acting on particule ν is written like:

γγγG/ν = GM?

N

∑
µ=1,µ 6=ν

mµΦνµ,3xνµ

and the reccurence formula for the Lie terms DnγγγG/ν given in Bancelin et al. [2012] is:

Dn γγγG/ν = GM?

N

∑
µ=1,µ 6=ν

mµ

n

∑
k=0

(
n
k

)
Dk Φνµ,3 Dn−k xνµ (7)

where Φνµ ,p = ρ−p
νµ with ρνµ the relative distance between the bodies ν and µ . The work done in

this study lead to the formula:

∂ (DnγγγG/ν)

∂ (x,v)

∣∣∣∣
ν ,0

= GM?

N

∑
µ=1,µ 6=ν

mµ

n

∑
k=0

(
n
k

)[
∂ (DkΦνµ ,3)

∂ (x,v)

∣∣∣∣
ν ,0

Dn−kxνµ +DkΦνµ ,3
∂ (Dkxνµ)

∂ (x,v)

∣∣∣∣
ν ,0

]
(8)

The partial derivatives of DnΦνµ ,3 is required but unfortunalty, a reccurence formula has not already

be found for the evolution of
∂ (Dn Φνµ ,3)

∂ (x,v)
. It is still in progress with the collaboration of the DAG group.

However, the other recurrence formulas have been successfully determined. Dn Λνµ is defined as

Dn Λνµ =
n

∑
k=0

(
n
k

)
Dn−k xνµDk vνµ (9)

.
Therefore, the work done in this study leads to:

∂ (DnΛνµ)

∂ (x,v)

∣∣∣∣
ν
=

n

∑
k=0

(
n
k

)[
Dkxνµ

∂ (Dn−kvνµ)

∂ (x,v)

∣∣∣∣
ν
+Dkvνµ

∂ (Dn−kxνµ)

∂ (x,v)

∣∣∣∣
ν

]
(10)
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2.3.2 Partial derivatives for the relativistic acceleration

The relativistic acceleration is defined as:

γγγR/ν =
GM?

c2 Φµν ,3 (γγγ 1 +γγγ 2) (11)

where

{
γγγ 1 = xµν

(
4GM? Φµν ,1 −v2

µν

)
γγγ 2 = 4vµν Λµν

(12)

The evolution of the Lie series applied to γγγR/ν is given in Bancelin et al. [2012] as:

Dn γγγR/ν =
GM?

c2

n

∑
k=0

(
n
k

)
Dk Φµν ,3 Dn−k (γγγ 1 +γγγ 2) (13)

and


Dn γγγ 1 =

n

∑
k=0

(
n
k

)
Dn−k xµν

(
4GM? Dk Φµν ,1 −

k

∑
k′=0

(
k
k′

)
Dk′ vµν Dk−k′ vµν

)
Dn γγγ 2 = 4

n

∑
k=0

(
n
k

)
Dkvµν Dn−kΛµν

(14)

Thus, the partial derivatives applied to Eq. (13) and (14) is done in this work and is expressed as:

∂ (Dn γγγR/ν)

∂ (x,v)

∣∣∣∣
ν
=

GM?

c2

n

∑
k=0

(
n
k

)[
DkΦνµ ,3

(
∂γγγ1

∂ (x,v)
+

∂γγγ2

∂ (x,v)

)∣∣∣∣
ν
+

∂ (DkΦνµ ,3)

∂ (x,v)

∣∣∣∣
ν

Dn−k(γγγ1 +γγγ2)

]
(15)

with

∂ (Dnγγγ1)

∂ (x,v)
=

n

∑
k=0

(
n
k

)[
A ·

∂ (Dn−kxνµ)

∂ (x,v)

∣∣∣∣
ν
+B · Dn−kxνµ

]
(16)

where


A = 4GM? DnΦνµ ,1 −

k

∑
k′=0

(
k
k′

)
Dk′vνµ Dk−k′vνµ

B = 4GM?
∂ (DkΦνµ ,1)

x,v

∣∣∣∣
ν
−

k

∑
k′=0

(
k
k′

)(
Dk−k′vνµ

∂ (Dk′vνµ)

∂ (x,v)

∣∣∣∣∣
ν

+Dk′vνµ
∂ (Dk−k′vνµ)

∂ (x,v)

∣∣∣∣∣
ν

)

and

∂ (Dnγγγ2)

∂ (x,v)

∣∣∣∣
ν
= 4

n

∑
k=0

(
n
k

)[
Dkvνµ

∂ (Dn−kΛµν)

∂ (x,v)

∣∣∣∣
ν
+

∂ (Dnvνµ)

∂ (x,v)

∣∣∣∣
ν

Dn−kΛµν

]
(17)
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3 Future collaboration

During my visit, the collaboration with the DAG was mostly for the numerical integration and for the
Lie series. Now, as a full member of the DAG – as a postdoc – the collaboration continues mainly for
the implementation and test of the recurrence formula developped for the variational equations using
Lie series. This study would certainly lead to a publication into an international revue (mainly Celestial
Mechanics and Dynamical Astronomy).
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