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3. Abstract: 

The goal of this network is to facilitate, stimulate, and further promote the many interactions of low-dimensional 
topology and geometry with various fields including (in no particular order) gauge theory, quantum topology, 
symplectic topology and geometry, Teichmüller theory, hyperbolic geometry, string theory and quantum field theory. 

The network is intended to be organized on a European wide scale, reflecting the global nature of the ongoing 
research in these areas. The planned activities of workshops and conferences, schools and programmes of research 
visits will reach across international and disciplinary lines to stimulate current and future progress. 

At the same time, this network will bring together leading experts in the above-mentioned areas with a new 
generation of researchers, providing them with the interdisciplinary perspective and training which will plant seeds for 
the breakthroughs of the future. 
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5. Status of the relevant research and scientific context: 

Low dimensional topology and geometry comprise one of the most currently active fields in mathematics as 
exemplified by a number of Fields Medals in the recent past, starting with Thurston and Yau in 82, Donaldson and 
Freedman in '86, Witten and Jones in '90, McMullen in '94, Kontsevich in '98, and Okunkov and Perelman in „06. In 
large part, the recent vitality of these fields is derived from interactions with theoretical physics that have seen 
dramatic developments over the last 3 decades. 

In the 70's the interaction between classical Yang-Mills gauge theories and integrable field theories with geometry 
and topology was pioneered by, among others, Atiyah and Faddeev. 

In the early 80's Donaldson's celebrated theorems showed that the h-cobordism theorem, in fact, fails for 4-
manifolds, and this failure provides many unexpected consequences, most notably the existence of uncountably 
many exotic 4-dimensional Euclidian spaces, when combined with Freedman's proof of the topological Poincaré 
conjecture in dimension 4. Since then the study of manifolds of dimension less than or equal to 4 (e.g., 3- and 4-
dimensional topology, knots in 3-manifolds, mapping class groups of surfaces) have formed a new branch of 
geometry and topology, called low dimensional geometry and topology. 

Further interest in low dimensional topology was provided by Jones‟ construction of a new and power full knot 
invariant arising from his basic constructions for sub-factors, which are also deeply linked to mathematical physics. 

The manifest interaction between low dimensional topology and Quantum field theory was provided by Witten in the 
late 80's, when he established that the Jones polynomial is a Wilson loop expectation value in quantum Chern-
Simons theory in 3 dimensions. His observation, that this theory is completely solvable via conformal field theory, led 
to the rigorous construction of this theory via quantum groups by Reshetikhin and Turaev shortly there after. 

Since then, the effort to understand classical and quantum field theories and string theories, in all their ramifications, 
has motivated some of the most extraordinary advances in mathematics of the last three decades. This progress has 
had a profound impact in all the areas of mathematical research included in the present proposal, some of which 
have been connected in totally unexpected ways. The most spectacular developments include: 

● Kontsevich's universal Vasilliev invariant of links. 

● The discovery of Mirror symmetry by Vafa, Greene, Candelas, and others, and its relation to T-duality by 
Strominger, Yau, and Zaslow. 

● Le, Murakami and Ohtsuki's universal invariant of homology sphere which vastly generalized the Casson invariant. 

● Kontsevich's proof of the mirror conjecture. 

● Quantum cohomology relating back to Gromov's study of pseudo holomorphic curves in symplectic geometry. 

● Kontsevich's proof of Witten's conjecture on the cohomology ring structure of the tautological classes. 



● Seiberg-Witten equations and their simplification of Donaldson invariants. 

● Taubes' relation between solutions of the Seiberg-Witten equations and pseudo holomorphic curves. 

● Donaldson's results on almost holomorphic sections of high powers of prequantum line bundles over symplectic 
manifolds. 

● Seiberg-Witten Floer homology and its relation to instanton Floer homology. The proof of property P by Kronheimer 
and Morowka, combining Seiberg-Witten Floer homology with the results of Gabai, and Eliashberg and Thurston. 

● Ozsvath-Szabo Floer homology. 

● Kashaev's volume conjecture and its relation to the Jones Polynomial by Murakami and Murakami. 

● Deformation quantization of all Poisson manifolds by Kontsevich. 

● Construction of a canonical deformation quantization of any compact Kähler manifold via explicit asymptotic 
analysis of Berezin-Toeplitz operators. 

● Symplectic Floer homology of Eliashberg and Hofer. 

● The "AJ"-conjecture of Gukov, further elaborated by Garoufalidis and Le. 

● Khovanov's construction of a new link homology, which provides a categorification of polynomial link invariants. 

● Kapustin and Witten's Electric-Magnetic duality interpretation of the geometric Langlands program. 

 

Two spectacular developments in three-manifold theory, building on the geometrization program initiated by 
Thurston some three decades ago with far-reaching consequences that should surely be mentioned, but which 
appear for now to be unrelated to developments in physics, are: 

● Perelman's proof of the Poincaré Conjecture and Thurston's Geometrization Program via PDEs, using and greatly 
extending Hamilton's work on Ricci-flow 

● The Minsky-Masur-Brock-Canary proof of Thurston's Ending Lamination Conjecture together with the 
Agol/Calegari-Gabai proof of Marden's Tame Ends Conjecture, each of which is proved using techniques of 
combinatorial topology and hyperbolic spaces. 

6. Scientific Objectives and Envisioned Achievements: 

The role of the proposed network will be to stimulate and facilitate new interactions between the different subfields of 
low dimensional topology and geometry with various subfields of mathematical physics related to quantum field 
theory and string theory. The main general objectives are to stimulate exchanges of ideas between the sub-fields as 
these develop, fuse and split up into new formations. 

We have organized the subject matter under a number of headings. These headings are best though of as 
perspectives on the whole subject, focusing on various aspects of the entirety. Some of these perspectives are 
already strongly related in a number of ways, whereas other relations are still developing. A prime objective of the 
network is to promote further relations and connections between all the perspectives, in order to benefit from the 
unity and strong interaction of all the perspectives on the subject matter. The aim is to obtain a deeper insight into 
the entirety of the field - something which will be of benefit to all existing and future perspectives 

A number of open problems which are of central importance have been highlighted below. They will receive 
particular attention by the teams involved in the network. 

Gauge theory 

Since the work of Donaldson in the 1980's, gauge theory has evolved as an indispensable tool in the study of 
smooth 4-manifolds.  After the introduction of the Seiberg-Witten invariants in 1994, the theory was both simplified 
and extended, and the relation to Gromov-Witten invariants (for symplectic 4-manifolds) was established by Taubes. 
The equivalence of the Donaldson and Seiberg-Witten invariants, conjectured by Witten in 1994, now seems close to 
being proved by Feehan--Leness. Kronheimer--Mrowka have used part of the work of Feehan-Leness combined with 
that of Taubes to complete the proof of Property P for knots. Recently, the Seiberg-Witten invariants together with 
the rational blow-down technique of Fintushel--Stern have been applied to prove the existence of exotic smooth 
structures on CP²#k(-CP²) for small values of k according to work of Akhmedov-Park after initial results of J. Park. 

The introduction of "finite-dimensional approximation" by Furuta signaled a new direction in gauge theory. He first 
used it to prove a weakened version of the 11/8 conjecture, and later, Bauer-Furuta defined the refined Seiberg-
Witten invariant, which is stronger than the classical one. 



In the theory of knots and 3-manifolds, the various kinds of Heegard Floer homologies introduced by Ozsvath-Szabo 
have become a highly active area of research. It is expected that the Heegard Floer homologies for 3-manifolds are 
essentially isomorphic to the monopole Floer homologies constructed by Kronheimer-Mrowka. Different schemes 
and ideas towards proving this conjecture have been presented by Y.-J. Lee and Hutchings-Sullivan. There is 
furthermore major work by Salamon-Wehrheim towards the classical Atiyah-Floer conjecture, which motivated 
Ozsvath-Szabo's construction. 

We emphasis the following important open problems in this area: 

● Settle the 11/8-conjecture for 4-manifolds. 

● Find the smallest k such that CP²#k(-CP²) admits an exotic smooth structure. 

● Establish ismomorphisms between the Heegard and monopole Floer homologies for 3-manifolds. 

● (Kronheimer--Mrowka) Is there a connection between Khovanov homology for knots in S
3
 and some version of the 

Collin-Steer instanton knot Floer homology? 

● (Donaldson) Construct equivariant instanton Floer homology groups with arbitrary coefficients and good functorial 
properties with respect to cobordisms. 

● What relation is there between instanton and monopole Floer homology (with rational coefficients) for integral 
homology 3-spheres? In particular, do the corresponding h-invariants of Frøyshov agree? 

● Do the generalized monopole equations of Taubes and Pidstrygach (which involve the choice of a hyperkähler 
manifold with special properties) yield new invariants of 3- or 4-manifolds? 

Symplectic and Contact geometry 

The theory of symplectic and contact manifolds has come to play an essential role in modern topology though the full 
scheme and its ramifications are yet to be understood. These theories arise naturally in the setting of smooth 
manifolds via Hamiltonian mechanics and geometric optics, for example. 

In dimensions three and four, these relationships have been solidified over the past 15 years and produced 
fundamental contributions as detailed in the above section on gauge theory. The latest development is a purely 
combinatorial interpretation of the Heegaard Floer invariants of knots by Manolescu Ozsvath Sarkar. 

With this perspective, the following problem is natural to address:  

● Provide purely combinatorial models for Heegaard Floer invariants of general 3- and 4-manifolds. 

These Heegaard Floer invariants are expected to be equivalent to Donaldson and Seiberg-Witten invariants. Hence 
the solution of this problem will also lead to a combinatorial description of these invariants. 

Much of the recent progress in these areas involves techniques of counting holomorphic curves, which were 
pioneered in the 80's by Gromov (Gromov-Witten invariants) and Floer (Floer homology) and have developed ever 
since. An important recent addition is symplectic field theory (SFT) introduced in the late 90's by Eliashberg, 
Givental, and Hofer. These theories all associate an algebraic object to geometric data, where the algebraic object is 
defined in terms of moduli spaces of holomorphic curves. Some homology quotient of the object is invariant under 
deformation of the geometric data, and these quotients thus appear as obstructions for geometric deformations. 

Although the holomorphic curve techniques have indeed been successfully applied to find obstructions, one might 
ask whether they can be used in some more constructive manner. There are many instances for symplectic 4-
manifolds when this is so, where positivity of intersection allows for the application of so-called filling techniques. 
Recent developments involving more explicit representations of moduli spaces of holomorphic curves in terms of 

Morse-theoretic objects indicate that in important special cases holomorphic disks may be used as Whitney disks to 
design deformations. This is a promising line of research aimed at determining the implications of vanishing 
holomorphic curve obstructions. We expect progress to be made in the coming years on the following problems. 

● Is every exact Lagrangian submanifold in a cotangent bundle Hamiltonian isotopic to the 0-section? 

● If a contact manifold (Legendrian submanifold) admits an exact filling (is null cobordant in the exact category), then 
its contact homology admits a linearization. Is every linearization of contact homology geometrically induced in this 
way? 

The holomorphic curve theories mentioned above come in two types: absolute and relative. In the absolute case, the 
geometric data is a contact or a symplectic manifold whereas in the relative case it is a contact or symplectic 
manifold with a Legendrian or Lagrangian submanifold. A major stumbling block has been to include all holomorphic 
curves in the relative case. Recently, these problems were overcome on the conceptual level, and a solution 



involving the string topology of the submanifold is emerging. Further work must be done in order to put this 
conceptual picture on a rigorous footing, and we again mention a concrete problem: 

● The relative versions involving string topology are not immediately effectively computable. Formulate more 
effectively computable theories and relate the full string topology theories to already existing simpler versions. 

Another example of a successful application of holomorphic curve techniques to smooth topology is Ng's powerful 
knot invariants which are defined as the simplest version of relative SFT of the conormal lift of a knot. One might 
hope to use similar constructions to get non-trivial information about 4-dimensional smooth topology, and a starting 
point would be the following: 

● Give a combinatorial description of the contact homology of the conformal lift of surface in 4-space. 

● Does the SFT invariants of conformal lifts of surfaces inside a smooth 4-manifold carry information of the smooth 
structure of the manifold? 

Quantum Topology 

Shortly after Witten's work on quantum Chern-Simons theory, Reshetikhin and Turaev used the theory of quantum 
groups to give mathematical constructions of what is now known as the quantum SU(N) RT-TQFT's, which includes 
the SU(N) quantum invariants and the quantum SU(N) representations of the mapping class groups. These are the 
key examples of TQFT and at the center of activity in quantum topology. A few years later Blanchet, Habbeger, 
Masbaum and Vogel gave a purely skein-theoretic construction of SU(2) theory and later generalized this to SU(N). 
Following these constructions the field has branched into a number of research areas, the most predominant of 
which are listed and detailed below. Furthermore, quantum topology is closely related to the study of skein theory, 
various quantizations of moduli spaces, and classical topological/geometric invariants of 3-manifolds. The finite type 
invariants, also discussed below, are of course motivated by perturbative analysis of the Feynmann path integral 
formula for the quantum Chern-Simons invariants by Witten.  

Finite type invariants of links: The theory of finite type invariants of links in the 3-sphere is a well-developed theory 
based on the contributions of Vasilliev, Birman-Lin, Bar Natan, Kontsevich, Vogel, and others. All quantum invariants 
of links (which includes the Jones and Homfly polynomials) have asymptotic expansions in terms of Vasilliev 
invariants. Moreover there is the universal invariant due to Kontsevich.  An open problem is: 

● Do Vasilliev invariants distinguish the unknot? 

The AJ-conjecture, the volume conjecture and the AE-conjecture (see below) imply an affirmative answer to this 
problem. The main outstanding question is whether Vasilliev invariants classify knots and links. Recently there has 
been some very interesting work by Fielder, who has constructed invariants of knots in the 3-sphere which are very 
similar to Vassiliev invariants and which completely determine some simple knots.  Another problem is to: 

● Describe the class of knots classified by Fiedler's constructions. 

Finite type invariants of 3-manifolds: Finite type invariants of 3-manifolds have primarily been developed to study 
integral homology 3-spheres, and the lowest degree non-trivial finite type invariant is equal to the Casson-Walker-
Lescop invariant. There is a universal finite type invariant constructed from the Kontsevich integral for links by Le, 
Murakami and Othsuki, the LMO-invariant. D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. Thurston have used a 
diagrammatic analogue of the Gaussian integration to give a new construction of the LMO invariant for rational 
homology 3-spheres. By the work of Ohtsuki and Habiro, the LMO-invariant determines the SU(2)-quantum invariant. 

It is conjectured that the LMO invariant distinguishes integral homology 3-spheres. As a more tractable sub-problem 
we propose: 

● Prove that the LMO invariant distinguishes the 3-sphere from all other homology 3-sphere. 

It is known that the LMO invariant does not separate lens spaces, and a natural problem is to construct refinements 
of the LMO invariant. There exists other constructions of a universal perturbative invariant based on integration over 
configuration spaces due to S. Axelrod and I. Singer, M. Kontsevich, R. Bott and A. Cattaneo, and G. Kuperberg and 
D. Thurston. These are closer to the original physical inspiration, and it is an interesting problem to establish their 
connection to the LMO invariant and to quantum invariants, possibly via the AE-Conjecture (see below). 

Link polynomials, the A-polynomial and the AJ-conjecture: Gukov proposed based on a quantum field theory 
argument, that there should be a relation between the colored Jones polynomials and the A-polynomial from 
hyperbolic geometry through classical asymptotics. Subsequently Garoufalidis and Le proved that the colored Jones 
polynomials are q-holonomic and they further observed that the ideal of operators that annihilate the colored Jones 
polynomials of a knot is principal and is generated by the so-called noncommutative A-polynomial of the knot. On the 
other hand, one has the A-polynomial, which cuts out the deformation variety of a knot, which is the variety of 
characters of representations of the fundamental group of the knot into PSL(2,C). 



● The AJ-Conjecture: Prove that the noncommutative A-polynomial at q=1 equals to the A-polynomial of a knot, and 
hence is determined by the colored Jones polynomials. 

In the late 90'ties Murakami and Murakami converted a conjecture of Kashaev about the asymptotics of his 
invariants to a conjecture about the asymptotics of certain evaluations of the colored Jones polynomials of a knot.  

● Volume Conjecture: Prove that these asymptotics determine the Gromov-Thurston norm of the compliment of the 
knot. 

Quantum hyperbolic field theory: Having as model the TQFT-axioms the so called "quantum hyperbolic field theory" 
QHFT has been constructed by Baseilhac and  Benedetti. This provides quantum invariants of pairs, 3-manifolds 
equipped with a flat PSL(2,C) principal bundle. The fundamental examples of such pairs are given by topologically 
tame hyperbolic 3-manifolds. This theory is a generalization of Kashaev's invariants of knots in the 3-sphere, and we 
have the following problem: 

● Understand the relation between these invariants and quantum Teichmüller space. 

 A generalization of the volume conjecture has been formulated for these QHFT invariants: 

● Test, refine and prove the generalized volume conjecture. 

Asymptotic expansions of quantum invariants: Right from the outset, Witten suggested that quantum invariants 
should have asymptotic expansions in the level of the theory. During the past decade, a precise conjecture regarding 
these asymptotics has been formulated which is known as the AE-conjecture. Lately Andersen has proposed a 
program using the theory of coherent states and Toeplitz operators to approach the AE-conjecture in the general 
case. This is a natural extension of his proof of Turaev's conjecture regarding the Asymptotic faithfulness of the 
quantum SU(N)-representations of the mapping class groups and his proof that the mapping class groups do not 
have Kashdan's property T. 

● AE-conjecture (Witten): Establish the precise formulation of the asymptotics of the quantum Chern-Simons 
invariants. 

Another interesting problem is to understand how the AE-conjecture is related to the asymptotic expansions of 
Ohtsuki and Habiro. 

Integral TQFT: Gilmer and Masbaum have studied the natural integral lattices inside the TQFT vector spaces, on 
which the mapping class groups acts, reflecting integrality properties of the TQFT-invariants of manifolds with 
boundary. An explicit basis for these lattices has been given, facilitating explicit calculations and Masbaum has 
shown that integral TQFT's lead to perturbative expansion of the quantum representations.  One problem is to: 

● Understand these integral structures in terms of Habiro expansions. 

Another fascinating question is to determine how this is related to the AE-conjecture. 

Khovanov homology: Around 1998, Khovanov invented a new way of viewing the Jones polynomial for links. By 
using a topological quantum field theory he constructed a homology theory for knots and links whose quantum Euler 
characteristic is the Jones polynomial. The importance of his construction lies not only in the fact that it provides a 
stronger invariant than the Jones polynomial, but that it is functorial with respect to link cobordisms. Lately Khovanov 
and Rozansky have invented a generalization: a homology theory whose quantum Euler characteristic is a 
specialization of the HOMFLY polynomial. A connection has been conjectured between Khovanov-Rozansky 
homology and the spectrum of BPS states for open topological strings. This is a relatively new area ripe for further 
development. 

● Understand the implications for four dimensional quantum invariants arising from the algebra and geometry 
emerging from Khovanov-Rozansky homology. 

The quantum polynomials of a given Lie algebra can be combined to define the Witten-Reshetikhin/Turaev invariants 
of 3-manifolds and, more generally, the corresponding topological quantum field theories. It would also be important 
to categorify the full TQFT's, a problem which at present is completely open. Part of this program would be to lift the 
TQFT representations of mapping class groups to some category associated to a surface. 

● Find a direct relation with Witten's original approach to quantum invariants from Chern-Simons theory. 

Link homologies have already been used to give new, purely combinatorial proofs of theorems in four-dimensional 
topology which formerly had depended on the heavy machinery of gauge theory, for instance in the work of 
Rasmussen, which includes the proof of Milnor's conjecture on the slice genus of torus knots, and the existence of 
exotic differential structures on 4-space. One would expect more such proofs to appear as the understanding of the 
theories grows. 



Recent work of Seidel/Smith and Manolescu and of Cautis and Kamnitzer give symplectic and geometric settings, 
respectively, for Khovanov homology, thus providing good opportunities for exploring the relation of quantum 
topology to these other fields. 

A different construction due to Oszvath-Szabo expresses the Alexander polynomial as an Euler characteristic.  

● Find the precise relations between Khovanov homology, Heegard-Floer homology, and gauge theory. 

Geometry and Quantization of Moduli spaces 

Geometric structures on moduli spaces of Higgs bundles: Higgs bundles over Riemann surfaces were introduced by 
Hitchin (1987) almost 20 years ago in the study of the self-duality Yang-Mills equations. A Higgs bundle is a pair 
consisting of a holomorphic bundle and a holomorphic one-form with values in the adjoint bundle. The moduli space 
of Higgs bundles with complex reductive structure group has a tremendously rich geometric structure. It is a 
completely algebraic integrable system and it is a hyperkähler manifold. It also has a topological interpretation: It can 
be identified with the moduli space of representations of the fundamental group of the surface in the complex 
reductive group. Further, Hitchin constructed an integrable system on these moduli spaces, which has had a 
significant impact on the study of these moduli spaces from many points of view. It has been applied to several other 
moduli problems, e.g. in Hitchin's proof of the projective flatness of his connection over Teichmüller space in the 
bundle arising from the quantization of the moduli space of semi stable bundles and more recently, in a very 
prominent way, in Witten and Kapustin's Electric-Magnetic duality interpretation of the geometric Langlands program. 
In fact a recent conjecture of Hausel and Thaddeus states that the generic torus fibers of the Hitchin map for an 
algebraic group G and its Langlands dual LG are in an appropriate sense relative mirror partners (in the sense of 
Strominger-Yau-Zaslow). This is related to the conjectured existence of a general Fourier--Mukai transform 
underlying the geometric Langlands duality: 

● The Fourier-Mukai transform takes a solution to the Higgs bundle equations on a Riemann surface to a bundle with 
a unitary connection compatible with the flat hyperkähler structure on the cotangent bundle of the Jacobian. 
Characterize this connection. 

Bonsdorff's work showed that one holomorphic structure extends to the projective bundle compactification of the 
cotangent bundle.  Doing this for fixed points of the circle action on the moduli space would give another approach to 
determining the hyperbolic metric on a Riemann surface. 

The moduli of Higgs pairs and the moduli of stable bundles can also be studied as subschemes of the infinite 
Grassmannian of the ring of Laurent series, and natural actions of the Virasoro groups on them will be deduced: We 
study the Toda hierarchy algebraically as well as to analyze of the relation of the multicomponent KP hierarchies that 
generalize it. The study of the hierarchies arising from the Hurwitz schemes is related with the Beilinson-Drinfeld 
formulation of the geometric Langlands program over the complex numbers. We propose to continue the study of the 
moduli of Higgs pairs and of the Hitchin morphism by means of the soliton theory. In particular: 

● Characterize such moduli space as subschemes of an infinite Grassmannian. 

Hitchin has introduced higher analogues of Teichmüller spaces inside the representation varieties of higher rank 
groups. Labourie has shown that the mapping class group acts properly on these spaces. 

● Find geometric structures on surfaces which are parametrized by the Teichmüller component: the distingushed 
contractible component of the moduli space of representations of a surface group into a split real form of a simple Lie 
group. 

For PSL(3,R), Goldman and Choi showed that this space parametrizes convex RP² structures. Labourie has also 
shown that for PSL(n,R) there is an (in general, non-smooth) curve in RP

(n-1) 
which describes the situation, but one 

would like a smooth structure. For example, in the case of PSL(3,R), Labourie's curve is the non-smooth boundary of 
a convex set, but a flat projective structure is a smooth concept. Fock and Goncharov have results about these 
spaces using tropical geometry further discussed below. 

Quantization of moduli spaces:  Within the last decade quantizations of the moduli spaces have been constructed 
using both algebraic, geometric and topological techniques.  

 

The geometric quantization of moduli spaces of flat G-connections on a 2-dimensional manifold with G a compact Lie 
group is well understood. The classical results of Narasimhan and Seshadri state that Teichmüller space is a natural 
parameter space of Kähler structures on the moduli spaces. By associating the space of holomorphic section of a 
power of the Chern-Simon's prequantum line bundle over Moduli space to every point over Teichmüller space, a 
finite rank vector bundle arises.  This bundle caries a proejctively flat connection, which was constructed by Axelrod, 
Della Pietra and Witten from the quantum Chern-Simons point of view and by Hitchin from a purely differential 



geometric view point.  

The Berezin-Toeplitz operators provide natural quantum operators in the context of compact Kähler manifolds. 
These are asymptotically equivalent to the traditional quantum operators of geometric quantization, and the 
relationship can be explicitly described. Furthermore, results of Bordemann-Meinrenken-Schlichenmaier, 
Schlichenmaier, and Karabegov-Schlichenmaier show that the Berezin-Toeplitz quantization scheme has excellent 
semi-classical behavior (it is a strict quantization in the sense of Rieffel) and that there exists a canonical unique star 
product associated to it, providing the Berezin-Toeplitz deformation quantization. 

The relation between the Berezin-Topelitz operators and Hitchin's projectively flat connection has been understood 
by the work of Andersen. This has led to a proof of Turaev's asymptotic faithfulness conjecture. By further 
considering the coherent state constructions and applying the results on Toeplitz structures by Boutet de Monvel and 
Guillemin and Sjøstrand, Andersen has established that the mapping class groups do not have Kazhdan's property 
T.  

Some parts of this program have so far only been developed in the non-singular setting, while many of the moduli 
spaces are singular. We thus propose the problem to: 

● Extend the above program fully to singular moduli spaces.  

Quantum group techniques have been used by Alexseev, Fock, Kashaev, and others to construct quantum moduli 
space for various complex groups and non-compact real groups (including as a special case quantum Teichmüller 
space). Andersen, Mattes, and Reshetikhin constructed a deformation quantization of the moduli spaces of flat 
SL(N,C)-connections using Vassiliev invariants of knots in surface cylinders. Frohman, Shikora and others 
constructed a deformations of the SL(2,C)-character variety using skein theory. Recently, Andersen has used the 
Berezin-Toeplitz deformation quantization in combination with the Hitchin connection to construct a mapping class 
group invariant deformation quantization of the SU(N)-moduli spaces. 

● Understand the relation between all these different quantizations of moduli spaces. 

Understanding relations to quantizations of the Higgs bundle moduli space will no doubt also be of fundamental 
importance. In particular we propose the problem to: 

● Geometrically quantize Teichmüller space using the complex structure inherited from its embedding in the 
PSL(2,C) Higgs bundle moduli space, which is just C

(3g-3)
.  The resulting symplectic structure then gives a complete 

S
1
-invariant Kähler metric. 

Construction of TQFT's via quantization of moduli space: Witten proposed in his initial paper on the subject that the 
TQFT's could be constructed by applying geometric quantization to the moduli spaces of flat SU(N)-connections. 
There was intensive activity from the point of view of algebraic geometry in early 90's, but a full construction was not 
presented. From the conformal field theory, major advances were made by Segal, Beilinson, Feigin and Masur, 
Tsuchiya, Ueno and Yamada, Teleman, and others. Laszlo subsequently established that the projectively flat 
bundles constructed from conformal field theory agree with the ones constructed via quantization of moduli spaces 
above. Recently, Andersen and Ueno have completed the program and provided an explicit isomorphism between 
the geometric construction and the quantum SU(N) RT-TQFT in the BHMV-model.  Another problem is to: 

● Provide a complete gauge theory construction of the RT-TQFT. 

A satisfactory solution to this problem should include a truly 3-dimensional geometric construction of the boundary 
states of the theory. 

Three dimensional hyperbolic geometry 

The most dramatic development in three dimensional hyperbolic geometry recently is the proof of the Poincaré 
conjecture and the completion of Thurston‟s geometrization program by Perelman. It builds and greatly extends on 
Hamiltons work on the Ricci flow program.  

The positive solutions of the Tameness Conjecture (TC) by Agol/Calegari-Gabai the Ending Laminations Conjecture 
(ELC) by Minsky-Masur-Brock-Canary open the way to an effective understanding of hyperbolic 3-manifolds.  Given 
a complete hyperbolic 3-manifold M with finitely generated fundamental group, the TC guarantees that the ends of M 
are homeomorphic to a product S X R, where S is a surface (called a boundary surface). The ELC on the other hand 
ensures that the set of complete hyperbolic structures on M is parameterized by the so-called end-invariants, 
namely, by elements of the closures of the Teichmüller spaces of the boundary surfaces. 

The core of the proof of the TC is the study of CAT(-1)-surfaces immersed in the ends. For the ELC, the main point is 
to build a bi-Lipschitz model for M depending only on the end-invariants. The new techniques introduced have been 
further developed so to provide more information about hyperbolic manifolds. For instance, the volume, the length 
spectrum, and other geometric quantities can be efficiently estimated using the bi-Lipschitz model. 



The study of the space of end-invariants is currently one of the most active research fields. The phenomena 
occurring are slightly different if the end-invariants are taken in the interior of the Teichmüller space or in its 
boundary. In the latter case the complete characterization of those laminations that occur as end-invariants has been 
recently achieved, and the attention is now devoted to understanding the local structure of the space of parameters 
(e.g. discontinuity and bumping phenomena). When the end-invariants lie in the interior of the Teichmüller space, the 
local structure is smooth, and the most intriguing problem is to understand the relations between the invariants of 
different ends. For instance, if one associates to an end-invariant its inner correspondent, one gets the so-called 
skinning map. The fact that this map is a contraction was crucial in Thurston's proof of geometrization for Haken 
manifolds, but the fact that it is not a constant was established only very recently, and many questions about its 
behavior remain open and deserve investigation: 

● Hyperbolic structures in higher dimensions. Deformation of three-dimensional manifolds embedded in higher 
dimensional spaces. 

● Local structure of the end-invariants. 

Recently, Gabai, Meyerhoff, and Milley have proven that the Weeks manifold is indeed the unique smallest closed 
hyperbolic manifold. Their proof builds on results by Agol that describe how the volume of a closed 3-manifold 
changes under drilling out a simple closed geodesic. This result was subsequently strengthened by Agol, Storm, and 
Thurston using Perelman's work on the Ricci flow and the geometrization of closed 3-manifolds. Agol, Culler, and 
Shalen have shown that any compact manifold with volume less than the Weeks manifold can be obtained by Dehn 
filling a cusped manifold of volume less than 2.848. Such cusped manifolds can be classified using "Mom 
technology" and finally explicit enumeration shows that there is no manifold smaller than the Weeks manifold.  Some 
interesting problems are to: 

● Enumerate closed hyperbolic manifolds with small complexity and comparison between volume and complexity. 

● Use the MOM technology for a thorough understanding of exceptional slopes on hyperbolic manifolds. 

● Examine the behavior of complexity under finite cover. 

● Progress on the Hurwitz existence problem for surface branched covers with prescribed branch data, and prove 
the conjecture of realizability for prime degrees. 

Agol, Storm and Thurston also apply their result to provide evidence for the positivity of the universal TQFT pairing 
for 3-manifolds as conjectured by Freedman. Very recently, Freedman has proven that the universal 3-manifold 
pairing is indeed positive using virtually all the new machinery provided by Perelman, Agol, Storm, Thurston, and 
others.  We would like to: 

● Understand the further relations and implications of this for TQFT. 

The moduli space of flat G-connections on 3- and 2-dimensional manifolds can be interpreted as evolution operators 
and phase spaces of the Chern-Simons field theory, respectively. The Einstein gravity in 3d can be also interpreted 
as a version of Chern-Simons field theory. In Euclidean signature of the space-time and negative cosmological 
constant, the role of the space of 2d flat connections is played by the space of quasifuchsian groups, though the 
spaces of Kleinian groups play role of flat 3d connections.  Both kinds of spaces are certain open subsets of the 
moduli of flat SL(2, C)-connections. The theory of quasifuchsian and Kleinian groups is a rapidly developing subject 
due to Perelman‟s geometrization theorem, the Brok-Canary-Minsky ending lamination theorem, and several others. 
It is also clear that due to Hitchin's Higgs field construction, the moduli spaces of SL(2,C)-connections can be 
interpreted as certain subspaces of the moduli of flat connections with affine group G. On the other hand Kashaev's 
volume conjecture suggests a very close relation between quantum invariants for compact groups and their 
hyperbolic analogues.  One of the aims and challenges of the network is to: 

● Unify the approaches to this subject coming from these different branches of mathematics in order to develop a 
quantization scheme for 3d gravity. 

Combinatorics of moduli spaces and quantum Teichmüller theory 

The moduli space of flat G-connections on a smooth punctured surface S is an algebraic manifold admitting several 
descriptions using methods relying on different structures on the surface. One of the approaches was initiated by 
Thurston, Strebel, Mumford, Harer and Penner and originally applied to the Teichmüller space.  In this approach, the 
topology of the surface is encoded into combinatorics of its triangulations with vertices in the punctures, or, 
equivalently, of the dual trivalent graph that the surface is retractable to. In this direction the following results were 
obtained: 

● Strebel, Mumford, Harer and Penner have described a cell decomposition of the moduli spaces of curves by cells 
numerated by fat graphs thus reducing the study of topology of the moduli space to combinatorics. 



● Kontsevich has used this reduction to compute the intersection indices of Mumford cycles on moduli and presented 
a generating function for these numbers as a matrix integral giving a tau-function of an integrable system, a 
statement conjectured by Witten. 

● Madsen-Weiss-Tillman has proven Mumford's Conjecture on the stable cohomology of M(F). 

● Penner introduced explicit coordinates on a version of Teichmüller space and described the action of the mapping 
class group on it.  

● Penner coordinates and the action of the mapping class group on them were generalized in many ways, namely to 
different flavours of Teichmüller spaces, to the space of measured geodesic laminations, to moduli of flat 
connections with simple Lie groups over any ground field, and to the higher analogues of Teichmüller spaces 
introduced by Hitchin as certain connected components of discrete surface fundamental group representations to 
split real forms of simple Lie groups. 

● The combinatorial approach to the spaces of flat connections turned out to have many common features with the 
so-called cluster theory introduced by Fomin--Zelevinsky in their study of combinatorics related to Lie groups and 
Lusztig's canonical basis. 

● Combinatorial coordinates on Teichmüller spaces allowed Kashaev--Chekhov--Fock to find a noncommutative 
(quantum) deformation of this space equivariant with the mapping class group action. It was proven by Teschner that 
the representation space for these quantum algebras are isomorphic to the space of conformal blocks of the Liouville 
conformal field theory. 

We suggest the following list of problems to focus on: 

● Explicitly understand the unstable cohomology of the mapping class group and its natural Deligne-Mumford 
compactification with consequent implications for string theory, string topology, and 2-dimensional topological 
quantum field theory. 

● There has already been progress in applying these techniques to the mapping class group action on the 
pronilpotent and profinite completions of the fundamental group of the surface with consequent implications of the 
former towards the understanding of finite-type invariants of 3-manifolds and links in 3-manifolds, and perhaps of 
more general quantum invariants as well. 

● By the work of Donaldson, symplectic 4-manifolds stabilize to Lefshetz fibrations, which over the 2-sphere 
correspond to special relations in the mapping class group that should also be illuminated by these combinatorial 
techniques. 

● Though Teichmüller space is very well understood from the combinatorial viewpoint, nothing comparable is done 
for the moduli space of quasifuchsian groups which is a natural complexification of the Teichmüller space and plays 
a role of a phase space in the three-dimensional gravity. We plan to study this space using some relation of it to 
KdV-like integrable systems. 

● Detailed study of the mapping class group representation arising from quantum Teichmüller space, the question of 
its reducibility, relations to the geometric quantisation, corresponding 3d invariants with possible application to the 
volume conjecture. 

● Generalization of Penner's cell decomposition to arbitrary cluster varieties, in particular to higher Teichmüller 
spaces and to simple Lie groups. 

● The Thurston boundary for Teichmüller space can be described using cluster approach as a tropical limit of it. This 
approach generalizes to arbitrary cluster varieties. For ordinary Teichmülller space, the boundary can be interpreted 
geometrically as the set of projectivized measured geodesic laminations. In particular, every such lamination 
provides a function on the Teichmüller space itself, defining a canonical basis in the space of functions on it. For 
higher Teichmüller space, such an interpretation is unknown, and the canonical basis is not yet constructed. We 
hope to attack this problem using representation theory in the form of the Knudsen--Tao construction for Littlewood-
Richardson coefficients as well as the combinatorics of Lusztig's canonical basis. 

Mirror symmetry and derived categories 

Mirror symmetry is a correspondence between symplectic and complex geometry developed to understand formulas 
discovered by physicists for the numbers of rational curves on certain 3-dimensional Calabi-Yau manifolds. These 
formulas involve Hodge theory on mirror dual Calabi-Yau manifolds, while the problem of counting rational curves in 
Calabi-Yau manifolds has now been formalized in the general context of {Gromov-Witten invariants}. 

Kontsevich proposed the idea of {homological mirror symmetry}: there should be an equivalence of categories 
behind mirror duality, where one category is the derived category of coherent sheaves on a Calabi-Yau manifold X 



and the other is the Fukaya category of the mirror manifold X'. 

One passes from the abelian category Coh(X) of coherent sheaves on X to its derived category D
b
(X) by formally 

inverting all quasi-isomorphic complexes of coherent sheaves. From a topological point of view, complexes of 
coherent sheaves are D-branes of the B-model (twist of a N=2 super conformal field theory), morphisms between the 
objects of D

b
(X) are identified with the states of the topological string, and composition of morphisms is computed by 

correlators of the B-model.  The mirror of D
b
(X) is the category of A-branes on X'.  The fundamental problem which 

would establish homological mirror symmetry is thus: 

● Prove that the category of A-branes is equivalent to the Fukaya category. 

This has only been proved so far for elliptic curves.  As a consequence of the general problem, it would follow that 
two Calabi-Yau manifolds that have the same mirror must have equivalent derived categories. In this direction, the 
most spectacular result is due to Bridgeland: If X is a projective threefold with terminal singularities and Y1X, Y2X 
are crepant resolutions, then there is an equivalence of derived categories of coherent sheaves D (Y1) D(Y2). 

In particular, two birational Calabi-Yau threefolds do have equivalent derived categories and therefore have the 
same Hodge numbers, but not all Calabi-Yau threefolds that are derived equivalent are actually birational. In fact, 
Andrei Caldararu has shown that there are non-birational counterexamples to the Torelli-problem for Calabi-Yau 
threefolds. 

In 6 dimensions there are moduli spaces with good special properties when the underlying manifold is a Calabi-Yau 
3-fold (the objects of interest in mirror symmetry and string theory). In particular, moduli spaces are often naturally 
complex, and admit the structure of a ``gradient scheme''. They are usually still singular, but their special structure 
means a ``virtual cycle'' can be defined, and so an interesting invariant may be defined, regularizing the Euler 
characteristic of the moduli space. This applies to moduli of curves, surfaces, bundles and coherent sheaves on CY 
3-folds, defining the relevant Gromov-Witten and Donaldson-Thomas invariants. 

These invariants are hard to calculate in even a very small number of cases, but recent work of Maulik-Nekrasov-
Okounkov-Pandharipande conjectures a relationship between GW and DT invariants which has been checked (by 
localization) in many noncompact cases with symmetry. 

Dualities and effective theories: From the point of view of mathematical physics, one fundamental breaktrough has 
been the realisation that certain QFT models, which are formulated very differently, can be related in some regime or 
even sometimes be understood to be equivalent in a precise sense. One example is the relationship between 
nonabelian gauge theories in four (spacetime) dimensions and sigma-models in two dimensions: the sigma-model 
describes the low-energy dynamics of the vortex string solutions of the 4d theory. Upon quantisation, the 2d theory 
on the string worldsheet captures certain correlation functions and vacuum information about the strongly coupled 4d 
theory. For example, in QFTs with N=2 supersymmetry, the 2d theory can be used to rederive the Seiberg-Witten 
curve and the spectrum of the 4d theory. One of the many issues still awaiting investigation is: 

● Study the quantitative features of this correspondence for QFTs with N=1 supersymmetry. 

The gauged linear sigma-model provides a method to construct Calabi-Yau geometries from gauge theories. By 
studying the quantum dynamics of the gauge theory, one may extract important geometric information about the 
moduli space and geometry of the underlying manifold. Recently, Hori and Tong studied the quantum dynamics of 2d 
nonabelian gauge theories, and the associated Calabi-Yau manifolds which are complete intersections in 
Grassmannians. This provided a proof of several new features, including a new topology changing transition, 
reminiscent of the the flop, but where the two Calabi-Yau's are not birationally equivalent. Open questions to be 
addressed at this point include: 

● Calculate Gromov-Witten invariants for these Calabi-Yau's and obtain a more precise understanding of mirror 
symmetry in this context, which is somewhat more complicated than  for intersections in toric varieties. 

Conformal field theory:  Conformal field theories (CFTs) occupy a special place among QFTs because they possess 
an infinite dimensional symmetry algebra. In the basic examples, this is just the Virasoro algebra, but other infinite 
algebras, like affine Lie algebras, are possible. CFT is therefore intimately tied on the one hand to the representation 
theory of these algebras and on the other hand to the theory of Riemann surfaces, which specify the worldsheet for 
which a CFT amplitude is computed. Physically relevant applications of CFT are to the description of critical 
behaviour in statistical mechanics, percolation and stochastic Loewner evolution, and the worldsheet description of 
string theory. While CFTs are not generic, they play an important role as limits of QFTs under `renormalisation group 
flows'; in this sense, the moduli spaces of CFTs can themselves be interpreted as a boundary of a much larger 
space of quantum field theories. A fruitful point of view has been to understand CFT as the boundary degrees of 
freedom of a three-dimensional theory which is topological in the bulk. The prototypical example is the relation 
between two-dimensional Wess-Zumino-Witten models and three-dimensional Chern-Simons gauge theory. 
Mathematically this can be phrased as a highly nontrival equivalence of two functors: one constructed analytically in 



terms of moduli spaces of solutions to certain differential equations, and the other combinatorially in terms of 
representation theory. While very powerful, this approach is at the moment only applicable to so-called rational 
CFTs, which lie at discrete points in the moduli space of all CFTs, and they necessarily belong to components which 
from a string theory point of view correspond to compact directions in the target space. This sets out a number of 
important tasks where progress is feasible, which include to: 

● Understand properties of CFTs belonging to components of the moduli space that contain rational points. Of 
particular interest are the N=2 super-CFTs arising as sigma-models for compact Calabi-Yau manifolds, given their 
strong ties to algebraic geometry. 

● Obtain a better control over non-compact CFTs and their moduli, if possible by extending the topological methods 
to this class of CFTs. 

● Give a useful and adequate mathematical definition of the moduli space of CFTs (e.g. an appropriate 2-category), 
which should work beyond the class of models for which the concept of moduli space is meaningful at present. 

Non-compact CFTs are particularly relevant to investigate decay processes of unstable configurations in string 
theory (`tachyon condensation') and to study non-static string backgrounds which are important in cosmological 
applications. 

Topological solitons: Another central theme in quantum field theory has been the understanding of the role played by 
topological solitons such as monopoles and instantons. These objects affect certain mechanisms encompassing 
supersymmetry and integrability, which have provided a fertile ground for ideas in symplectic and complex geometry. 
They were also one of the fundamental ingredients leading to the proposal of electric-magnetic duality, which has 
been recently revived and extended by Kapustin and Witten in the context of the geometric Langlands programme. 

Moduli space methods have become an essential tool in the analysis of topological solitons, producing profound 
insight into the classical, quantum and statistical mechanics of solitons in relativistic field theories. Many of these 
theories coincide, in the static regime, with important models of condensed matter physics (e.g. sigma-model 
instantons coincide with ferromagnetic bubbles). An emerging theme is the quest to adapt geometric moduli space 
methods to deal with these condensed matter contexts. Most obviously, this approach involves deriving moduli 
space approximants to soliton dynamics in realistic models; however, there is considerable potential for these 
methods to address more subtle problems, for instance to: 

● Develop moduli space techniques to calculate geometric phases associated with topological defect transport (e.g. 
in fractional quantum Hall systems). 

Very recently, new insights have been emerging in this direction such as the relationship between geometric phases 
and supersymmetry. Further progress is expected to have fundamental impact on both theoretical physics and 
applications as geometric phases are a crucial component in experimentally feasible approaches to topological 
quantum computation. 

Three-dimensional gravity: While QFTs have provided a basic framework for phenomenological models of 
fundamental interactions, incorporating gravity has proved elusive. However, in three spacetime dimensions 
Einstein's theory of gravity simplifies dramatically. Physically, this manifests itself through the absence of 
gravitational waves. Mathematically, it allows for the formulation of the theory as a Chern-Simons gauge theory. The 
gauge group G depends on the signature of spacetime and on the cosmological constant, but is typically non-
compact. The phase space of the theory is the moduli space of flat G-connections. In this formulation, quantizing 
gravity amounts to the quantisation of this moduli space, thus relating one of the deepest problems in theoretical 
physics with one of the most studied objects in modern differential geometry. Correspondingly, research in 3d gravity 
is interdisciplinary. A number of research groups employ a Hamiltonian approach and address fundamental physics 
questions concerning the role of geometry at the Planck scale in the language of quantum groups and 
noncommutative geometry. A different approach via so-called spin foam models leads to interesting links with knot 
theory and 3-manifold invariants. Problems that can be addressed within the time-scale of this proposal are for 
example: 

● Provide a rigorous quantisation of Lorentzian 3d gravity in the Hamiltonian framework and its relationship to the 
spin foam approach. 

● Classical limit: how does spacetime geometry emerge from a diffeomorphism-invariant quantum theory of 3d 
gravity? 

7. European Context: The goal of this proposal is to consolidate many excellent individual and institutional efforts in 
low dimensional topology, geometry, and mathematical aspects of quantum field theory and string theory into a 
European-wide network. Such consolidation is long awaited and will make participating groups more competitive 
worldwide and will facilitate exchange of information, research, and educational experience. This field experienced 



tremendous development in the last two or three decades with many discoveries, and it has been crowned with 
several Fields medals; however, it still only has a relatively modest representation in the European networks. A small 
part of activities of this network overlaps with the focus area of the ESF network “MISGAM”, with funding expiring in 
the summer 2009. This network is chaired by Professor Boris Dubrovin, who also serves on the steering committee 
of this network to ensure the transition and the transfer of the expertise. The proposed network will coordinate 
activities with the ESF network “QG” which is devoted to quantum gravity. The chair of this network, Professor John 
Barrett, has expressed his strong support and enthusiasm to collaborate with this network. In particular there is a 
plan to organizing a joint workshop on quantum Chern-Simons theory and quantum gravity. Professor Jürg Frölich is 
on the steering committee for QG and he is a member of the steering committee of this network as well. This will 
guarantee the coordination of the two networks.  A grant of the ESF will facilitate the communication between 
researchers across Europe and different areas of mathematics and physics, and a substantial part of it will be 
focused on involving young people in the research.  

 

8. European added value: The European research landscape with benefit from the proposed network in at least two 
ways. Firstly, the network will facilitate research in one of the most actively developing branches of mathematics by 
bringing researchers in quantum field theory and string theory together with geometers and topologists. This will 
make scientists in these areas more competitive worldwide.  Secondly, the network will also provide new possibilities 
for training graduate students and post-docs in a new environment where they will be exposed to a variety of 
scientific traditions.  Finally, we will also set up and maintain an electronic database accessible through the World 
Wide Web, which will contain preprints and information related to the network. 

 
 
9. Duration and budget estimates 
We propose the following program for the duration of five years. In order to develop a strong European group and to 
establish fruitful collaborations among the members of the ITGP-network, we plan individual visits, small research 
meetings, and workshops with or without summer school. The progress made in first years of the program will be 
evaluated, and a larger conference (50 people) will be organized in the third year. This will also help to shape details 
for the research in the remaining two years.   

The following figures have been estimated on a basis of a cost of about: One-week visits: 1000 euros per week; One 
month visits: 2100 euros per month; Workshop/conference: 700 euros per participant. We will seek to co finance all 
events with local sources. We consider this possible, given the enthusiastic attitude from all the involved members of 
this network. 

● A Main conference during the third year of the project with 50 participants, most from the network, including the 
word renown experts particiants, plus some of the international collaborators. Our experience has shown that 40 000 
euros is the bare minimum required to successfully organize such a gathering and that such an amount does not 
even allow full support of the participants. This meeting would take place e.g., at CTQM (who would co-finance half 
of the cost), in order to:  

   a) evaluate the progress made in the first two/three years of the program 

   b) plan research directions for the remaining years 

   c) expose the participants to the latest research in and around the field 

 This would involve an annual budget of 20 000 euros / 5  =                                                                4 000 euros 

●  During the five years of the project we plan to organize a total of: 

    a) eight small workshops (involving about 15 participants) 

    b) two larger workshops (involving about 25 participants) 

    c) Two worldwide, well advertised, two-week summer school with expository lectures aimed at young 
researchers (30 advanced PhD students and post-docs). They would be given by members of the project and 
outside scientists. The school would go back-to-back with one of the workshops Topics of summer schools and 
workshops will include 

Combinatorics of Moduli Spaces, Generalized Teichmüller spaces and their quantization 

Khovanov homology and related topics from topology and representation theory 

Geometry of Moduli Spaces and the Geometric Langlands Program 

Quantization of moduli spaces and topological quantum field theory 



Finite type invariants, Asymptotic analysis of quantum invariants and Hyperbolic geometry 

Gauge theory, Floer Homologies and quantum field theory 

Quantum hyperbolic field theory and quantum gravity  

Conformal field theories on manifolds with boundaries  

These workshops will all be given by the world experts involved in this network. 

The estimated costs are as follows: Small workshop: 15 000 euros; Larger workshop: 25 000 euros. The school 
would involve some 35 people, and we estimate a bare minimum of 50 000 euros per school to mainly cover 
expenses to PhD-students and young post docs from the network. These events will be arranged with local co-
funding. 

This would involve an annual budget from ITGP of 100 000  euros/   5 =                                               20 000 euros 

 ●  The project must also support our core activity, which is research; i.e., this includes about 20 small research 
meetings involving 3-4 people gathering in a geographically convenient location for one or two weeks and 
collaborating on a common project. We wish to allocate an equivalent of 30 weeks to this activity. 

In the first year, this part of the budget will cover the expenses of the first meeting of the steering committee, which 
we estimate at 7 000 euros. The figure per year from ITGP is:  

                                                                                                                                                              20 000  euros 

●  Individual short scientific visits:                                                                                                         30 000  euros  

● We also consider it as a matter of priority to enable young researchers (pre-docs and post-docs) to spend 
several months in one of the centers mentioned in the proposal. Our allocation is about the equivalent of 16 months 
per year, as there is very little alternative funding for that kind of activity:  

                                                                                                                                                              35 000  euros 
                                                                                                                  

● We shall also require clerical support for setting up an electronic database and maintenance of the web pages; 
external administrative costs (part-time assistant) and honorarium for the Project coordinator; and publication 
expenses. This would cover the expenses for publishing the Proceedings of the major conferences, the publication of 
the brochures, and, possibly, the Publication of thematical monographs on specific parts of the research program.  

                                                                                                                                                               10 000  euros 

                                                                                                                                                          _____________ 

 

TOTAL ANNUAL BUDGET per year:                                                                                                  119 000  euros 

Note to budget: ● All numbers includes the ESF administrative fee. ● The size of the budget should be seen in relations to the number of involved researchers 
needed to guarantee the European integration of the field. 
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