

EUROCORES Programme European Collaborative Research

TOPO-EUROPE 4D Topography Evolution in Europe: Uplift, Subsidence and Sea Level Change

Geoid eigen-05c - Ellipsoid 1 = 2 - 360 grid = 0.5° 10000 light = (11°, 23°

EUROCORES Programme

European Collaborative Research

4D Topography Evolution in Europe: Uplift, Subsidence and Sea Level Change (TOPO-EUROPE)

The topography of the continents and their margins is at the interface of deep Earth, surface and atmospheric processes. Topography influences society, not only as a result of slow landscape changes but also in terms of how it impacts on geohazards and the environment. When sea-, lake- or ground-water levels rise or land subsides, the risk of flooding increases, directly affecting the sustainability of local ecosystems and human habitats. On the other hand, declining water levels and uplifting land may lead to higher risks of erosion and desertification. Although natural processes and human activities create geohazards and environmental changes, the relative contribution of the respective components remains poorly understood. That topography influences climate has been known since the beginning of civilisation, but only recently have we been able to model its effects in regions where good (paleo-)topographic and climatologic data are available. The present state and behaviour of the shallow Earth System is a consequence of processes operating over a wide range of temporal and spatial scales. These include the long-term effects of tectonic uplift, subsidence, climate variations and the development of river systems, the residual effects of the ice ages on crustal movement, natural climate and environmental changes over the past millennia up to the present, and the powerful anthropogenic impacts of the last century. If we are to understand the present state of the Earth System, to predict its future and to engineer our use of it, this spectrum of processes, operating concurrently but on different scales, needs to be better understood. The challenge to the Geosciences is to describe the state of the system, to monitor its changes, to forecast its evolution and, in collaboration with others, to evaluate modes of its sustainable use by human society.

Professor S.A.P.L. Cloetingh, Chair Professor S. Willet, Co-Chair ESF TOPO-EUROPE Scientific Committee

Programme website: www.esf.org/topo-europe

List of Funded Collaborative Research Projects (CRPs)

Spatial and Temporal Coupling between Tectonics and Surface Processes during Lithosphere Inversion of the Pyrenean-Cantabrian Mountain Belt (PYRTEC) (CNRS, NFR)

PYRTEC will study interaction between surface processes, climate, and tectonic deformation during mountain building in the Pyrenean-Cantabrian belt. Collision between the Iberian and European plates resulted in mountain building in the Pyrenees and passive margin inversion in the Cantabrian area. The mountain range topography, however, was shaped by both collision and associated surface processes. Whereas large amounts of material were eroded in the Pyrenees, only minor erosion took place in the Cantabrian mountain range. Although operating at vastly different time and length scales, a significant potential exists for feedback between large-scale tectonic deformation and redistribution of mass by erosion processes. This CRP will use a multidisciplinary approach involving field-based studies, regional data compilation, geochronology and guantitative modelling approaches that will couple tectonic and surface process models.

Project Leader:

Professor Ritske Huismans

Department of Earth Science, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway

Principal Investigators:

Professor Roy Gabrielsen

Department of Geosciences, University of Oslo, Oslo, Norway

Dr. Ronald van Balen*

Department of Paleoclimatology and Geomorphology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

* Research funded by sources other than the participating ESF Member Organisations listed on page 11

Professor Peter van der Beek

Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier de Grenoble I, Grenoble, France

Dr. David Pedreira*

Departamento de Geología (Area de Geodinámica), Universidad de Oviedo, Oviedo, Spain

Professor Francisco Javier Álvarez Pulgar* Departamento de Geología (Area de Geodinámica), Universidad de Oviedo, Oviedo, Spain

Associated Partners:

Dr. Gianreto Manatschal Université de Strasbourg, Strasbourg, France

Professor Joseph Anton Muñoz Department of Geodynamics and Geophysics, University of Barcelona, Barcelona, Spain

Dr. Hugh Sinclair School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom

Timescales of Sediment Dynamics, Climate and Topographic Change in Mountain Landscapes (SedyMONT) (DFG, FWF, NFR, SNF)

Understanding the timescales and controls of sediment dynamics are a prerequisite to predict the landscape response to changes in temperature, precipitation and runoff. This requires identification of sediment sources and sinks and the mechanisms and rates of sediment transfer at sites in different environments. SedyMONT will address this topic on the basis of (i) historical records and field monitoring, (ii) morphometric and geologic histories, (iii) a conceptual modelling framework, and (iv) information on past and present climate variability and scenarios of future climate change. Data collected will be about sediment discharge and landscape changes for a variety of settings within Europe.

Project Leader:

Professor Fritz Schlunegger

Institute of Geological Sciences, University of Bern, Bern, Switzerland

Principal Investigators:

Dr. Achim Beylich

Quaternary Geology and Climate Group, The Geological Survey of Norway and Department of Geography, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Professor Matthias Hinderer

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany

Dr. Peter Molnar

Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland

Dr. Alexander Reiterer

Institute for Geodesy and Geophysics, Vienna University of Technology, Vienna, Austria

Professor Lothar Schrott

Department of Geography and Geology, Division of Physical and Environmental Geography, University of Salzburg, Salzburg, Austria

Associated Partners:

Dr. Alex Densmore Department of Geography, Durham University, Durham, United Kingdom

Professor Vincenzo Picotti

Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, Bologna, Italy

Plate Re-organisation in the Western Mediterranean: lithospheric causes and topographic consequences (TopoMed) (CICYT, CNR, DFG, FCT, IRCSET)

The motion between Africa and Europe in the western Mediterranean region has been taken up by subduction. Over the last 30 million years the location of the subduction zone has migrated from present-day southern France and eastern Iberia to the south-southeast towards North Africa and present-day Italy, with sideward expansions to form the Gibraltar and Calabria arcs. This process is now coming to an end. TopoMed investigates the intriguing processes accompanying these last stages and the possibility that a new subduction zone is being created along the North African margin. The results of this project are important for assessing the future geohazards potential of the region.

Project Leader:

Professor Marinus Wortel

Department of Earth Sciences, Faculty of Geosciences, University of Utrecht, Utrecht, The Netherlands

Principal Investigators:

Professor Claudio Faccenna

Dipartimento di Scienze Geologiche, Istituto di Geologia Ambientale e Geoingegneria, Università di Roma Tre, Rome, Italy

Professor Manuel Fernandez

Departamento de Geofísica y Tectónica, Institute Earth Sciences 'J. Almera' – CSIC, Consejo Superior de Investigaciones, Científicas (CSIC), Barcelona, Spain

Dr. Ingo Grevemeyer Leibniz Institute of Marine Sciences, Christian-Albrechts-University Kiel, IFM-GEOMAR, Kiel, Germany

Professor Alan G. Jones School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin, Ireland

Professor Pedro Terrinha

Department Marine Geology, National Institute for Engineering, Technology and Innovation (INETI), Amadora, Portugal

Associated Partners:

Professor Olivier Bellier

Université Montpellier II, Montpellier, France

Professor Christophe Larroque

Géoazur, Valbonne, France

Continental Plateaus and Tectonics-Climate Interactions (VAMP) (APVV, CNR, DFG, NWO, SNF, TÜBITAK)

Orogenic continental plateaus such as Tibet are major geological features of the Earth. They are thousands of km² in area, have a flat and elevated interior (up to 5000m) characterised by arid conditions, and steep margins typically the site of large precipitations. They also display anomalous crustal and lithospheric conditions. Plateaus have obvious interactions with climate patterns and it is thought that the uplift of Tibet caused the onset of monsoon circulation in Asia. Anatolia, the object of VAMP, is a small, young but fully representative continental plateau in Europe. Being easily accessible and having boundary conditions better constrained than larger counterparts, it can provide new fundamental knowledge on plateau formation.

Project Leader:

Professor Manfred Strecker

Institut für Geowissenschaften, Universität Potsdam, Potsdam, Germany

Principal Investigators:

Dr. Giovanni Bertotti

Department of Tectonics and Structural Geology, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, The Netherlands

Professor Attila Çiner

Department of Geological Engineering, Hacettepe University, Ankara, Turkey

Professor Helmut Echtler GeoForschungsZentrum Potsdam, Potsdam, Germany

Professor Arkan Eydar Department of Geological Engineering, Hacettepe University, Ankara, Turkey

Professor Elsa Gliozzi

Dipartimento di Scienze Geologiche, Istituto di Geologia Ambientale e Geoingegneria, Università di Roma Tre, Rome, Italy

Dr. Robert Govers

Department of Earth Sciences, Faculty of Geosciences, Utrecht Universiteit, Utrecht, The Netherlands

Dr. Marianna Kováčová University of Bratislava, Bratislava, Slovak Republic

Professor Andreas Mulch

Institute of Geology, Universität Hannover, Hannover, Germany

Dr. Bora Rojay Middle East Technical University, Ankara, Turkey

Professor Guy Simpson

Department of Earth Sciences, University of Geneva, Geneva, Switzerland

Associated Partners:

Dr. Ali Aksu

Department of Earth Sciences, Memorial University Newfoundland, St Johns, NI, Canada

Professor Claudio Faccenna

Dipartimento di Scienze Geologiche, Istituto di Geologia Ambientale e Geoingegneria, Università di Roma Tre, Rome, Italy

The Scandinavian Mountain Chain: deep processes (TopoScandiaDeep) (FNU, DFG, NFR)

Mountains form usually by interaction of tectonic plates and are not expected to form in intraplate settings. The Scandinavian mountains, which are the second largest mountain chain in Europe after the Alpine belt, are, however, far from plate boundaries and the origin of their present high altitude is unknown. The aim of the project is to use geophysical data, in particular newly acquired seismological data, to map the seismic and mechanical properties of the crust and mantle below Scandinavia and analyse which forces and processes can be at the origin of the present-day topography of northern Europe.

Project Leader:

Professor Valérie Maupin

Department of Geosciences, University of Oslo, Oslo, Norway

Principal Investigators:

Professor Niels Balling

Geophysical Laboratory, Department of Earth Sciences, University of Århus, Århus, Denmark

Dr. Jörg Ebbing

Geological Survey of Norway, Trondheim, Norway

Professor Rolf Mjelde Department of Earth Science, University of Bergen, Bergen, Norway

Dr. Joachim Ritter Geophysical Institute, Universität Karlsruhe, Karlsruhe, Germany

Dr. Dimitrios Sokoutis*

Department of Tectonics and Structural Geology Group, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Professor Hans Thybo

Department of Geography and Geology, Institute of Geology, Copenhagen University, Copenhagen, Denmark

Associated Partner:

Dr. Richard England

Department of Geology, University of Leicester, Leicester, United Kingdom

* Research funded by sources other than the participating ESF Member Organisations listed on page 11

From Source to Sink: integrated natural hazard assessment through the quantification of mass transfer from mountain ranges to active sedimentary basins (SourceSink) (APVV, CNCSIS, CNRS, FWF, GAČR, TÜBITAK)

SourceSink focuses on the quantitative analysis of coupled active mountain and drainage systems through step-wise 4D reconstructions of sediment mass transfer. The Danube River Basin-Black Sea area provides a world-class natural laboratory for the study of interplays between lithosphere and surface processes, including source-to-sink relationships with their impact on global change. Moreover, natural hazards such as earthquakes, landslides, flooding, or subsidence, may result from changes in topography and landforms. The SourceSink consortium, with proven capacity and complementary scientific strength in distinct research domains, provides a solid base for realising an integrated programme for the understanding of coupled mountain range and basin dynamics. The CRP will apply past analogues and present-day evolutionary models, based on new data acquisitions and fieldwork to constrain simulations of recent, past and near future processes.

Project Leader:

Professor Paul Andriessen*

Department of Isotope Geochemistry, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Principal Investigators:

Dr. Liviu Matenco*

Department of Tectonics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Günay Çifçi

Institute of Marine Sciences and Technology, Dokuz Eylül University, Inciralti-Izmir, Turkey

Professor Corneliu Dinu

Department of Geology and Paleontology, Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania

Dr. Juraj Francu

Czech Geological Survey, Brno, Czech Republic

Professor Bernhard Fügenschuh

Institut für Geologie und Palaontologie, Universität Innsbruck, Innsbruck, Austria

Professor Michal Kováč

Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University of Bratislava, Bratislava, Slovak Republic

Dr. Gilles Lericolais

DRO – Géosciences marines, Laboratoire Environnements Sedimentaires, IFREMER, Plouzané, France

Professor Jozef Minár

Department of Physical Geography and Geoecology, Faculty of Natural Sciences, Comenius University of Bratislava, Bratislava, Slovak Republic

Professor Nicolae Panin

GeoEcoMar (Romanian Center of Marine Geology and Geoecology), Bucharest, Romania

Dr. Jan Safanda

Czech Geological Survey, Brno, Czech Republic

Professor Mircea Săndulescu

Department of Geology and Paleontology, Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania

Professor Stefan Schmid*

Geological-Palaontological Institute, Universität Basel, Basel, Switzerland

Dr. Ralf Schuster Geological Survey of Austria, Vienna, Austria

Professor Lothar Schrott

Department of Geography and Geology, Division of Physical and Environmental Geography, University of Salzburg, Salzburg, Austria

Associated Partners:

Dr. Gábor Bada

Department of Geophysics, Eötvös Lorand Technical University, Budapest, Hungary

Dr. Fred Beekman

Department of Tectonics and Structural Geology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam and Research Center for Integrated Solid Earth Sciences (ISES), Amsterdam, The Netherlands

* Research funded by sources other than the participating ESF Member Organisations listed on page 11

Dr. Miroslav Bielik

Faculty of Natural Sciences, Comenius University, Geophysical Institute of the Slovak Academy of Sciences, Bratislava, Slovak Republic

Professor Sierd Cloetingh

Department of Tectonics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Professor Vladica Cvetković

University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia

Dr. Derman Dondurur

Institute of Marine Sciences and Technology, Dokuz Eylül University, Inciralti-Izmir, Turkey

Professor Mustafa Ergun

Institute of Marine Sciences and Technology, Dokuz Eylül University, Inciralti-Izmir, Turkey

Dr. Jurgen Foeken

Department of Isotope Geochemistry, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Daniel Garcia-Castellanos

Departamento de Geofísica y Tectónica, Instituto de Ciencias de la Tierra, University Jaume Almera (CSIC), Barcelona, Spain

Professor Ferenc Horváth

Institute of Earth Sciences, Faculty of Science, Eotvos Lorand University, Budapest, Hungary

Professor Gregory Houseman

Institute of Geophysics and Tectonics, School of Earth and Environment, University of Leeds, United Kingdom

Dr. Dan Jipa

GeoEcoMar (Romanian Center of Marine Geology and Geoecology), Bucharest, Romania

Dr. Wout Krijgsman

Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Dr. Olga Legostaeva

Institute of Geophysics "S.I. Subbotin" of National Academy of Sciences of Ukraine, Kiev, Ukraine

Dr. Thomas Lüdmann

Institute of Biogeochemistry & Marine Chemistry, Universität Hamburg, Hamburg, Germany

Professor Milun Marović

University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia

Dr. Mihaela Melinte

GeoEcoMar (Romanian Center of Marine Geology and Geoecology), Bucharest, Romania

Dr. Cornel Olariu

Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, USA

Professor Dušan Plašienka

Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University of Bratislava, Bratislava, Slovak Republic

Dr. Dimitrios Sokoutis

Department of Tectonics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Miloš Stankoviansky

Department of Physical Geography and Geoecology, Faculty of Natural Sciences, Comenius University of Bratislava, Bratislava, Slovak Republic

Professor Vitaliy Starostenko

Institute of Geophysics "S.I. Subbotin" of National Academy of Sciences of Ukraine, Kiev, Ukraine

Professor Ronald J. Steel

Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, USA

Dr. Randell Stephenson

Department of Tectonics, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Sergiy Stovba NaukaNaftogaz, Kiev, Ukraine

Dr. Marlies ter Voorde

Department of Isotope Geochemistry, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Bernadette Tesier University of Caen, France

Dr. Marinko Toljić University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia

Dr. Bruno Tomljenović Faculty of Mining, Geology & Petroleum Engineering, University of Zagreb, Croatia

Dr. Jan Wijbrans

Department of Isotope Geochemistry, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Professor How Kin Wong

Institute of Biogeochemistry & Marine Chemistry, Universität Hamburg, Hamburg, Germany

Refined European Sea Level Estimations by Combining Altimetry, Tide Gauges, Hydrographic and Other Data Sets with Improved Regional GIA Modeling and Tailored Regional GRACE Gravity Field Models (RESEL-GRACE) (CNRS, DFG, NWO)

The aim of this CRP is to refine European sea level estimations by combining altimetry, tide gauges, ARGO float data, hydrographic and other data sets with improved regional GIA modelling and tailored regional GRACE gravity field models. Objectives of this CRP include (i) to derive regional mean and time-variable gravity models directly from GRACE instrument data for dedicated European regions of interest; (ii) to update the regional sea level rates in the Mediterranean Sea using multisatellite altimetry, tide-gauge and hydrographic data, and to explain the water mass contribution to sea level by using GRACE measurements of gravity due to redistribution of water mass; (iii) to improve estimates of glacial-isostatic adjustment in Northern Europe, and to improve our knowledge of the shallow earth structure and rheology of the region.

Project Leader:

Professor Jürgen Kusche

Institute of Geodecy and Geoinformation, University of Bonn, Bonn, Germany

Principal Investigators:

Dr. Anny Cazenave

Laboratoire d'Études en Géophysique et Océanographie, Spatiale (LEGOS), Centre National d'Études Spatiales (CNES), Toulouse, France

Dr. Martyn Robert Drury

Department of Earth Sciences, Faculty of Earth Sciences, Universiteit Utrecht, Utrecht, The Netherlands

Dr. Frank Flechtner

Department of Geodesy and remote Sensing, GFZ Potsdam, Wessling, Germany

Dr. Guillaume Ramillien

Laboratoire d'Études en Géophysique et Océanographie, Spatiale (LEGOS), Centre National d'Études Spatiales (CNES), Toulouse, France

Dr. Bert Vermeersen

DEOS, Delft University of Technology, Delft, The Netherlands

Mantle Forcing of Earth Surface Evolution in Europe and the Mediterranean: from past to present (Topo-4D) (CNR, NFR, NWO, SNF)

The impact of mantle processes on surface deformation is perhaps conceptually well understood but largely lacks thorough quantification. As a result, in many cases it is impossible to discriminate between mantleinduced and surface-induced contributions to surface deformation. Valuable observations of vertical surface motions can often not be equivocally interpreted unless basic assumptions, such as isostasy, are being invoked. Any progress in understanding presentday topography and topography evolution, and progress in making correct interpretations of valuable surface observables requires guantification of real-Earth mantle dynamics and of the surface response. The European-Mediterranean region is a well-studied natural laboratory for which this progress can now be made and this is what our CRP aims at.

Project Leader:

Professor Wim Spakman

Department of Earth Sciences, Faculty of Geosciences, Universiteit Utrecht, Utrecht, The Netherlands

Principal Investigators:

Professor Carlo Doglioni

CNR-Instituto di Geologia Ambientale e Geoingeneria, Dipartimento di Scienze della Terra, Università La Sapienza, Rome, Italy

Professor Taras Gerya

Department of Geosciences, ETH Zürich, Zürich, Switzerland

Professor Paul Tackley

Department of Geosciences, ETH Zürich, Zürich, Switzerland

Professor Trond H. Torsvik

Center for Geodynamics, NGU, Trondheim and Physics of Geological Processes, University of Oslo, Norway

Dr. Arie P. Van Den Berg

Department of Earth Sciences, Faculty of Geosciences, University of Utrecht, Utrecht, The Netherlands

Associated Partners:

Professor Wolfgang Friederich

Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Bochum, Germany

Dr. Thomas Meier

Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Bochum, Germany

The Topographic History of the Alps and its Tectonic and Climatic Drivers (TOPO-ALPS) (DFG, FWF, SNF)

What is the history of topography in the Alps? That is the question to be investigated by the TOPO-Alps project. The rise of the Alps and the evolution of the alpine landscape are the consequence of disparate tectonic and climatic conditions. The processes of continental collision, although active over the last few tens of millions of years, have slowed in more recent times, particularly in the western Alps. Climate has varied greatly from the warm, wet conditions of three to five million years ago to the glacial cycles that have dominated climate and erosional processes in the last million years. The TOPO-Alps project will attempt to unravel these processes through a multidisciplinary study incorporating geochemical methods for measuring paleo-elevation and modern erosion rates, sedimentological methods to estimate past erosion rates and patterns, tectonic field studies to establish tectonic uplift patterns and numerical models to link these processes to the Alpine topography.

Project Leader:

Professor Sean Willett

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Principal Investigators:

Professor Harald Fritz Department of Earth Sciences, University of Graz, Graz, Austria

Dr. Frederic Herman

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Dr. Matthias Hinderer Institut für Angewandte Geowissenschaften, Technical University Darmstadt, Darmstadt, Germany

Professor Niel Mancktelow Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Professor Andreas Mulch Institut für Geologie, Leibniz Universität Hannover, Hannover, Germany

Professor Fritz Schlunegger

Institute of Geological Sciences, University of Bern, Bern, Switzerland

Professor Kurt Stüwe

Department of Earth Science, University of Graz, Graz, Austria

Professor Friedhelm von Blanckenburg

German Research Centre for Geosciences, GFZ, Potsdam, Germany

Associated Partners:

Professor Peter van der Beek

Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier de Grenoble I, Grenoble, France

Professor Rainer Wieler

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Coupled Climatic/Tectonic Forcing of European Topography revealed through Thermochronometry (Thermo-Europe) (CNR, CNRS, DFG, MNSW, NWO, SNF)

The topography of Europe's mountains is the consequence of recent tectonic activity and climatically-modulated erosional processes. Our understanding of the coupling between climate and tectonics, which potentially represents the fundamental driver for mountain topography, remains partial. The Thermo-Europe project aims to test mechanisms for the coupling

of climate and tectonics across Europe by combining acquisition of new thermochronologic data on denudation rates and sediment-flux from key areas, development of new methods to increase the resolution of the thermochronologic record, development of quantitative techniques that permit the extraction of information on relief development and transient exhumation rates, and investigation of the coupled effect of climate-induced and tectonic variability in exhumation rates.

Project Leader:

Professor Peter van der Beek

Laboratoire de Géodynamique des Chaînes Alpines, Observatoire des Sciences de l'Univers de Grenoble, Université Joseph Fourier de Grenoble I, Grenoble, France

Principal Investigators:

Professor Paul Andriessen

Department of Isotope Geochemistry, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Dr. Maria-Laura Balestrieri

CNR, Istituto di Geoscienze e Georisorse, Florence, Italy

Dr. Charlotte Cederbom

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany

Dr. Piotr Krzywiec

Department of Geophysics, Polish Geological Institute, Warsaw, Poland

Professor Onno Oncken

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany

Professor Cornelia Spiegel

Fachbereich Geowissenschaften, Universität Bremen, Bremen, Germany

Professor Sean Willett

Department of Earth Sciences, ETH Zürich, Zürich, Switzerland

Associated Partners:

Dr. Luis Barbero

Department of Ciencias de la Tierra, Ciencias del Mar y Ambientales, Universidad de Cádiz, Cadiz, Spain

Dr. Ulrich Glasmacher

Institute of Earth Sciences, Universität Heidelberg, Heidelberg, Germany

Dr. Hugh Sinclair

Institute of Earth Sciences, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom The aim of the European Collaborative Research (EUROCORES) Scheme is to enable researchers in different European countries to develop collaboration and scientific synergy in areas where European scale and scope are required to reach the critical mass necessary for top class science in a global context.

The scheme provides a flexible framework which allows national basic research funding and performing organisations to join forces to support excellent European research in and across all scientific areas.

Until the end of 2008, scientific coordination and networking was funded through the EC FP6 Programme, under contract no. ERAS-CT-2003-980409. As of 2009, the National Funding Organisations provide the funding for the scientific coordination and networking in addition to the research funding.

www.esf.org/eurocores

THE FOLLOWING NATIONAL FUNDING ORGANISATIONS SUPPORT THE TOPO-EUROPE PROGRAMME:

Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF)

Austrian Science Research Fund, Austria

Grantová agentura České republiky (GAČR) *Czech Science Foundation,* Czech Republic

Forskningsrådet for Natur og Univers (FNU) Danish Natural Science Research Council, Denmark

Centre National de la Recherche Scientifique (CNRS)

National Centre for Scientific Research, France

Deutsche Forschungsgemeinschaft (DFG) German Research Foundation, Germany

Irish Research Council for Sciences, Engineering and Technology (IRCSET) Ireland

Consiglio Nazionale delle Ricerche (CNR) National Research Council, Italy

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Netherlands Organisation for Scientific Research, The Netherlands

Norges Forskningsråd (NFR) Research Council of Norway, Norway

Ministerstwo Nauki i Szkolnictwa Wyższego (MNSW)

Ministry of Science and Higher Education, Poland

Fundação para a Ciência e a Tecnologia (FCT)

Foundation for Science and Technology, Portugal

Consiliul National al Cercetarii Stiintifice din Invatamantul Superior (CNCSIS) National University Research Council, Romania

Agentúra na podporu výskumu a vývoja (APVV)

Slovak Research and Development Agency, Slovak Republic

Comisión Interministerial de Ciencia y Tecnología (CICYT) Interministerial Committee on Science and Technology, Spain

Schweizerischer Nationalfonds (SNF) Swiss National Science Foundation, Switzerland

Türkiye Bilimsel ve Teknolojik Arastırma Kurumu (TÜBITAK) The Scientific and Technological Research Council of Turkey, Turkey

THE FOLLOWING ADDITIONAL ORGANISATIONS SUPPORT THE TOPO-EUROPE PROGRAMME:

Netherlands Research Center for integrated Solid Earth Science (ISES) The Netherlands

StatoilHydro Norway

Gobierno Del Principado De Asturias

The Regional Ministry for Education and Science of the Government of the Principality of Asturias, Spain

Università degli Studi Roma Tre *The University of Rome Three,* Italy

Shape of the Earth's Geoid after the EIGEN-05C - model. © GFZ Helmholtz Centre Potsdam

CONTACT DETAILS

Dr. Didier Hauglustaine

Science Officer for EUROCORES Programmes Life, Earth and Environmental Sciences Unit

Ms. Päivi McIntosh

EUROCORES Programme Administrator Life, Earth and Environmental Sciences Unit

European Science Foundation 1 guai Lezay-Marnésia | BP 90015 67080 Strasbourg cedex | France Tel: +33 (0)3 88 76 21 89 / 21 64 Fax: +33 (0)3 88 37 05 32 Email: topo-europe@esf.org www.esf.org/topo-europe

The European Science Foundation (ESF) provides a platform for its Member Organisations to advance science and explore new directions for research at the European level.

TOPO-EUROPE

4D Topography Evolution in Europe: Uplift, Subsidence and Sea Level Change

Established in 1974 as an independent non-governmental organisation, the ESF currently serves 80 Member Organisations across 30 countries.

1 guai Lezay-Marnésia | BP 90015 67080 Strasbourg cedex | France Tel: +33 (0)3 88 76 71 00 | Fax: +33 (0)3 88 37 05 32 www.esf.ora