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The	revolutionary	growth	of	experimental	data	in	the	sciences	
and	the	availability	of	unprecedented	computing	power	pose	
many	challenges	to	contemporary	mathematics.	This	ESF	
Research	Networking	Programme	on	applied	and	computational	
algebraic	topology	(ACAT)	combines	efforts	of	researchers	
throughout	Europe	developing	mathematical	tools	for	the	
following	broad	research	themes:
•		the	topological	and	statistical	analysis	of	shapes,	images,	and	
high-dimensional	data	sets;

•		algorithms	for	motion	planning	and	the	study	of	confi	guration	
spaces	of	mechanical	systems;

•		stochastic	topology	and	the	study	of	large	growing	systems;
•		the	theory	of	concurrent	computation	and	computer	networks.

Research	on	these	themes	is	currently	carried	out	in	small	
groups	spread	over	several	European	countries.	The	Network	
facilitates	intensifi	ed	interactions	and	cross-fertilisation,	which	
we	predict	will	lead	to	new	results	and	entire	new	research	
directions	as	well	as	to	commercial	applications.	The	Network	
organises	summer	schools	and	conferences	to	support	the	
formation	of	an	integrated	research	community	in	applied	and	
computational	algebraic	topology	and	to	attract	an	increasing	
number	of	students	to	the	fi	eld.	Research	visits	to	departments	
in	European	countries	may	be	facilitated	by	short	visit	and	
exchange	grants.	The	Network	actively	collaborates	with	experts	
outside	Europe.

The	running	period	of	the	ESF	ACAT	Research	Networking	
Programme	is	for	four	years,	from	July	2011	to	July	2015.
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The front cover shows a two-dimensional 
rendering of a protein–protein interface. 
After constructing the interface (see Figure 
above), it is flattened and deformed into a 
round disk. Since the interface separates 
two proteins, the disk is coloured on 
both sides, each colour indicating the 
neighbouring amino acid type. One 
side is rendered transparent, indicating 
the coloured regions with narrow strips 
outlining the boundary. We see clearly 
which amino acids of the two proteins 
interact. (Courtesy of work by Andrew 
Ban, Herbert Edelsbrunner and Johannes 
Rudolph as part of the biogeometry project 
funded by NSF, 2001-2006.)

A particularly delicate step is the 
selection of the finite portion of the infinite 
surface that separates two proteins 
sitting in three-dimensional space. All 
neighbourhood information of the amino 
acids is already contained in that surface, 
but flattening it and colouring the regions 
as shown makes the result much more 
compelling and easier to comprehend. The 
neighbourhood information is topological 
and may be represented by weighted 
networks of amino acids and/or proteins. 
It is still not known how to predict the 
interaction given the structural knowledge 
of the two proteins in space individually, but 
not put together forming the complex. The 
computational problem of this prediction 
is known as the protein–protein docking 
problem.

Figure	1.
Two interacting proteins taken apart after computing 
the interface surface of the complexed form.

The mathematical discipline of algebraic 
topology forms the background for 
several areas of application-oriented 
mathematical research. The aim is to 
develop new theoretical instruments and 
algorithms connecting topological methods 
with applications. The last two decades 
have shown that this is both possible 
and mutually beneficial. The growing 
number of such connections has given 
rise to the emerging field of applied and 
computational algebraic topology (ACAT), 
which includes the following areas: 
•  computational algebraic topology;
•  topological robotics; 
•  stochastic topology;
•  combinatorial algebraic topology and 

concurrency.
We give a brief description of the 
background and the main aims for each 
of these research areas. ACAT facilitates 
research within each of these areas 
and enhances collaboration between 
researchers in different areas.

Computational	Algebraic	Topology
This area deals with the analysis of shapes, 
images, and high-dimensional data sets. It 
is often based on a filtration that represents 
the space across scale levels, from fine to 
coarse. Combinatorial complexes can be 
constructed to represent the data at a given 
level, and topological invariants of those 
(e.g. ranks of homology groups) can be 
determined. The interest is in persistence, 
i.e. the length of the activity interval of such 
an invariant along the filtration. Persistence 
diagrams in the plane are combinatorial 
representations of the homological 
information contained in the filtration. They 
form an invariant of the filtration and are 
stable under perturbations. This paves 
the way for the use of homology in a wide 
range of applications in mathematics 
and computing but also in the sciences 
and engineering (for an introduction, see 

Scientific Background
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are likely to be different from the homology 
algorithms, and this difference needs to be 
explored.
• Matrix reduction algorithms lend 
themselves to implementations on parallel 
computer architectures, which promise a 
further increase in efficiency. We need to 
understand which reduction algorithms are 
best suited for this effort.

Topological	Robotics
This mathematical discipline studies 
topological problems relevant to practical 
applications in modern robotics, 
engineering and computer science. With 
any mechanical system, one associates 
the configuration space, which encodes all 
admissible configurations of the system. 
Many important engineering questions 
about the system reduce to geometric 
questions about the configuration space. 
For instance, the connectivity of the 
configuration space means that the 
mechanical system is fully controllable. 
In other words, we can bring the system 
from any initial state to any desired 
state by a continuous motion. Curiously, 
the interaction between topology and 
mechanical engineering is bi-directional 
because any smooth manifold can be 
realised as configuration space of a 
mechanical system. We continue by 
outlining a few broad topics within the area.
• Configuration spaces of simple linkages 
represent an interesting class of closed 
smooth manifolds. These remarkable 
spaces are also known as polygon spaces 
because they parameterise the space 
of all n-sided polygons with given side 
lengths. In the last few years significant 
progress has been made in classification of 
configuration spaces of linkages leading to 
a solution of the Walker conjecture, which 
is a question about the invertibility of the 
mapping from a linking to its configuration 
space.

Computational Topology, an Introduction, 
by H. Edelsbrunner & J.L Harer, American 
Mathematical Society, 2010). 

The development underpins the need 
for fast algorithms to compute homology 
for data sets of a few million elements or 
more, which arise in diverse areas such 
as image analysis, dynamical systems, 
robotics, electromagnetic engineering, 
and material science. Similar methods are 
applied in the classification of shapes and 
their retrieval from databases. An essential 
ingredient in this undertaking is a measure 
of dissimilarity between shapes. If we 
enhance shapes by functions on them, we 
can use the pseudo-distance that can be 
approximated by persistent homology. We 
continue by listing a few of the questions to 
be investigated by members of this project:
• Well modules have recently been 
introduced to measure the robustness of 
intersections and to prove the stability of 
contours of mappings. They can also be 
used to formulate a notion of robustness for 
fixed points of mappings. Can these ideas 
be further developed to obtain a notion of 
persistence for dynamical systems?  On a 
related note, we need a notion of persistent 
homology for maps, and fast algorithms.
• Image processing raises a number of 
challenges to our understanding of our 
topological tools. How do we use persistent 
homology under partial information, such 
as partially occluded shapes?
• Filtrations are generated by real-valued 
functions on the space. Replacing the 
functions by vector-valued mappings 
gives multi-parameter filtrations. A deeper 
understanding of the rank invariant of these 
more general filtrations is important for 
applications in shape analysis and retrieval.
• Homology algorithms can be extended 
to computing cohomology, which is 
particularly important in electromagnetic 
engineering. The running time 
characteristics of the cohomology variants 
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• The motion planning problem plays a 
prominent role in modern robotics. An 
autonomous mechanical system must be 
able to select a motion once the current 
and the desired states are given; such a 
selection is made by a motion planning 
algorithm. Continuous motion planning 
algorithms rarely exist, which explains 
why decisions are often discontinuous 
as functions of the input data. The notion 
of topological complexity measures 
these discontinuities numerically. Many 
properties of this notion are known, but its 
computation in general is quite difficult; a 
situation similar to the related Lusternik-
Schnirelmann category.
• We plan to apply the theory of motion 
planning algorithms in the context of 
directed topological spaces when only 
directed paths between the source and the 
target are allowed. This theory would then 
be applicable to problems of concurrent 
computation, as discussed below. We also 
plan to create appropriate cohomological 
tools for estimating the sectional category 
of fibrations. This will involve strengthening 

Figure	2.	Underwater robot with sense of touch.
© DFKI Bremen

and generalising the technique of category 
weight of cohomology classes and using 
cohomology operations, as suggested by 
Fadell and Husseini in the context of the 
Lusternik-Schnirelmann category.

Stochastic	Topology
In applications with large mechanical 
systems, the traditional concept of a 
configuration space is unfortunately 
inadequate. For a mechanical system of 
great complexity, it is unrealistic to assume 
that its configuration space can be fully 
known or completely described. It is more 
reasonable to assume that the space of all 
possible states of such a system can be 
understood only approximately, or that it 
is described using probabilistic methods. 
Similar problems arise in modeling of 
large financial, biological and ecological 
systems. This motivates the study of 
random manifolds and random simplicial 
complexes as models for large systems. 
We continue with a number of specialised 
topics in the area:
• Recent results about topology of linkages 
with random length parameters show 
that despite limited information one may 
predict the outcome topology, say, the Betti 
numbers, with surprising precision. This 
happens in situations when the system 
depends on many independent random 
parameters, similar to the classical central 
limit theorem.
• We plan to study models that produce 
high-dimensional random complexes 
(generalising the well-developed theory 
of random graphs) and investigate their 
applications in engineering and computer 
science. This includes the Linial-Meshulam 
model which has been studied extensively 
in recent years.
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• A recent and dynamic branch of 
combinatorial algebraic topology also 
brings probability aspects into play. There 
have been several developments studying 
probability spaces arising naturally in 
topology, and establishing thresholds 
for non-triviality of various algebraic 
invariants. The idea is to incorporate 
into the computational model not just 
the fi nal data sample, but the sampling 
process itself. These methods give 
global quality assessment invariants for 
specifi c computations in terms of tools of 
probability theory.
• One hopes that it will be possible 
to answer some famous outstanding 
open problems about two-dimensional 
complexes, such as the Whitehead or 
the Eilenberg-Ganea conjectures using 
probabilistic tools. The methods involving 
probability were successfully used in 
the past in other areas of mathematics 
to construct objects with curious 
combinations of properties.

Combinatorial	Algebraic	Topology	
and	Concurrency	Theory
The idea of combinatorial algebraic 
topology is to form complexes that 
represent collections of confi gurations, 
for example the set of all colourings of 
a graph, or the set of all executions of a 
protocol. The complexes are typically high-
dimensional and have a high degree of 
symmetry. These are expressed via actions 
of the symmetric group or of a group 
composed of subgroups of symmetric or 
related groups. Effective computations 
of algebraic invariants exploiting these 
symmetries are still a challenge that will 
be pursued within this project. There has 
already been some work exploiting tools 
from the combinatorial context, such as 
discrete Morse theory, to the calculation 
of persistent homology, as well as of some 
related invariants. Possibilities for further 

connections in this direction are much 
greater than has been explored until now. 
Equivariant methods have been useful 
in connecting combinatorial algebraic 
topology with applications in computer 
science, in particular the feasibility 
of distributed systems. This topic is 
embedded in the larger fi eld of concurrency 
theory within theoretical computer science. 
This fi eld investigates the challenges 
represented by parallel architectures within 
an individual computer or within computer 
networks; in particular for the assessment 
of the correctness and safety of non-
sequential distributed algorithms.

A particular concurrency model, the 
higher-dimensional automata, can be 
described by pre-cubical complexes with 
a direction refl ecting the time fl ow. For a 
mathematical analysis of these models, 
one has to incorporate direction into tools 
and methods from algebraic topology. This 
is the topic of directed algebraic topology, 
which uses fast homology algorithms to 
analyse the large models arising in practical 
applications. In a directed topological 
space, a subcategory of the path 
category is singled out as the (allowable) 
directed paths. It is important to note that 

Figure	3.	
State space in the form of a torus with rectangular 
holes. © CEA-LIST.
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these are most often not invertible. For 
applications, the topological state space 
reflects coordination constraints between 
individual processes, and directedness is 
a property of the time flow. The main aim is 
to understand the properties of (directed) 
path spaces associated to a well-structured 
directed topological space, to perform 
calculations of standard invariants, and to 
investigate the sensitivity of these invariants 
with respect to the chosen end points. 
Directed paths in the same component 
model computation schedules that will 
always yield the same result. We mention a 
few particular questions in the area.
• For geometric models of computation, 
abstract homotopy theory tools yield 
models for associated spaces of directed 
paths in a combinatorial form, i.e. as 
simplicial complexes. Ongoing work 
aims to develop this theoretical method 
into algorithms for applications allowing 
machine calculations of their homology 
groups.
• It is desirable to decompose a given 
directed space into components such that 
the homotopy types of path spaces only 
depend on the components of start and 
end point. If finitely (or countably) many 
such components suffice, it is possible 
to describe coarser models that can be 
used by a machine. The existing theory 
and algorithmic methods apply only to 
a restricted class of model spaces and 
should be extended to more general and 
realistic settings. A related question is 
the application of persistence to possibly 
understand the hierarchical structure of 
such decompositions.
• The literature contains a variety of 
suggestions for a directed replacement of 
the notion homotopy equivalence. We will 
investigate their properties and single out 
which of them are most suitable in theory 
and in applications.
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