

Mars as a place to live? Past, present and future

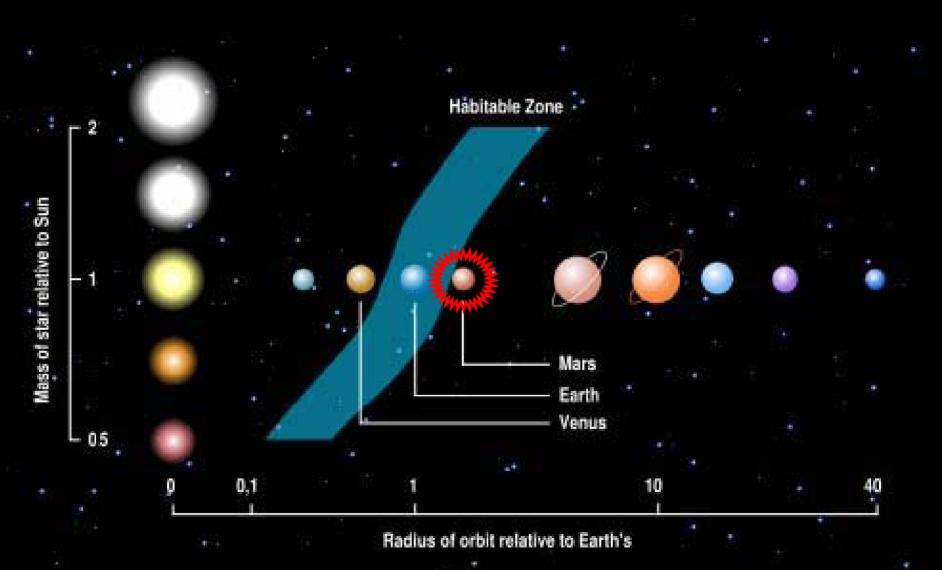
Gerda Horneck DLR, Institute of Aerospace Medicine, Köln, Germany

ESF/ESA/ESPI Conference Humans in Outer Space, Vienna, 11-12 October 2007

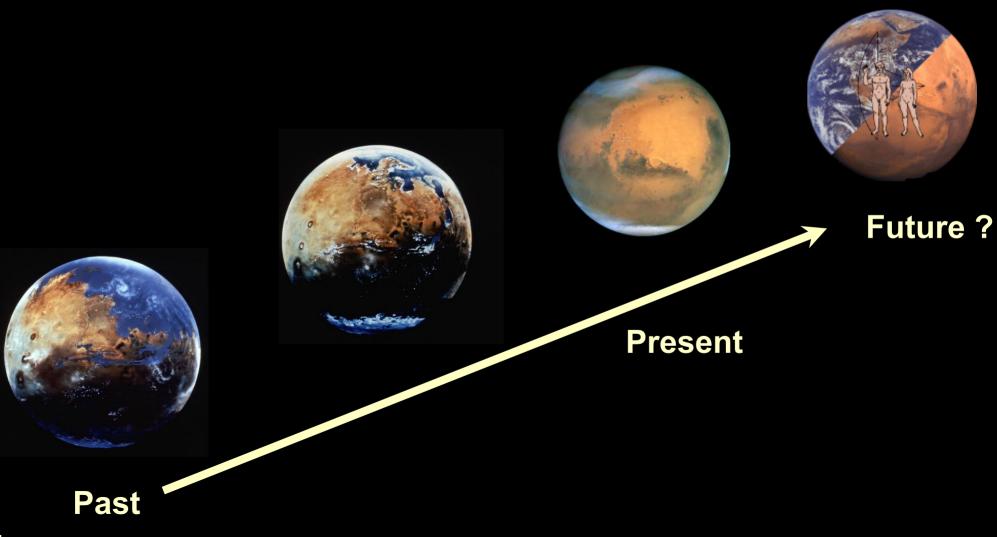
What defines a place to live ?

Habitability depends on the organisms under consideration

HumansTemperature 15 to $35^{\circ}C$ $CO_2 < 10hPa$ $O_2 130$ to 300 hPa $pH = \sim neutral$



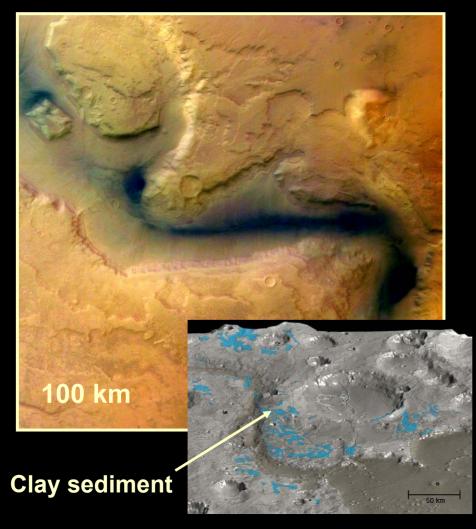
<u>Microorganisms</u> Temperatures -20 to + 113°C $CO_2 \leq 100\%$ O_2 0 to several tens of percent pH 0 to 13 Desiccation, radiation, etc. etc.


from C.S. Cockell, 2007

Regions of Habitability in a Solar System

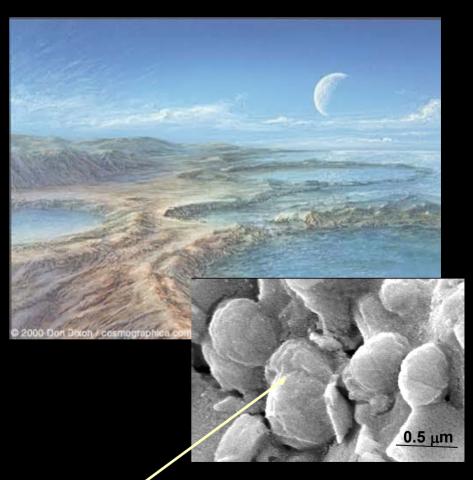
where liquid water has been present over extended periods

Mars as a place to live ?



Comparison of early Mars and early Earth

	Early Mars	Early Earth
Temperature	> 0 to 50 °C	> 50 °C
Oceans & rivers	yes	yes
Atmospheric O ₂	very low	very low
UV radiation	high	high
Magnetic field	yes	yes
Volcanism	yes	yes
Life	???	yes


Past Mars as a place to live !

Early Mars

Mars Express data

Early Earth

Dividing cells, 3.5 billion years old

from F. Westall

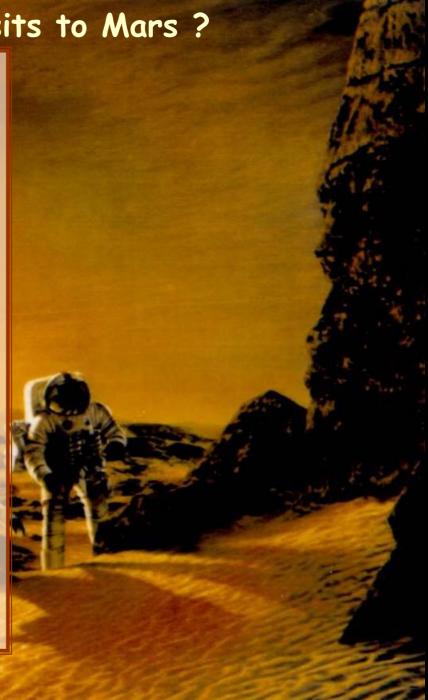
Sea.

and the second second	State and the state of the state	
Environmental element	Mars	Earth
Cosmic ionizing radiati	on 100-200 mSv/a	1-2 mSv/a
Solar particle events	up to ~ 0.1 Sv/h	not applicable
Solar UV radiation	λ ≥ 200 nm	λ ≥ 290 nm
Length of day	24h37'22.7"	23h56'4.1"
Gravity	0.377 x g	1 x g
Atmosphere	95.3 % CO ₂ 2.7 % N ₂ 1.6 % Ar 0.1 % O ₂	78.1 % N ₂ 20.9 % O ₂ 0.03 % CO ₂
Pressure	~ 6 hPa	1000 hPa
Diurnal temperature range	-90°C to +20 °C (Viking data)	10°C to 20°C (Standard atmosphere)
Others	Martian dust storms	the second second

Present Mars, surface hostile for life

Liquid water restricted to greater depths

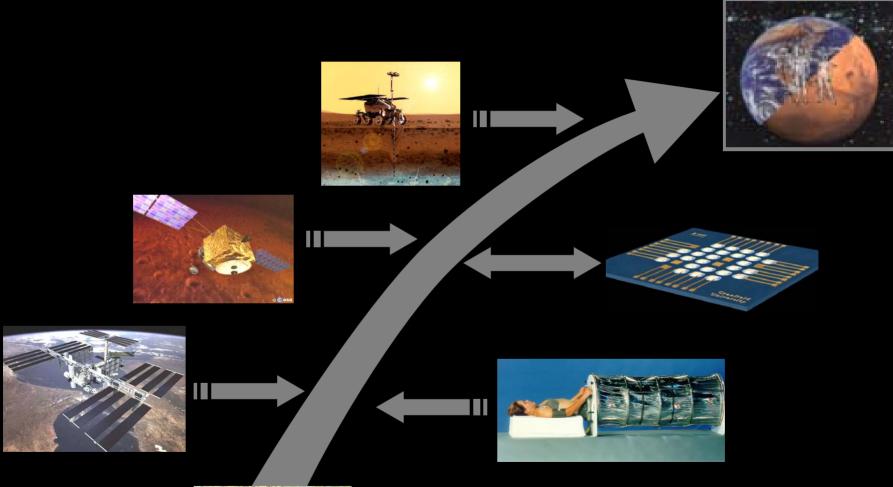
Possible putative Martian biosphere either extinct or retracted into very rare oases:


- sub-surface microbial communities
- permafrost
- putative subsurface aquatic lenses
 - anabiotes as survivors

Mars from Pathfinder

Near future: Human visits to Mars?

Major critical items for a human mission to Mars


- Radiation health: During interplanetary transfer and on Mars, solar particle events
- Gravity effects: Very long 0-gravity levels during interplanetary transfers; very high gravity levels at Mars arrival; reduced gravity (0.377 g) on Mars
- Low pressure: 6 hPa, mainly CO₂
- Dust storms: Toxicity of dust ?
- Earth out of view
- Distance from Earth: No mission abort and fast return capability; delays of up to 45 minutes in bi-directional communication

Radiation doses received during a Mars mission (Sv)

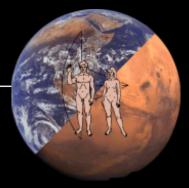
GCR:	Solar activity	Mission	Shielding	
			1 g/cm²	10 g/cm²
	Minimum	1000 d	0.993 🔀	0.852 🔀
		500 d	0.828 🗙	0.687 🔀
	Maximum	1000 d	0.402	0.364
		500 d	0.317	0.280
"Worst cas	se" SPE:		Shielding	
"Worst cas	se" SPE:	0.3 g/cm²	Shielding 1 g/cm²	10 g/cm²
"Worst cas	se" SPE: Interplanetary	0.3 g/cm² 4.21 ∕∕		10 g/cm² 1.26 ☆
"Worst cas			1 g/cm²	
	Interplanetary	4.21 ★	1 g/cm² 3.52 ∖∕	1.26 📩

Research required in human health issues: HUMEX Roadmap

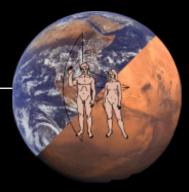
Horneck et al. Humex study, ESA SP-1264, 2003

Far future: Motivations for migrating to Mars

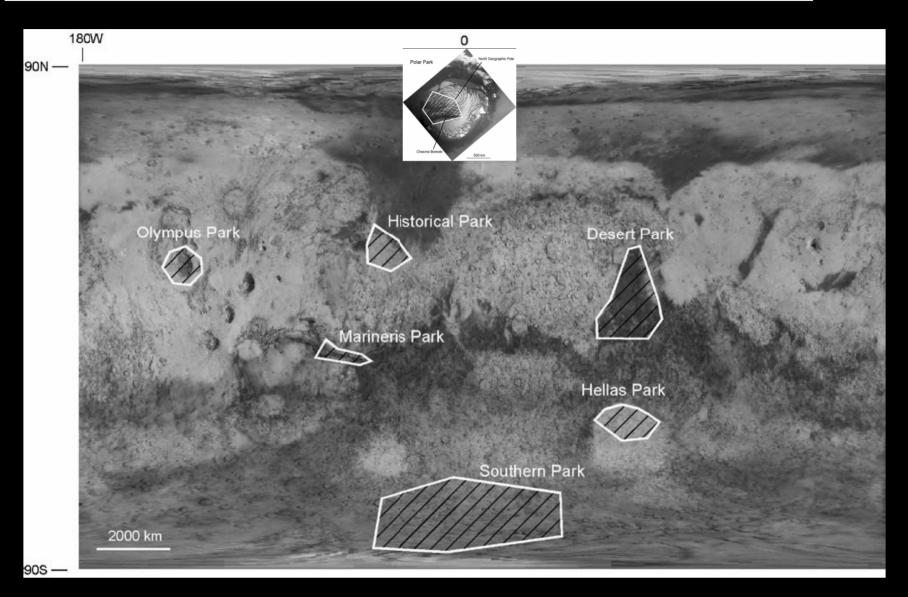
Catastrophes



Natural disasters


Anthropogenic disasters

Far future: Motivations for migrating to Mars


- Escaping deprivation or disasters
- Curiosity and spirit of research
- Urge to explore the unknown
- Globalization in business, science and lifestyle
- Extension of power

Responsibility when migrating to Mars

- To protect planet Mars
 - a putative Martian biosphere (COSPAR Planetary Protection guidelines)
 - Mars' intrinsic value (geological and natural beauty)
 - Mars' historical sites (previous landing sites)
 - for future generations (research, leisure or exploitation ?)
- To protect the Earth (upon return)

Responsibility when migrating the Earth: Planetary Parks

Cockell and Horneck, 2004