Ice-rafting from the British–Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region

Abstract

The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD) layers attest to the calving of sediment-loaded icebergs from circum-Atlantic ice sheets. So far, Early-Pleistocene IRD deposition has been attributed to the presence of high-latitudinal ice sheets, whereas the existence and extent of ice accumulation in more temperate, mid-latitudinal regions remains enigmatic.

Here we present results from the multiproxy provenance analysis of a unique, Pleistocene-Holocene IRD sequence from the Irish NE Atlantic continental margin. There, the Challenger coral carbonate mound (IODP Expedition 307 site U1317) preserved an Early-Pleistocene record of 16 distinctive IRD events, deposited between ca 2.6 and 1.7 Ma. Strong and complex IRD signals are also identified during the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma) and throughout the Middle-Late Pleistocene interval. Radiogenic isotope source-fingerprinting, in combination with coarse lithic component analysis, indicates a dominant sediment source in the nearby British–Irish Isles, even for the oldest, Early-Pleistocene IRD deposits. Hence, our findings demonstrate, for the first time, repeated and substantial (i.e. marine-terminating) ice accumulation on the British–Irish Isles since the beginning of the Pleistocene. Contemporaneous expansion of both high- and mid-latitude ice sheets in the North Atlantic region is therefore implied at the onset of the Pleistocene. Moreover, it suggests the recurrent establishment of (climatically) favourable conditions for ice sheet inception, growth and instability in mid-latitudinal regions, even in the earliest stages of Northern Hemisphere glacial expansion and in an obliquity-driven climate system.

© 2010 Elsevier Ltd. All rights reserved.
build-up of considerable ice volumes also strongly affects oceanic circulation and sedimentation (e.g. Rahmstorf, 2002; Raymo et al., 1992; Ruddiman et al., 1989), records of continental ice-sheet expansion are, however, widely preserved in the marine environment. In the North Atlantic Ocean, ice-rafted deposits demonstrate the first widespread discharge and, in some cases, sediment-loaded icebergs into the ocean around 2.7–2.4 Ma (e.g. Flesche Kleiven et al., 2002; Jansen et al., 2000; Shackleton et al., 1984) (Fig. 1). At this time, all major ice sheets located at high northern latitudes (on Canada, Greenland, Iceland and Scandinavia) are assumed to have developed marine margins, generating icebergs which deposited ice-rafted detritus (IRD) onto the North Atlantic seabed (Ehlers and Gibbard, 2007; Flesche Kleiven et al., 2002; Sejrup et al., 2005) (Fig. 1). Provenance data linking this Early-Pleistocene IRD to the glaciation of specific continental areas is, however, largely absent (Fig. 1). In addition, the role of any significant Early-Pleistocene ice build-up in more temperate mid-latitude regions, such as the British–Irish Isles (BI), especially to an extent that allows ice-rafting, is still poorly understood (Ehlers and Gibbard, 2007; Lee et al., 2010; Raymo and Huybers, 2008; Sejrup et al., 2005) (Fig. 1).
In this study, a unique record of Early-Pleistocene ice-rafting is presented from the Irish NE Atlantic continental margin (east Porcupine Seabight; Fig. 2). There, the IODP Expedition 307 drilling of the Challenger coral carbonate mound (Hole U1317E; Ferdelman et al., 2006) recovered a ca 155 m long coral-bearing sequence of alternating current-influenced and ice-rafterd deposits (Fig. 3) (Thierens et al., 2010). As outlined in Thierens et al. (2010), sediment magnetostatigraphy (Foubert and Henriet, 2009) and planktonic foraminifer radiocarbon dating (Thierens et al., 2010) indicate a Pleistocene to Holocene (2.6 Ma – 1450 cal years BP) age for the Challenger Mound matrix sediments (Fig. 3). The Lophelia pertusa \(^{87}\)Sr/\(^{86}\)Sr chronology by Kano et al. (2007) presents a similar age model for the Challenger Mound coral framework, however revealing a significant, ca 0.7 Ma long, hiatus in the record around 23 m below seafloor (mbsf; Fig. 3). This ‘mound crisis’ unconformity coincides with a distinct sedimentological shift (Thierens et al., 2010) and hence, demarcates an upper and lower mound record (units M2 and M1, respectively; Fig. 3). A ca 132 m long record of fast-accumulated Early-Pleistocene sediments, containing multiple IRD layers (see Section 3), is thereby preserved in the lower mound (unit M1: 2.6–1.7 Ma; Fig. 3) (Thierens et al., 2010). Considering the generally erosive/non-depositional Early-Pleistocene environment along the NW European continental margin (e.g. Laberg et al., 2005), the fast and semi-continuous build-up of the unit M1 sequence (linked to the sediment-stabilising capabilities of a dense cold-water coral framework; Thierens et al., 2010) makes it regionally unique. In addition, due to its location close to the BI and the general N Atlantic drift path of glacial icebergs (as modelled for the Late Pleistocene; Fig. 2), the Challenger Mound (U1317E) is ideally positioned to register any ice-rafting activity from the local British—Irish Ice Sheet as well as from more far-field circum-Atlantic ice sheets (cf. Grousset et al., 2000, 2001; Hibbert et al., 2010; Knutz et al., 2001, 2007; Peck et al., 2007; Scourse et al., 2009). Therefore, the U1317E IRD record presents a unique opportunity to examine North Atlantic ice-rafting and, hence, circum-Atlantic ice-sheet development since the earliest Pleistocene and place these findings in the general context of the long-term pattern of Northern Hemisphere glaciation.

In order to relate U1317E deposits to the glacial history of distinct sediment source terrains, a multiproxy provenance study is performed on selected IRD and background (current-influenced) sediment layers, combining sediment neodymium (Nd)—strontium (Sr) isotope source-fingerprinting and coarse (>150 \(\mu\)m) lithic species data. The results of this provenance identification are presented here and their implications for the extent of (mid-latitude) Early-Pleistocene glaciations around the North Atlantic Ocean are discussed.

2. Materials and methods

Neodymium (Nd) and strontium (Sr) isotope ratio measurements were carried out on the total carbonate-free (hereafter termed “siliciclastic”) sediment fraction of 16 IODP Exp. 307 hole U1317E samples (drilled at 51°22.8’N, 11°43.1’W; 792.2 m water depth). Material from both ice-rafterd and background-sediment layers, as identified by Thierens et al. (2010) (see also Fig. 3, Table 1), was isotopically analysed to constrain the sediment provenance throughout the depositional sequence (cf. Grousset et al., 2001; Peck et al., 2007; Revel et al., 1996b). The Sr (\(^{87}\)Sr/\(^{86}\)Sr) and Nd (\(^{144}\)Nd/\(^{144}\)Nd) isotope composition of lithic particles mainly reflects the age and lithology of the parental rock, with significant isotopic differences between young volcanic and older crustal source material (Faure, 1986; Goldstein and Jacobsen, 1988). Due to the extremely long half-lives of the radioactive parents in the Sr and Nd isotope systems, \(^{87}\)Sr/\(^{86}\)Sr and \(^{144}\)Nd/\(^{144}\)Nd ratios are known as conservative and independent provenance indicators. Chemical separation of Nd and Sr elements from the siliciclastic fraction was conducted following the procedures described in detail by Colin et al. (1999). Multiple-grain \(^{87}\)Sr/\(^{86}\)Sr and \(^{144}\)Nd/\(^{144}\)Nd ratios were measured at the Department of Analytical Chemistry (Ghent University) using a multi-collector inductively coupled plasma – mass spectrometer (MC-ICP-MS, Thermo Scientific Neptune).
Corrections for instrumental mass discrimination (external correction through sample-standard bracketing) were applied, using the NIST SRM 987 (SrCO₃) and JNdi-1 (Nd₂O₃; Tanaka et al., 2000) standards for ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd, respectively. On average, isotope ratios are measured with a standard deviation (2σ) of 0.000051 (⁸⁷Sr/⁸⁶Sr; RSD: 0.0035%) and 0.000074 (¹⁴³Nd/¹⁴⁴Nd; RSD: 0.0072%). For convenience, Nd isotope ratio results are reported as εNd(0) = [(¹⁴³Nd/¹⁴⁴Nd meas) / (¹⁴³Nd/¹⁴⁴Nd CHUR)] - 1] × 10⁴, using the Jacobsen and Wasserburg (1980) ¹⁴⁴Nd/¹⁴⁴Nd CHUR value of 0.512638.

To independently ground-truth the Nd–Sr isotope data, coarse lithic grains (>150 μm; bulk sediment) from the isotopically-analysed layers were lithologically classified using a Nikon Type 102 C-PS binocular and Olympus BX51TF light microscope. The identification of (pale) dolomitic carbonate, dark-grey carbonate, haematite-coated grains and volcanic debris is diagnostic in provenance studies.
along the NE Atlantic continental margin (Knutz et al., 2001, 2007; Peck et al., 2007). The presence of these lithic species, quartz/feldspars and rock fragments is therefore systematically recorded per sample (minimum 300 grains analysed per sample) for all samples in this study (see Table 2).

3. Early-Pleistocene ice-rafted detritus

In the North Atlantic, sediments enriched in coarse (>150 µm) lithic particles are generally regarded as ice-rafted deposits (e.g. Bond and Lotti, 1995; Hemming, 2004 and references therein). However, in continental margin settings this definition is challenged as processes other than ice-rafting, such as bottom-current reworking and turbidity currents, can also concentrate coarser-grained material (see e.g. Laberg et al., 2005; Ó Cofaigh et al., 2002). Consequently, a rigorous identification and ground-truthing procedure was designed to screen the U1317E sediments for ice-rafted detritus (IRD), as published in Thierens et al. (2010). Siliciclastic particle-size end-member modelling (sensu Weltje, 1997) allowed the identification of an IRD particle-size spectrum (IRD_MS, see inset Fig. 3), defining IRD layers as deposits with a poorly sorted, often bimodal, siliciclastic particle-size signature, distinctly enriched in the coarser size-fractions (IRDMS-dominated samples); see Figs. 3 and 4). Microtextural analysis of sand-sized quartz grain-surfaces validated ice as the dominant mode of sediment transport, thereby ground-truthing the IRDMS-dominated sediments as true glacially sourced deposits (Figs. 3 and 4). No evidence for mass sediment transport (e.g. turbidities) or high-energy contour-current deposition is found in the IRDMS-dominated layers, whereas current winnowing is not thought to overprint the IRD signal (Thierens et al., 2010). The presence of fresh, glacially abraded grains implies deposition from icebergs rather than sea ice, since sediment entrainment into sea ice does not commonly inflict intense mechanical grain-abrasion (e.g. Dethleff and Kuhlmann, 2009; Mahaney, 2002; St. John, 2008). Moreover, the poorly sorted and coarse nature of the U1317E ice-rafted deposits, often associated with mm- to cm-sized clasts (dropstones; Figs. 3 and 4), does not comply with the preferential incorporation of silt-sized particles into sea ice (Dethleff and Kuhlmann, 2009). Non-size-selective transport via land-derived icebergs has therefore been proposed as the main depositional mechanism for the U1317E IRD layers (Thierens et al., 2010).

Through this procedure, a total of 27 IRD intervals have been identified throughout the U1317E sequence (Fig. 3) (Thierens et al., 2010). Considering the condensed and fragmented nature of the ca 23 m long upper record (unit M2: 1 Ma — 1450 cal years BP) (Fig. 3) (Thierens et al., 2010; Titschack et al., 2009), IRD layers in this part of the sequence may be complex composites of multiple

Table 2

<table>
<thead>
<tr>
<th>n°</th>
<th>Sample code</th>
<th>Depth (mbsf)</th>
<th>(Palo) dolomitic carbonate</th>
<th>Dark-grey carbonate</th>
<th>Haematite-coated grains</th>
<th>Volcanic debris</th>
<th>Quartz–feldspars</th>
<th>Rock Fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>307-U1317E -1H-1-23</td>
<td>0.23</td>
<td>R</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>307-U1317E -2H-1-23</td>
<td>6.92</td>
<td>R</td>
<td>R</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>307-U1317E -2H-2-33</td>
<td>8.44</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>307-U1317E -2H-6-113</td>
<td>14.92</td>
<td>D</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>307-U1317E -3H-5-63</td>
<td>22.65</td>
<td>P</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>307-U1317E -3H-6-23</td>
<td>23.72</td>
<td>R</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>307-U1317E -4H-1-123</td>
<td>26.88</td>
<td>R</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>307-U1317E -4H-5-13</td>
<td>31.58</td>
<td>R</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>307-U1317E -6H-1-133</td>
<td>46.03</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>307-U1317E -7H-7-23</td>
<td>63.26</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>307-U1317E -8H-4-53</td>
<td>68.73</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>307-U1317E -9H-3-83</td>
<td>76.87</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>307-U1317E -10H-5-33</td>
<td>107.74</td>
<td>IRD</td>
<td>0.721426</td>
<td>3.2</td>
<td>0.512329</td>
<td>10.0</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>307-U1317E -12H-5-33</td>
<td>14.92</td>
<td>IRD</td>
<td>0.728975</td>
<td>0.7</td>
<td>0.512147</td>
<td>13.8</td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>307-U1317E -15H-4-93</td>
<td>14.92</td>
<td>IRD</td>
<td>0.721426</td>
<td>3.2</td>
<td>0.512329</td>
<td>10.0</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>307-U1317E -17H-4-123</td>
<td>154.93</td>
<td>BS</td>
<td>Current deposit (coarse)</td>
<td>0.723179</td>
<td>2.8</td>
<td>0.510270</td>
<td>13.4</td>
</tr>
</tbody>
</table>
depositional and/or erosional events and will therefore not be discussed in detail. In contrast, the fast-accumulated (ca. 14 cm ka⁻¹; Foubert and Henriot, 2009) and semi-continuous M1 record reveals a series of 16 IRD horizons; the oldest deposited around 2.6 Ma (Figs. 3 and 4). Throughout unit M1, IRD deposits are mostly found as distinct and isolated horizons, although clusters of IRD layers are observed as well (e.g. between 144.8 and 143.2 mbsf and between 27.6 and 26.8 mbsf; Fig. 3). Moreover, unit M1 IRD layers are typically associated with a raised siliciclastic versus biogenic-carbonate content and appear predominantly in glacial δ¹⁸O intervals (as defined by Sakai et al. (2009)) (Fig. 3).

4. Sediment provenance

To fully comprehend the impact of Early-Pleistocene iceberg-rafting, recorded as far southeast as the eastern Porcupine Seabight continental margin, it is crucial to identify the continental source area(s) of the calving icebergs. Multi-proxy provenance analyses, including the Nd–Sr isotopic fingerprinting of lithic particles, have proven successful in relating N Atlantic (ice-rafted) deposits to distinct circum-Atlantic source terrains (e.g. Farmer et al., 2003; Grousset et al., 2000; Hemming et al., 1998; Peck et al., 2007; Revel et al., 1996b). On an εNd(0) – ⁸⁷Sr/⁸⁶Sr plot, these potential source regions (Fig. 2) delineate three isotope fields (I to III on Fig. 5A), characterised predominantly by significantly differing εNd(0) and ⁸⁷Sr/⁸⁶Sr values (Fig. 5A).

Nd–Sr isotope compositions of U1317E sediments range from 0.720 to 0.730 (⁸⁷Sr/⁸⁶Sr) and from −11.1 to −4.6 (εNd(0)), except for two samples with distinctly lower ⁸⁷Sr/⁸⁶Sr (down to 0.706) and higher εNd(0) (up to 0.3) values (Fig. 5B; Table 1). Apart from the latter, all measurements (unit M1 and M2) clearly cluster together within (crustal) isotope field II (Fig. 5B). In this cluster, IRD isotope
ratios cannot be differentiated from background-sediment isotope signatures, implying a common crustal source area for both IRD and background-sediment siliclastics. The anomalous isotope signatures indicate the influence of a volcanic source (field I) besides the more dominant, crustal one (field II). These volcanic isotope compositions are considered to reflect a genuine provenance signal, as the shift is recorded in both Nd and Sr isotope systems, while grain-size effects (e.g. Revel et al., 1996b) are not thought to strongly overprint the Sr provenance signal, despite grain-size variability in the U1317E dataset (Table 1).

As shown on Fig. 5B, none of the analysed sediments (IRD and background-sediment) are isotopically compatible with an origin in the Canadian Province (Hudson Strait ice-rafting; Bond et al., 1992), are not observed in the coarse lithic fraction. As a consequence, U1317E IRD horizons should not be classified as Heinrich layers (sensu strictu; see review by Hemming (2004)), linked to glaciological instabilities of the Laurentide Ice Sheet (LIS) (Hemming, 2004; MacAyeal, 1993). Although the Gulf of St Lawrence (GSL) dominated by the south-eastern North Atlantic (Fig. 2), is isotopically similar to the NW European source terrains (field II; Fig. 5), we do not consider it to be an important sediment supplier. Haematite-rich lithologies are not unique to the GSL area, although GSL-sourced IRD is characteristically enriched in haematite-coated particles (Bond and Lotti, 1995). U1317E coarse lithic assemblages, however, do not contain diagnostic amounts of this lithic type (mostly < 1% of the coarse lithic fraction, if present; Table 2). In all samples (IRD and background-sediment), quartz and feldspar grains make up the majority of the coarse fraction (>80% of fraction), whereas rock fragments (mainly of metamorphic and sedimentary origin) appear ubiquitous, though in lesser quantities (<30% of fraction; Table 2). Besides (mainly) schist, quartzite and shale clasts, small amounts of dark-grey carbonates have been identified in several IRD layers (Table 2). In this part of the NE Atlantic, the combination of these lithologies has been associated particularly with a sediment provenance from the nearby British–Irish Isles (BI), rather than with more distal source regions, such as the GSL area (Knutz et al., 2001, 2007; Peck et al., 2007).

Strengthening this point, the U1317E Nd–Sr isotope ratio distribution clearly supports the BI as crustal source. As shown in Fig. 5B, U1317E isotope values spread out along an Iceland/East Greenland (volcanic end-member, field I) – British–Irish (crustal end-member, field II) mixing hyperbola, rather than fitting one between field I and the GSL or Scandinavia (field II). Although discriminating Scandinavian from British–Irish sourced particles based on Nd–Sr isotope signals requires caution (see Fig. 5 and references therein), our data overall favour a dominant British–Irish input. The general provenance similarity between IRD and background-sediment layers is most simply explained by a common sediment source in the nearby BI, although an additional contribution from northern source terrains cannot be entirely excluded. The hyperbolic isotope distribution, furthermore, implies a two-end-member provenance system for the entire U1317E sequence (unit M1 and M2), with all samples (both IRD and background-sediment) containing specific mixtures of the same end-member sources. Except for the most volcanogenic samples, all assemblages are heavily dominated by input from the British–Irish crustal terrains (>80% source contribution). Potentially, the Tertiary volcanic provinces of the BI could also be contributing particles to the sedimentary system (Hibbert et al., 2010; Knutz et al., 2001), besides the larger Icelandic and East Greenland provinces. Lithic tracers, such as basalt or volcanic glass, could help to differentiate between volcanic sources (cf. Hibbert et al., 2010; Knutz et al., 2001, 2007; Peck et al., 2007). However, no volcanic particles can be discerned in the coarse U1317E lithic assemblage (Table 2), and the most volcanogenic samples seem to concentrate this signal mainly in their finer fraction (higher Nd(0) values correlate distinctly with higher abundance of clay-sized particles (Table 1)). The input of (mainly) fine-grained volcanic material could indicate the presence of an additional input mechanism for the finer size-fractions in these intervals, e.g. by (distally-sourced) bottom currents (cf. Revel et al. (1996a) for the Icelandic Basin) or meltwater plumes. Additional analyses would be needed to further ground-truth the volcanic end-member of this provenance system.

Overall, the results presented here are most compatible with a dominant sediment input from the adjacent BI, both for background-sediment and ice-rafted deposits.

5. Implications

5.1. An early, ice-rafting British–Irish ice sheet

Multiple Middle-Late Pleistocene (MIS 6 and onwards) IRD records along the British–Irish Atlantic margin have been linked to ice surges from the proximal British–Irish Ice Sheet (BIIS) (Fig. 1; see review by Scourse et al. (2009)). NW European continental shelf sequences even suggest regular BIIS expansion onto the NE Atlantic margin from MIS 12 (ca 0.45 Ma) onwards (Fig. 1; see review by Sejrup et al. (2005)). The IRD record presented in this study, however, implies the existence of an ice sheet (i.e. ice mass of unspecified dimensions) located on the BI, sufficiently extended to release sediment-loaded icebergs onto the NE Atlantic margin, repeatedly over the past 2.6 Ma. BIIS IRD events can be recognised during the Early Pleistocene (U1317E unit M1), the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma; e.g. Clark et al., 2006; Mudelsee and Schultz, 1997) and the Middle-Late Pleistocene (U1317E unit M2) (Figs 3 and 5B). As Middle-Late Pleistocene to recent deposits from the Challenger Mound bear witness of an increased exposure to vigorous bottom currents, a post-depositional current influence on ice-rafter layers cannot be excluded in this part of the sequence (Pirlet et al., 2010; Thierens et al., 2010). The ‘Holocene’ IRD layer(s) at the top of the record are therefore considered to represent reworked glacial material (lag sediment; Table 1), rather than a Holocene BIIS ice-rafting pulse. Therefore, the U1317E sequence, and the unit M1 2.6 to 1.7 Ma ice-rafter deposits specifically, extend the existing BIIS IRD and shelf-glaciation record (see Fig. 1) into the Early Pleistocene, where a series of ice-raftered layers is found with isotope signatures analogous to their Late-Pleistocene equivalents and within the range of modern Irish Shelf signatures (Fig. 5C).

Delimiting the position and dimensions of an early BIIS is not straightforward, as any terrestrial evidence is unlikely to have survived subsequent glacial erosion phases. The terrace sequence of the Ancestral Thames, southern Britain, contains the strongest onland record thus far for Early-Pleistocene BI glaciations, suggesting restricted ice-cap development in highland areas of North Wales from ca 1.87 Ma (MIS 68) onwards (Clark et al., 2004; Lee et al., 2010; Whiteman and Rose, 1992) (Fig. 1). The marine environment facilitates the preservation of records of successive continental glaciations (if they reach sea-level), but the generally erosive, Early-Pleistocene setting along the NE Atlantic margin (e.g. Laberg et al., 2005), regionally reduces their reconstructive potential for this time interval. To our knowledge, the north British–Irish continental margin off the Hebrides (Fig. 2 location 5), contains the only other report of local, Early-Pleistocene ice-raftering into the North Atlantic Ocean. There, clasts from a condensed Early-Pleistocene sequence (ca 10 m sequence spanning the interval from 2.48
Fig. 5. Provenance isotopic fingerprinting ($\varepsilon_{Nd}(0)$ versus $^{87}\text{Sr}/^{86}\text{Sr}$) of 16 U1317E horizons. Note the differences in scale of the vertical axis between panels. (A.) Potential source area isotope compositions delineate three fields (boxes I to III), with (I) the young, Tertiary-recent, volcanic rocks from Iceland (including the Faeroe Islands) and E Greenland; (II) the Palaeozoic, radiogenic formations of the NW European continent (British-Irish Isles and Scandinavia – mostly Norway) and the Gulf of St Lawrence; (III) rocks of

to 0.75 Ma) are interpreted as indication of a (localised) ice centre on the adjacent Scottish mainland (Stoker et al., 1994). Considering the position of the U1317E site southwest of Ireland, on the eastern flank of the enclosed Porcupine Seabight (Fig. 2), it seems unlikely that the ice streams supplying the Hebrides slope were also affecting the eastern Porcupine Seabight. If drifting southwards, these icebergs, like other icebergs derived from more northerly sources, most likely ground on the banks to the north of our study site (cf. Peck et al., 2007). Taking further into account the presence of ice-rafted lithics typical for the Irish Carboniferous (e.g. shale and dark-grey carbonates), extensively covering the Irish midland and south-western areas, the restriction of significant ice build-up solely to Scotland during the Early-Pleistocene now seems debatable. Although tentative without additional analyses, the early existence of multiple ice centres of considerable size on the BI (on Scotland, Ireland and potentially Wales) or even one extended ice mass (covering, at least, both Scotland and Carboniferous parts of Ireland) is proposed here.

5.2. Controls on British–Irish ice-sheet development

Early-Pleistocene ice-sheet development in the high-latitude Northern Hemisphere has been primarily attributed to obliquity-driven variations in (integrated) summer insolation (e.g. Huybers and Tziperman, 2008; Lisiecki and Raymo, 2007). Global cooling at the onset of the Pleistocene (e.g. Sosdian and Rosenthal, 2009) resulted in a large-scale increase in continental ice volume, initiating the first major pulse of ice-rafting into the North Atlantic Ocean around ca 2.7–2.4 Ma (cf. benthic oxygen isotope ‘ice volume threshold’ by Bailey et al. (2010) and Flesche Kleiven et al. (2002)). Remarkably, a first episode of BIIS ice-rafting can be inferred from a cluster of ca 2.58 to 2.44 Ma old IRD layers in the U1317E record (Figs. 3 and 5C), suggesting not only higher-latitude Northern Hemisphere ice sheets responded to the climate deterioration of the earliest Pleistocene. Moreover, additional ice-rafting events in U1317E (recorded as isolated single or double IRD peaks in predominantly glacial intervals between ca 2.4 and 1.7 Ma; Fig. 3), imply the recurrent establishment of (climatic) threshold conditions for ice sheet inception, growth and instability (ice-rafting) of the mid-latitude BIIS throughout the Early Pleistocene.

The dynamic behaviour and apparent climatic sensitivity of the BIIS most likely relate to its extreme maritime position along the margin of the NE Atlantic, which allowed ocean properties (e.g. oceanic circulation) to directly influence on-land ice accumulation. Latitudinal migrations of the polar front (and associated current/ wind systems) especially affected the supply of heat and moisture to the BI. A polar front position at the latitude of the BI (providing variable temperatures and high amounts of precipitation) appeared critical for the (glacial) growth of the Middle-Late Pleistocene BIIS (Scourse et al., 2009), which extended significantly into the lowland and shelf areas of Ireland and Britain (e.g. Ballantyne, 2010; Bowen et al., 2002; Greenwood and Clark, 2009; Lee et al., 2004; Scourse et al., 2009; Sejrup et al., 2005). Similarly, Early-Pleistocene Welsh and/or Irish glaciations would have benefitted from the (climatically steered) meridional migration of the polar front over the BI, allowing (restricted) ice build-up at lower latitude and elevation during glacial periods (cf. Lee et al., 2010). Therefore, significant southward excursions of the polar front during colder orbital stages may have steered BIIS formation throughout the Pleistocene, from as early as ca 2.6 Ma. The relatively small size of an ice sheet on the BI (compared to larger-scale ice sheets, such as the LIS) promotes a rapid response to (external) forcing and hence, contributes to a dynamically fluctuating BIIS (Fig. 3). To which degree early BIIS formation and destabilisation was affected by internal, glaciological processes (cf. Bailey et al., 2010; Clark and Pollard, 1998; Hubbard et al., 2009) besides external drivers and their feedbacks (e.g. sea-level change), has to be further constrained. The highly dynamic nature of the last BIIS, displaying up to centennial-scale fluctuations during the 100ka-paced climate of the Middle-Late Pleistocene, has been extensively documented (e.g. Greenwood and Clark, 2009; Hibbert et al., 2010; Hubbard et al., 2009; Knutz et al., 2007; Peck et al., 2007; Scourse et al., 2009). The development of a considerable and dynamic, ice-rafting ice mass on the BI, even before the transition to the eccentricity-dominated climate system of the Middle-Late Pleistocene, however remarkable, is demonstrated by the frequency and complexity of the U1317E IRD signal.

5.3. Early-Pleistocene glaciations

The intensified glaciation of the high-latitude regions surrounding the North Atlantic Ocean (e.g. Canada, Greenland, Iceland and Scandinavia) from the onset of the Pleistocene onwards, has been well established in both marine as well as terrestrial records (see Fig. 1 and references therein). Moreover, along the western North Atlantic border, Early Pleistocene (2.4–0.8 Ma) till deposits in Iowa and Missouri (ca 40°N) are interpreted as evidence for an early LIS, extended beyond its Last Glacial Maximum southern limits (Balco et al., 2005; Roy et al., 2004). Adding to this, the data presented in this study imply significant ice build-up along the mid-latitude margin of the eastern North Atlantic, as far south as 57°–52°N, throughout the Early Pleistocene (2.6–1.7 Ma) (Figs. 3 and 5). It therefore seems that obliquity-driven episodes of climate deterioration were able to force significant circum-Atlantic ice accumulation, and associated ice-rafting, from as early as ca 2.6 Ma, in both the high- and mid-latitude Northern Hemisphere. Mid-latitude glaciations, and a dynamic, ice-rafting BIIS in particular appear as persistent features of the Pleistocene climate system, which should be accounted for in reconstructions and modelling studies addressing the mechanisms that steer Northern Hemisphere ice-sheet development and its impact on Quaternary climate variability.

6. Conclusions

The findings presented in this study provide, for the first time, strong evidence for the long-term existence of an ice-rafting British–Irish ice sheet. Multiproxy provenance analysis of a series of Early to Middle-Late Pleistocene ice-rafted deposits from the Challenger coral carbonate mound record (Irish NE Atlantic
continental margin), suggests a dominant sediment input from the adjacent British–Irish Isles, even for the oldest, ca 2.6–1.7 Ma, IRD layers. The Challenger Mound IRD record, therefore, indicates the recurrent development of a considerable, marine-terminating (i.e. ice-rafting) ice sheet on the British–Irish Isles throughout the Pleistocene, from as early as ca 2.6 Ma. Even in the earliest stages of Northern Hemisphere glacial intensification, climate conditions appeared favourable for significant and repeated ice accumulation on the mid-latitude-British–Irish Isles. Our findings suggest that circum-Atlantic glaciations of not only high northern latitudes, but also mid-latitude regions may have been persistent features of the obliquity-forced as well as the eccentricity-driven Pleistocene climate systems.

Acknowledgments

The authors thank the IODP Exp. 307 shipboard crew and scientists for providing this study's scientific framework and core material. V. Peck, F. Grousset and J. Menuge are thanked for help with reference-data collection, E. Dewaele for assistance with climate systems. Two anonymous reviewers are kindly thanked for their constructive comments. M.T. acknowledges support from the Marine Institute of Ireland and the Geological Survey of Ireland. H.P. and F.V. are funded by FWO-Vlaanderen. J.R.L. publishes with the permission of the Executive Director of the British Geological Survey (NERC). This research was conducted within the framework of the ESP EUROCORES CARBONATE, ESP EURODIVERSITY MICROSYSTEMS and HERMES/HERMIONE projects and with the support of the ESP EUROCORES Short-Term Visit programme.

References

Ireland. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations

