Computational Foundations of Social Choice

LogICCC Launch Conference Prague, October 2008

Felix Brandt & Jörg Rothe

Computational Social Choice

• What is computational social choice?

A new interdisciplinary field of study at the interface of social choice theory and computer science

• What is social choice theory?

Social choice theory studies the aggregation of individual preferences

• Key concepts

- Preference relation: typically transitive and complete
 - Set of preference relations over given set of alternatives $A: \mathcal{R}(A)$
- Social welfare function $f : \mathcal{R}(A)^n \to \mathcal{R}(A)$
- Social choice function $f : \mathcal{R}(A)^n \to A$
- Social choice correspondence $f : \mathcal{R}(A)^n \to 2^A$

Computational Social Choice

- Bidirectional transfer
- Computer science Social choice
 - Apply complexity theory, algorithms, learning theory to problems of social choice
- Social choice
 Computer science
 - Import concepts from social choice to solve questions arising in AI (e.g., in societies of autonomous software agents), webpage ranking, or collaborative filtering

	Game Theory	Social Choice Theory
precursors	Cournot (1801-1877) Borel (1871-1956)	Condorcet (1743-1794) Borda (1733-1799)
early positive results	2-Player zero-sum games: security level (Minimax Theorem, v. Neumann, 1928)	Voting among <mark>2 alternatives:</mark> majority rule (May's Theorem, 1952)
seminal monograph	Theory of Games and Economic Behavior (v. Neumann & Morgenstern, 1944)	Social Choice and Individual Values (Arrow, 1951)
	Equivocality when more than 2 players/alternatives are involved Various "solution concepts"	

recent trend

"Algorithmic Game Theory" "Computational Social Choice"

Project Participants

Principal Investigators:

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Associated Partners:

AI ECON	Vincent Conitzer (Duke University)	
TCS	Edith Elkind (University of Southampton)	
TCS LOG	Edith Hemaspaandra (Rochester Institute of Technology	
TCS	Lane Hemaspaandra (University of Rochester)	
AI LOG	Jerome Lang (University of Toulouse)	
ECON	Jean-Francois Laslier (Ecole Polytechnique Paris)	
AI	Nicolas Maudet (Universite Paris-Dauphine)	

5

Aims & Objectives

- Social choice and theoretical computer science
 - To deepen our understanding of algorithmic and complexity-theoretic issues in social choice
- Social choice and logic
 - To develop logic-based languages for modeling and reasoning about social choice problems and preference structures
- Social choice and artificial intelligence
 - To apply established techniques from AI, such as preference elicitation and learning, to problems of social choice

The Community

• Where do we meet?

- International Workshop on Computational Social Choice (COMSOC) (coordinated by Ulle Endriss and Jerome Lang)
 - Ist COMSOC, Amsterdam, 6-8 December 2006
 - 2nd COMSOC, Liverpool, 3-5 September 2008
 - 3rd COMSOC, Sept.-Dec. 2010
- Dagstuhl Seminars
 - Computational Issues in Social Choice, 21-26 October 2007
 - Computational Foundations of Social Choice, 7-12 March 2010
- Where do we publish?
 - Conference proceedings: AAAI, IJCAI, TARK, STOC, FOCS, AAIM, ...
 - Journals: AIJ, JAIR, SCW, MSS, JACM, TCS, ...
 - forthcoming MLQ special issue "Logic and Complexity in Computational Social Choice" (edited by Paul Goldberg and Jörg Rothe)

Main Topics

- Computational aspects of evaluating voting rules
 - Theorem (Bartholdi et al., 1989): There is no social welfare function that is neutral, consistent, Condorcet, and efficiently computable (unless P=NP).
 - Other issues: efficient algorithms, approximation, exact computational complexity, etc.
- Computational hardness of manipulation
 - Theorem (Bartholdi et al., 1989): There is a social welfare function that is easy to compute, but not efficiently manipulable (unless P=NP).
 - Moreover, this function is neutral, Condorcet, Pareto-optimal, etc.
 - Other issues: few alternatives, weighted voting, typical-case, approximation, heuristics, other types of manipulation (agenda setting, bribing, using multiple identities, ...), etc.

Main Topics (cont.)

• Computational aspects of fair division

- How to fairly divide one or more goods among a set of agents
 - e.g., cutting a cake
- Algorithmic complexity of division procedures
- Indivisible goods (resource allocation)
- Social choice in combinatorial domains
 - Combinatorial structure gives rise to exponential growth
 - multiple referenda, committee election
 - Representation of preferences (e.g., graphical or logical)
 - CP-nets, weighted propositional formulas
 - important factors: compactness, expressiveness, computational properties

Main Topics (cont.)

• Computational aspects of coalitional voting games

- Voting settings are often modeled as cooperative games (e.g., weighted threshold games)
- Compact representation
- Computational complexity of game-theoretic solution concepts
 - e.g., the core, Shapley-Shubik power index, Banzhaf power index
- Manipulation and control
 - e.g., false identities/splitting weight, changing threshold, adding/deleting voters

• Epistemic issues in social choice

- Incomplete preferences
- Elicitation of preferences
 - Communication complexity
 - Privacy

The role of logic

- The axiomatic method in social choice theory
- Logic-based preference representation
- Social software
- Epistemic issues in social choice
 - Logic for belief and knowledge
- Logic and complexity
 - PH: 2nd-order logic, NP: existential 2nd-order logic,
 P: I st-order logic with least fixed-point operator