Conputational Foundations of Social Choice

A Complexity-Theoretic Perspective

ESF LogICCC Launch Conference, Prague, Czech Republic, 2008
„Computer Science is not about computers, any more than astronomy is about telescopes."

Outline

- Impossibility Theorems in CS and SCT
- Complexity of Voting Problems:
- Winner Determination
- Manipulation
- Power-Index Comparison and Weighted Voting Games
- Multiagent Resource Allocation

Impossibility Theorems in Computer Science and Social Choice Theory

Computability Theory

Alan Turing:

- Broke the Enigma-Code
- Invented the Turing machine
- Proved that some problems are undecidable

Complexity Theory

- Computational complexity of problems
- Lower bounds
- Intractability (NP-hardness)

Social Choice Theory
Ken Arrow: No voting system satisfying a certain small set of "fairness" conditions can be nondictatorial.

Gibbard-Satterthwaite Theorem: Manipulation is unavoidable in principle.

Computational Social Choice

- Computational complexity of social choice problems
- Manipulation can be computationally hard

Voting Problems: How to Recruit a new Faculty Member

Candidates: A, B, C, D, E, F, G, H, I, J, K

Preferences of the Recruiting Committee:

$$
\begin{aligned}
& \mathrm{J}<\mathrm{A}<\mathrm{B}<\mathrm{E}<\mathrm{D}<\mathrm{F}<\mathrm{G}<\mathrm{H}<\mathrm{K}<\mathrm{I}<\mathrm{C} \\
& \mathrm{I}<\mathrm{J}<\mathrm{A}<\mathrm{D}<\mathrm{E}<\mathrm{F}<\mathrm{G}<\mathrm{B}<\mathrm{C}<\mathrm{K}<\mathrm{H} \\
& \mathrm{~A}<\mathrm{B}<\mathrm{F}<\mathrm{G}<\mathrm{H}<\mathrm{K}<\mathrm{I}<\mathrm{C}<\mathrm{J}<\mathrm{E}<\mathrm{D} \\
& \mathrm{E}<\mathrm{G}<\mathrm{F}<\mathrm{B}<\mathrm{J}<\mathrm{I}<\mathrm{H}<\mathrm{C}<\mathrm{A}<\mathrm{D}<\mathrm{K} \\
& \mathrm{C}<\mathrm{A}<\mathrm{F}<\mathrm{E}<\mathrm{B}<\mathrm{K}<\mathrm{H}<\mathrm{G}<\mathrm{I}<\mathrm{D}<\mathrm{J} \\
& \mathrm{C}<\mathrm{A}<\mathrm{F}<\mathrm{E}<\mathrm{B}<\mathrm{K}<\mathrm{H}<\mathrm{G}<\mathrm{I}<\mathrm{D}<\mathrm{J} \\
& \mathrm{H}<\mathrm{G}<\mathrm{K}<\mathrm{I}<\mathrm{C}<\mathrm{B}<\mathrm{A}<\mathrm{F}<\mathrm{J}<\mathrm{E}<\mathrm{D} \\
& \mathrm{D}<\mathrm{I}<\mathrm{E}<\mathrm{A}<\mathrm{B}<\mathrm{H}<\mathrm{F}<\mathrm{G}<\mathrm{C}<\mathrm{J}<\mathrm{K} \\
& \mathrm{~F}<\mathrm{G}<\mathrm{D}<\mathrm{I}<\mathrm{E}<\mathrm{B}<\mathrm{H}<\mathrm{A}<\mathrm{C}<\mathrm{K}<\mathrm{J}
\end{aligned}
$$

Make the List ... by the Majority Rule:
Rank 1: D and J and K (aequo loco)

Voting Problems:
 Winner Determination, Manipulation, Control, Bribery

Winner Determination:

-How hard is it to determine the winners of a given election?
-For most election systems, it is easy to determine the winners, but for some it is hard (Carroll, Kemeny, and Young elections).

Manipulation:

-How hard is it, computationally, to manipulate the result of an election by strategic voting?
-The Gibbard-Satterthwaite Theorem says: Manipulation is unavoidable in principle.

Control:

- How hard is it, computationally, for an evil chair to influence the outcome of an election via procedural changes?

Bribery:

- How hard is it, computationally, for an external agent to bribe certain voters in order to change an election's outcome?

Voting Problems:
 Winner Determination, Manipulation, Control, Bribery

Winner Determination: Hardness is undesirable!

-How hard is it to determine the winners of a given election?
-For most election systems, it is easy to determine the winners, but for some it is hard (Carroll, Kemeny, and Young elections).

Manipulation: Hardness provides protection!

-How hard is it, computationally, to manipulate the result of an election by strategic voting?
-The Gibbard-Satterthwaite Theorem says: Manipulation is unavoidable in principle.

Control: Hardness provides protection!

- How hard is it, computationally, for an evil chair to influence the outcome of an election via procedural changes?

Bribery: Hardness provides protection!

- How hard is it, computationally, for an external agent to bribe certain voters in order to change an election's outcome?

Winner Determination for Condorcet SCFs

- Majority Rule: A defeats B if A gets more votes than B.
-Condorcet Candidate: defeats each other candidate by majority.
-Condorcet Paradox:

-Condorcet SCFs: choose the Condorcet candidate (if one exists).

Lewis Carroll's Voting System (1876):

The winner is whoever becomes a Condorcet candidate by a minimum number of sequential swaps of adjacent candidates.
H. P. Young's Voting System (1977):

The winner is whoever becomes a Condorcet candidate by removing a minimum number of voters.
J. G. Kemeny's Voting System (1959):

The winner is the candidate ranked first in a consensus ranking, which minimizes the sum of the distances to the voters.

Carroll Elections

- The Carroll score of a candidate c is the smallest number of sequential switches of adjacent candidates in the preference profile of the voters that make \boldsymbol{c} a Condorcet candidate.
- Carroll winner is whoever has the lowest Carroll score.

Carroll Winner

Instance: A Carroll triple (C,c,V), where
C set of Candidates,
\boldsymbol{V} preference profile of voters over \boldsymbol{C},
\boldsymbol{c} a designated candidate in \boldsymbol{C}.
Question: Is ca Carroll winner? That is, is it true that for all $\boldsymbol{d} \in \boldsymbol{C}$,

$$
\operatorname{Score}(\boldsymbol{c}) \leq \operatorname{Score}(\boldsymbol{d}) ?
$$

Carroll Score

Instance: A Carroll triple ($\boldsymbol{C}, \boldsymbol{c}, \boldsymbol{V}$) and a positive integer \boldsymbol{k}.
Question: \quad Is it true that $\operatorname{Score}(\boldsymbol{c}) \leq \boldsymbol{k}$?

Results for Carroll Election Problems

J. Bartholdi, C. Tovey \& M. Trick (SCW 1989):

- Carroll Score and Kemeny Score are NP-complete.
- Carroll Winner and Kemeny Winner are NP-hard.

The Polynomial Hierarchy

Complexity of Solution Concepts/Choice Sets

F. Brandt \& F. Fischer (MSS 2007):

Complexity of Minimal Covering Sets.
F. Brandt, F. Fischer \& P. Harrenstein (TARK 2007):
Complexity of Choice Sets:
-Copeland Set
-Smith Set
-Schwartz Set
-von Neumann-Morgenstern stable sets
-Banks set
-Slater set
F. Brandt, F. Fischer, P. Harrenstein \& M. Mair (AAAI 2008):
Computational Analysis of the Tournament Equilibrium Set.

Election Systems that are NP-hard to Manipulate

Gibbard-Satterthwaite: Manipulation is unavoidable in principle.

Manipulation Problem

Instance: ($\boldsymbol{C}, \boldsymbol{c}, \boldsymbol{V}$), where \boldsymbol{C} is a set of candidates,
\boldsymbol{V} is the voters' preference profile over \boldsymbol{C},
\boldsymbol{c} a designated candidate in \boldsymbol{C}.
Question: Does there exist a preference order making ca winner?

> J. Bartholdi, C. Tovey \& M. Trick (SCW 1989):

For Second-Order Copeland, the winner problem is efficiently solvable, but the manipulation problem is NP-complete.

V. Conitzer, T. Sandholm \& J. Lang (J.ACM 2007):

- Studied coalitional manipulation by weighted voters
- Characterized the exact number of candidates for which manipulation becomes NP-hard for plurality, Borda, STV, Copeland, maximin, veto, and other protocols
- Considered both constructive and destructive manipulation

Election Systems that are NP-hard to Manipulate

E. Hemaspaandra \& L. Hemaspaandra (JCSS 2007):

Provided the first dichotomy result for voting systems: an easy-to-check condition („diversity of dislike") that separates

- Scoring protocols that are NP-hard to manipulate from
- Scoring protocols that are easy to manipulate.

Worst-Case vs. Average-Case/Frequency o

A. Procaccia \& J. Rosenschein (JAIR 2007)

G. Erdélyi, L. Hemaspaandra, J. Rothe, H. Spakowski (FCT 2007):

Frequency of Correctness vs. Average Polynomial Time.
M. Zuckerman, A. Procaccia \& J. Rosenschein (SODA 2008):

Algorithms for the Coalitional Manipulation Problem.

Power-Index Comparison and Weighted Voting Games

Aha! Clearly, I will have more (local) power at Money University! But how else can I justify this choice?

Power-Index Comparison and Weighted Voting Games

Weighted Voting Games:

Power Index idea:

How "often" is the given player critical to the winning side?
Power indices (e.g., Shapley-Shubik and Banzhaf) formally capture this idea. How hard is it to
-compute a power index for a given weighted voting game?
-compare the power index of two given weighted voting games?

Power Indices Banzhaf [1965] and Shapley-Shubik [1954]

Voting game: $\mathrm{G}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}} ; q\right)$. Our notation:

- $\mathrm{N}=\{1, \ldots, \mathrm{n}\}$: set of players
- $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$: weights of players
- q : quota value.

Banzhaf* $(\mathbf{G}, \mathbf{i})=$ how many of the $2^{\mathrm{n}-1}$ subsets of N - \{i\} have total weight < q but $\geq \mathrm{q}-\mathrm{w}_{\mathrm{i}}$?

Banzhaf(G,i) =

Banzhaf* $(\mathrm{G}, \mathrm{i}) / 2^{\mathrm{n}-1}$
(Probability that a randomly chosen coalition of players in N - $\{\mathrm{i}\}$ is not successful but player i will put them over the top.)
$\mathbf{S S}^{*}(\mathbf{G}, \mathbf{i})=$ in how many of the n ! permutations of N is i pivotal, i.e., the players before it sum to less than q but player i puts them over the top.
$\mathbf{S S}(\mathbf{G}, \mathbf{i})=\mathbf{S S}^{*}(\mathrm{G}, \mathrm{i}) / \mathrm{n}!$

Complexity Classes:
 PP [Simon/Gill, 1970s] and \#P [Valiant, 1979]

\#P (Counting NP):

 $f \in$ \# \mathbf{P} if there is an NPTM such that$\left(\forall x \in \Sigma^{*}\right)[f(x)=$ number of accepting paths of M on input x].

PP (Probabilistic Polynomial Time): $\mathrm{L} \in \mathbf{P P}$ if there is a probabilistic polynomial-time Turing machine that has acceptance probability greater than 50\% precisely on the strings in L .

$$
x \notin L
$$

$$
x \in L
$$

PP-completeness:

-Polynomial-Time Many-One Reducibility: $A \leq_{m}^{p} B \Leftrightarrow(\exists f \in F P)\left(\forall x \in \Sigma^{*}\right)[x \in A \Leftrightarrow f(x) \in B]$.
$\bullet B$ is hard for PP if ($\forall A \in P P$) [$\left.A \leq_{m}^{P} B\right]$.

- B is PP-complete if B is in PP and is PP-hard.

Results for Computing Power Indices

Prasad \& Kelly (1990)+Hunt, Marathe, Radhakrishnan \& Stearns (1998): Banzhaf* is \#P-parsimonious-complete.
X. Deng \& C. Papadimitriou (1994):

Yes, We Can! SS* is \#P-metric-complete.
P. Faliszewski \& 1 , liemaspaandre (2008):

- SS * is \# Mery onecormibte

SS* is n
plete.
PowerCompare-PI
(where PI is either Banzhaf* or SS*)
Instance: Two weighted voting games, G and G^{\prime}, and a player i .
Question: Is it true that $\mathbf{P l}(\mathrm{G}, \mathrm{i})>\operatorname{PI}\left(\mathrm{G}^{\prime}, \mathrm{i}\right)$?

- PowerCompare-Banzhaf is P omplete.
- PowerComparessi is PP-d te.

Multiagent Resource Allocation after World War II

- Set of Agents: the Allies of World War II
- Set of Resources: Germany's Federal States

Multiagent Resource Allocation

- Set of Agents: $A=\{1,2, \ldots, n\}$
- Set of Resources: $R=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$
- Each agent a has
- a preference $\leq a$ over allocations
- a utility function that assigns values to bundles of resources.
- Each resource is indivisible and nonsharable.
- An allocation is a mapping P from A to bundles of resources. Useful properties:
- Envy-freeness
- Pareto optimality

Chevaleyre, Dunne, Endriss, Lang, Lemaitre, Maudet, Padget, Phelps, RodriguezAguilar \& Sousa (2005):

MARA Survey.

-to determine if a given allocation is envyfree?

Thank you!

"Hardest" Problems for \#P

Definition:

1. [Krentel, 1988] A function $\mathrm{f}: \Sigma^{*} \rightarrow \mathrm{~N}$ reduces to a function $\mathrm{g}: \Sigma^{*} \rightarrow \mathrm{~N}$ if t two FP functions, φ and ψ, such tc yes. But how $\left(\forall \mathbf{X} \in \mathbf{\Sigma}^{*}\right)[\mathbf{f}(\mathbf{x})=\boldsymbol{\Psi}(\mathbf{x}, \mathbf{g}(\boldsymbol{\varphi}(\mathbf{x}) \quad$ complete?
2. [Zankó, 1991] A function f: Σ reduces to a function $\mathrm{g}: \Sigma^{*} \rightarrow \mathrm{~N}$ two FP functions, φ and ψ, st $\left(\forall \mathbf{X} \in \boldsymbol{\Sigma}^{*}\right)[\mathbf{f}(\mathbf{x})=\boldsymbol{\Psi}(\mathbf{g}(\mathbf{c}$

Complete, yes. But how

3. [Simon, 1975] A function $\mathrm{f}: \Sigma^{\wedge} \rightarrow \mathrm{N}$ parsimoniously reduces to a function $g: \Sigma^{*} \rightarrow N$ if there exists an FP function φ such that
$\left(\forall \mathbf{x} \in \boldsymbol{\Sigma}^{*}\right)[\mathrm{f}(\mathbf{x})=\mathbf{g}(\boldsymbol{\varphi}(\mathbf{x}))]$.

\#P-metric-complete \#P-many-one-complete
\#P-parsimonious-complete

Multiagent Resource Allocation

- Set of Agents: $A=\{1,2, \ldots, n\}$
- Set of Resources: $R=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$
- Each agent a has
- a preference $\leq a$ over allocations
- a utility function that assigns values to bundles of resources.
- Each resource is indivisible and nonsharable.
- An allocation is a mapping P from A to bundles of resources. Useful properties:
- Envy-freeness
- Pareto optimality
- An allocation P is envy-free if every agent is at least as happy with its share as with any of the other agents' shares.
Formally: $\quad \forall a, b \in A \xrightarrow{P}(b) \leq a P(a)$
- An allocation P is Pareto optimal if it is not Pareto-dominated by any other allocation. That is, for no allocation Q does it hold that

