
Conputational Foundations of 

Social Choice
A Complexity-Theoretic Perspective

Jörg Rothe   &   Felix Brandt

ESF LogICCC Launch Conference, Prague, Czech Republic, 2008

My sincere 
apologies if you 

heard some of this 
already at my 
COMSOC-08

tutorial.



„Computer Science is not about computers,

any more than astronomy is about telescopes.“

Edsger Dijkstra

Outline

• Impossibility Theorems in CS and SCT

• Complexity of Voting Problems:

• Winner Determination

• Manipulation

• Power-Index Comparison and Weighted Voting Games

• Multiagent Resource Allocation



Impossibility Theorems in

Computer Science and Social Choice Theory

Computability Theory

Alan Turing:

• Broke the  Enigma-Code

• Invented the Turing machine

• Proved that some problems 
are undecidable

Social Choice Theory

Ken Arrow: No voting

system satisfying  a 
certain small set of
„fairness“ conditions can
be nondictatorial.

Gibbard-Satterthwaite Theorem:

Manipulation is unavoidable 
in principle.

Complexity Theory

• Computational complexity of      

problems

• Lower bounds

• Intractability (NP-hardness)

Computational Social Choice

• Computational complexity of      

social choice problems

• Manipulation can be

computationally hard



Make the List ... by the Plurality Rule:

Rank 1: J

Rank 2: D and K (aequo loco)

Rank 3: C and H (aequo loco)

Voting Problems: 
How to Recruit a new Faculty Member

Preferences of the Recruiting Committee:

J < A < B < E < D < F < G < H < K < I < C

I < J < A < D < E < F < G < B < C < K < H 

A < B < F < G < H < K < I < C < J < E < D

E < G < F < B < J < I < H < C < A < D < K

C < A < F < E < B < K < H < G < I < D < J

C < A < F < E < B < K < H < G < I < D < J

H < G < K < I < C < B < A < F < J < E < D

D < I < E < A < B < H < F < G < C < J < K

F < G < D < I < E < B < H < A < C < K < J

Candidates: A, B, C, D, E, F, G, H, I, J, K

Make the List ... by  Borda‘s Rule:

Rank 1: K (63 points)

Rank 2: J (60 points)

Rank 3: D (56 points)

Make the List ... by the Majority Rule:

Rank 1: D and J and K (aequo loco)
Since: D defeats J by 5:4 votes,

J defeats K by 5:4 votes,

K defeats D by 5:4 votes.
Condorcet‘s Paradox

D 
Cycle

K      J



Voting Problems: 
Winner Determination, Manipulation, Control, Bribery

Winner Determination:
•How hard is it to determine the winners of a given election?
•For most election systems, it is easy to determine the winners,
but for some it is hard (Carroll, Kemeny, and Young elections).

Manipulation:
•How hard is it, computationally, to manipulate the result of
an election by strategic voting?

•The Gibbard-Satterthwaite Theorem says: Manipulation is
unavoidable in principle.

Control:
•How hard is it, computationally, for an evil chair to influence
the outcome of an election via procedural changes?

Bribery:
•How hard is it, computationally, for an external agent to bribe
certain voters in order to change an election‘s outcome?



Voting Problems: 
Winner Determination, Manipulation, Control, Bribery

Winner Determination: Hardness is undesirable!
•How hard is it to determine the winners of a given election?
•For most election systems, it is easy to determine the winners,
but for some it is hard (Carroll, Kemeny, and Young elections).

Manipulation: Hardness provides protection!
•How hard is it, computationally, to manipulate the result of
an election by strategic voting?

•The Gibbard-Satterthwaite Theorem says: Manipulation is
unavoidable in principle.

Control: Hardness provides protection!
•How hard is it, computationally, for an evil chair to influence
the outcome of an election via procedural changes?

Bribery: Hardness provides protection!
•How hard is it, computationally, for an external agent to bribe
certain voters in order to change an election‘s outcome?



Winner Determination for Condorcet SCFs

•Majority Rule: A defeats B if A gets more votes than B.

•Condorcet Candidate: defeats each other candidate by majority.

•Condorcet Paradox: 

•Condorcet SCFs: choose the Condorcet candidate (if one exists).

Lewis Carroll„s Voting System (1876):
The winner is whoever becomes a Condorcet candidate by a 
minimum number of sequential swaps of adjacent candidates. 

H. P. Young„s Voting System (1977):
The winner is whoever becomes a Condorcet candidate by 
removing a minimum number of voters.

J. G. Kemeny„s Voting System (1959):
The winner is the candidate ranked first in a consensus ranking, 
which minimizes the sum of the distances to the voters.

D 
Cycle

K      J



Carroll Elections

• The Carroll score of a candidate c is the smallest number of   

sequential switches of adjacent candidates in the preference

profile of the voters that make c a Condorcet candidate.

• Carroll winner is whoever has the lowest Carroll score.

Carroll Winner
Instance: A Carroll triple (C,c,V), where

C set of Candidates,

V preference profile of voters over C,

c    a designated candidate in C.

Question:

? )Score()Score(            

  all for that true it is is, That   winner?Carroll a Is

dc

C, dc 

Carroll Score
Instance: A Carroll triple (C,c,V) and a positive integer k.

Question: ? )Score( that true it Is kc



Question: 

Can we do better?

Results for Carroll Election Problems

J. Bartholdi, C. Tovey & M. Trick (SCW 1989):

• Carroll Score and Kemeny Score are NP-complete.

• Carroll Winner and Kemeny Winner are NP-hard.

Question: 

Can we do better?

E. Hemaspaandra, L. Hemaspaandra & J. Rothe (J.ACM 1997):

Carroll Winner is complete for P    : „parallel access to NP.“
||

NP

J. Rothe, H. Spakowski & J. Vogel (TOCS 2003):

Young Winner is P -complete.
||

NP

E. Hemaspaandra, H. Spakowski & J. Vogel (TCS 2005):

Kemeny Winner is P -complete.
NP

||



The Polynomial Hierarchy



Complexity of Solution Concepts/Choice Sets

F. Brandt & F. Fischer (MSS 2007):

Complexity of Minimal Covering Sets.

F. Brandt, F. Fischer & P. Harrenstein 

(TARK 2007):

Complexity of Choice Sets:

•Copeland Set

•Smith Set

•Schwartz Set

•von Neumann-Morgenstern stable sets

•Banks set

•Slater set

F. Brandt, F. Fischer, P. Harrenstein & M. 

Mair (AAAI 2008):

Computational Analysis of the Tournament 

Equilibrium Set.



Election Systems that are NP-hard to Manipulate

Manipulation Problem
Instance: (C,c,V), where C is a set of candidates,

V  is the voters„ preference profile over C,

c  a designated candidate in C.
Question: Does there exist a preference order making c a winner?

Gibbard-Satterthwaite: Manipulation is unavoidable in principle.

J. Bartholdi, C. Tovey & M. Trick (SCW 1989):

For Second-Order Copeland, the winner problem is efficiently

solvable, but the manipulation problem is NP-complete.

V. Conitzer, T. Sandholm & J. Lang (J.ACM 2007):

• Studied coalitional manipulation by weighted voters

• Characterized the exact number of candidates for which manipulation 

becomes NP-hard for plurality, Borda, STV, Copeland, maximin, veto, 

and other protocols

• Considered both constructive and destructive manipulation



Election Systems that are NP-hard to Manipulate

E. Hemaspaandra & L. Hemaspaandra (JCSS 2007):

Provided the first dichotomy result for voting systems:

an easy-to-check condition („diversity of dislike“) that separates

• Scoring protocols that are NP-hard to manipulate from

• Scoring protocols that are easy to manipulate.

Worst-Case vs. Average-Case/Frequency of Hardness
A. Procaccia & J. Rosenschein (JAIR 2007):

Junta distributions and Average-Case Complexity of Manipulation.

G. Erdélyi, L. Hemaspaandra, J. Rothe, H. Spakowski (FCT 2007):

Frequency of Correctness vs. Average Polynomial Time.

M. Zuckerman, A. Procaccia & J. Rosenschein (SODA 2008):

Algorithms for the Coalitional Manipulation Problem.

Holy Grail



Power-Index Comparison and 

Weighted Voting Games

20 
papers

20 
papers

50 
papers $2M $5M $2M

4 papers
$10M

Harvard University Money University

Where will I 
have more 

(local) 
power?

Aha! Clearly, I will have 
more (local) power at 

Money University!
But how else can I 
justify this choice?



Power-Index Comparison and 

Weighted Voting Games

Power Index idea:

How “often” is the given player critical to the winning side?

Alice

3

Bob

3

Carol

4

Alice

3

Bob

3

Carol

4

Alice

3

Bob

3

Carol

6

Alice

2

Bob

2

Equal power No power Total power

Power indices (e.g., Shapley-Shubik and Banzhaf) formally      
capture this idea. How hard is it to

•compute a power index for a given weighted voting game?

•compare the power index of two given weighted voting games?

Weighted Voting Games:



Voting game: G = (w1, …, wn; q).  Our notation:
• N = {1, …, n} : set of players
• w1, …, wn : weights of players
• q : quota value.

Power Indices –

Banzhaf [1965] and Shapley-Shubik [1954]

Banzhaf*(G,i) =   how 
many of the 2n-1 subsets 
of N – {i} have total 
weight < q but ≥ q-wi?

Banzhaf(G,i) = 
Banzhaf*(G,i)/2n-1

(Probability that a randomly 

chosen coalition of players in 
N – {i} is not successful but 
player i will put them over 
the top.)

SS*(G,i) = in how many 
of the n! permutations 
of N is i pivotal, i.e., 
the players before it 
sum to less than q but 
player i puts them over 
the top.

SS(G,i) = SS*(G,i)/n!

3    3      4          q = 6 



#P (Counting NP):

f #P if there is an NPTM 
such that

Complexity Classes: 

PP [Simon/Gill, 1970s] and #P [Valiant, 1979]

PP (Probabilistic Polynomial Time):
L PP if there is a probabilistic 
polynomial-time Turing 
machine that has acceptance 
probability greater than 50% 
precisely on the strings in L.

A  A   A

x

M f(x) = 3

x L

A R    AR  R   A

x L

( x Σ*)[ f(x) = number of 
accepting paths 
of M on input x].

PP-completeness:

•Polynomial-Time Many-One Reducibility:

A       B ( f FP)( x Σ*)[x A f(x) B].

•B is hard for PP if ( A PP)[A       B].

•B is PP-complete if B is in PP and is PP-hard.

P
m

P
m

#P-completeness: 
#P-complete?  Multiple 
notions!

#P-metric-complete

#P-many-one-complete

#P-parsimonious-complete



Results for Computing Power Indices

X. Deng & C. Papadimitriou (1994):

SS* is #P-metric-complete.

Prasad & Kelly (1990)+Hunt, Marathe, Radhakrishnan & Stearns (1998):

Banzhaf* is #P-parsimonious-complete.

P. Faliszewski & L. Hemaspaandra (2008):

• SS* is #P-many-one-complete.

• SS* is not #P-parsimonious-complete.

No, We Can‘t!

No, We Can‘t!

Question: 

Can we do better?

(Can we improve this to #P-many-one-completeness?) 

Question: 

Can we do better?

(Can we improve this to #P-parsimonious-completeness?) 

P. Faliszewski & L. Hemaspaandra (2008):

• SS* is #P-many-one-complete.

P. Faliszewski & L. Hemaspaandra (2008):

• PowerCompare-Banzhaf* is PP-complete.

• PowerCompare-SS* is PP-complete.

PowerCompare-PI
(where PI is either Banzhaf* or SS*)

Instance: Two weighted voting games, G and G’, and a player i.

Question: Is it true that PI(G, i) > PI(G’, i)?



Multiagent Resource Allocation

after World War II

• Set of Agents: the Allies of World War II

• Set of Resources: Germany„s Federal States



Multiagent Resource Allocation

• Set of Agents: A = {1, 2, ..., n}
• Set of Resources: R = {               }mrrr ,...,, 21

• Each agent a has
• a preference over allocations

• a utility function that assigns values to bundles of resources.

• Each resource is indivisible and nonsharable.

• An allocation is a mapping P from A to bundles of resources.  

Useful properties:
• Envy-freeness

• Pareto optimality

Given agents A, resources R, and utility 
functions U, how hard is it to

•to maximize (utilitarian) social welfare?

•to determine if a given allocation is    
Pareto-optimal?

•to determine if a given allocation is envy-
free?

a

Chevaleyre, Dunne, Endriss, Lang, Lemaitre, 

Maudet, Padget, Phelps, Rodriguez-

Aguilar & Sousa (2005):

MARA Survey.



Thank you!

I hope they won’t 
ask any questions!



“Hardest” Problems for #P

φ(x)

Definition:
1. [Krentel, 1988] A function f:Σ*

N metric 
reduces to a function g:Σ*

N if there exist 

two FP functions, φ and ψ, such that

( x Σ*)[ f(x) = ψ( x, g( φ(x) ) ) ].

2. [Zankó, 1991] A function f:Σ*
N many-one 

reduces to a function g:Σ*
N if there exist 

two FP functions, φ and ψ, such that

( x Σ*)[ f(x) = ψ( g( φ(x) ) ) ].

3. [Simon, 1975] A function f:Σ*
N 

parsimoniously reduces to a function 
g:Σ*

N if there exists an FP function φ such 

that 

( x Σ*)[ f(x) = g(φ(x)) ].

g ψ f(x)

x

φ(x) g ψ f(x)

φ(x) g f(x)

Complete, 
yes. But how

complete?

#P-metric-complete

#P-many-one-complete

#P-parsimonious-complete



Multiagent Resource Allocation

• Set of Agents: A = {1, 2, ..., n}
• Set of Resources: R = {               }mrrr ,...,, 21

• Each agent a has
• a preference over allocations

• a utility function that assigns values to bundles of resources.

• Each resource is indivisible and nonsharable.

• An allocation is a mapping P from A to bundles of resources.  

Useful properties:
• Envy-freeness

• Pareto optimality

• An allocation     is envy-free if every agent is at least as happy 
with its share as with any of the other agents‘ shares.

Formally: 

• An allocation is Pareto optimal if it is not Pareto-dominated 
by any other allocation.  That is, for no allocation      does it 
hold that

)()(, aPbPAba a

QPAbQPAa ba

Q

P

P

a


