Logical Models for Reasoning about the Uncertainty of Many-Valued Events (A Very Gentle Overview)

Enrico Marchioni (LoMoReVi)

Artificial Intelligence Research Institute (IIIA - CSIC) Campus UAB, 08193 Bellaterra (Spain) enrico@iiia.csic.es

joint work with T. Flaminio and L. Godo

15-18 September 2011 LogICCC Final Conference Modelling Intelligent Interaction Logic in the Humanities, Social and Computational Sciences

Berlin, Germany

Image: A mathematical states and a mathem

- 2 Measures of Uncertainty
- 3 (Classical) Logics of Uncertainty
- Uncertainty of Many-Valued Events
- 5 Many-Valued Logics of Uncertainty

- TO DEVELOP A UNIFORM APPROACH TO DEFINE MANY-VALUED LOGICS TO REPRESENT UNCERTAINTY MEASURES OVER MANY-VALUED EVENTS.
- Framework: (Δ -)core fuzzy logics (Cintula, Esteva, Godo, Gispert, Montagna, Noguera), i.e. expansions of the MTL logic (Esteva, Godo).
- We will (very) loosely refer to them as "many-valued logics".

- Aim at formalizing the strength of our beliefs in the occurrence of some events.
- Assign to events a degree of belief concerning their occurrence.
- Different uncertainty models: probability, possibility, imprecise probabilities, belief functions, etc.
- In general, given a Boolean algebra **B** an uncertainty measure (capacity, fuzzy measure, plausibility measure) is a mapping $\mu : B \to [0,1]$ such that $\mu(\perp) = 0$, $\mu(\top) = 1$, and $x \leq y$ implies $\mu(x) \leq \mu(y)$.

< ロ > < 同 > < 回 > < 回 >

- (Finitely Additive) Probability:

for all $x, y \in B$, $x \wedge y = \bot$ then $\mu(x \vee y) = \mu(x) + \mu(y)$.

- Possibility Measures (Zadeh 1978):

$$\mu(x \lor y) = \max(\mu(x), \mu(y))$$

- Necessity Measures (Zadeh 1978):

$$\mu(x \wedge y) = \min(\mu(x), \mu(y))$$

- Belief Functions (Shafer 1975):

$$\mu\left(\bigvee_{i=1}^{n} x_{i}\right) \geq \sum_{I \subseteq \{1,\ldots,n\}} (-1)^{|I|+1} \mu\left(\bigwedge_{i \in I} x_{i}\right).$$

< ロ > < 同 > < 回 > <

- Expansions of Classical Logic with Modal Operators.
- [Several Treatments] $P_{\leq \alpha}\phi$ ($P_{\geq \alpha}\phi$, $P_{=\alpha}\phi$): The probability of ϕ is less than (greater than, equal to) α .
- [Halpern] $P\phi$: Classical Logic is expanded with a axioms for (linear) polynomial inequalities. Probability is axiomatized in this context:

$$P(\varphi \wedge \psi) + P(\varphi \wedge \neg \psi) = P(\varphi)$$

- Two-valued (modal) logics, Kripke models with a finitely additive probability measure.
- [Halpern] Treatment of possibility measures and belief functions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- What about the uncertainty of many-valued events (statements)?
- We mean statements whose truth comes in degrees.
- Statements are many-valued, so they generally do not satisfy the laws of Boolean algebras.
- Algebras of many-valued logics: MV-algebras, Gödel algebras, etc. (generalizations of Boolean algebras)
- In general, given an algebra **A** of some many-valued logic, a generalized plausibility measure is a mapping $\mu : A \to [0, 1]$ such that $\mu(\bot) = 0$, $\mu(\top) = 1$, and $x \le y$ implies $\mu(x) \le \mu(y)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Probability over MV, Gödel algebras: Mundici, Kroupa, Panti, Aguzzoli, Gerla, Marra
- Possibility over MV, Gödel algebras: Dellunde, Flaminio, Godo, M.
- Belief functions over MV-algebras: Kroupa, Flaminio, Godo, M.
- Upper probabilities over MV-algebras: Fedel, Keimel, Montagna, Roth.

(日)

- First suggested by Hájek and Harmancová (1994), and later later followed by Hájek, Esteva and Godo (1995).
- Ψ := "The proposition φ is plausible (probable, believable)".
- The degree of truth of Ψ can be interpreted as the degree of uncertainty of the proposition $\varphi.$
- The higher our degree of confidence in φ , the higher the degree of truth of Ψ .
- The predicate "is plausible (believable, probable)" can be regarded as a *many-valued* modal operator over the proposition φ .

<ロト < 同ト < ヨト < ヨト

- Several many-valued logics ((Δ -)core fuzzy logics) have a real-valued semantics.
- The interpretation of connectives corresponds to real-valued functions.
- A many-valued logic $\mathcal L$ is *compatible* with a class of uncertainty measures $\mathscr M$, whenever the operations (and relations) used to define the properties of $\mathscr M$ are definable in $\mathcal L$
- For instance, expansions of Łukasiewicz logic allow the expression of (bounded) sum $x \oplus y = \min(x + y, 1)$ and (truncated) subtraction $x \oplus y = \max(x y, 0)$
- So, Łukasiewicz logic is compatible with the class of finitely additive probabilities.

< ロ > < 同 > < 回 > < 回 >

- Take a class of uncertainty measures ${\mathscr M}$
- Take the many-valued logic \mathcal{L}_1 for events
- Take some many-valued logic \mathcal{L}_2 , compatible with \mathscr{M}
- Non-modal formulas ϕ, ψ are formulas of \mathcal{L}_1
- Atomic modal formulas are formulas of the form $\mathscr{M}\phi$, with $\phi\in\mathcal{L}_1$
- Modal formulas are built from atomic modal formulas using the connectives of \mathcal{L}_2
- Semantics is given by Kripke models equipped with a measure $\mu \in \mathscr{M}$

イロト イポト イヨト イヨ

Theorem

Let \mathcal{L}_1 be a logic for events, and let \mathcal{L}_2 be a logic compatible with generalized plausibility measures. Then the following hold:

- (1) If \mathcal{L}_1 is locally finite^{*}, and \mathcal{L}_2 enjoys FSRC, then $\mathbb{F}\mathscr{PL}(\mathcal{L}_1, \mathcal{L}_2)$ is real-FSC.
- (2) If \mathcal{L}_2 has SRC, then $\mathbb{F}\mathscr{PL}(\mathcal{L}_1, \mathcal{L}_2)$ is real-SC.
- (3) If \mathcal{L}_2 has FSRC, then $\mathbb{FPL}(\mathcal{L}_1, \mathcal{L}_2)$ is hyperreal-SC.

*A many-valued logic \mathcal{L} is said to be *locally finite* iff for every finite set V_0 of propositional variables, the Lindenbaum-Tarski algebra Fm_{V_0} of \mathcal{L} generated by the variables in V_0 is a finite algebra.

< D > < P > < P > < P >

- Probability Measures: Esteva, Godo, Hájek
- Possibility and Necessity Measures: Hájek
- Belief Functions: Esteva, Godo, Hájek
- Lower and Upper Probabilities: M.
- Non-standard Probability Measures: Flaminio, Montagna
- Measures of Conditional Events: Godo, M.
- Uniform Treatment of Uncertainty Measures over Boolean Events: M.

(日)

- Probability Measures of Łukasiewicz Events: Flaminio, Godo
- Possibility and Necessity Measures of Łukasiewicz Events: Flaminio, Godo, M.
- Possibility and Necessity Measures of Gödel Events: Dellunde, Godo, M.
- Belief Functions of Łukasiewicz Events: Flaminio, Godo, M.
- Upper Probabilities of Łukasiewicz Events: Fedel, Hosni, Montagna

(日)

- Take a finite set of events φ₁,..., φ_k ∈ L₁, and a map a : φ_i → α_i ∈ [0, 1].
 Can the map a be extended to a generalized plausibility measure on the algebra generated by the formulas φ₁,..., φ_k?
- Generalization of the classical de Finetti Coherence problem.

Definition

Let ϕ_1, \ldots, ϕ_k be formulas in the language of \mathcal{L}_1 and let \mathscr{M} be a class of generalized plausibility measures. Then a map $\mathbf{a} : \{\phi_1, \ldots, \phi_k\} \to [0, 1]$ is said to be:

- (i) A rational assignment, provided that for every i = 1, ..., k, $\mathbf{a}(\phi_i)$ is a rational number.
- (ii) *M*-Coherent if there is an uncertainty measure μ ∈ *M* on the Lindenbaum-Tarski algebra *Fm_V* generated by the variables occurring in φ₁,..., φ_k, such that, for all i = 1,..., n, a(φ_i) = μ([φ_i]).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We take RL as \mathcal{L}_2 . RL, Rational Łukasiewicz logic, is an expansion of Łukasiewicz logic that allows to define rationals in the language.

Theorem

Let ϕ_1, \ldots, ϕ_k be formulas in \mathcal{L} , and let

$$\mathbf{a}:\phi_i\mapsto rac{n_i}{m_i}$$

be a rational assignment. Then the following are equivalent:

- (i) a is *M*-coherent,
- (ii) The modal theory $\Gamma = \{M(\phi_i) \leftrightarrow \overline{n_i/m_i} \mid i = 1, ..., k\}$ is consistent in $F\mathcal{M}(\mathcal{L}_1, R\mathcal{L})$ (i.e. $\Gamma \not\vdash_{F\mathcal{M}} \bot$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flaminio T., Godo L., Marchioni E. - Reasoning about uncertainty of fuzzy events: an overview. In *Reasoning under Vagueness - Logical, Philosophical, and Linguistic Perspectives*, Cintula P., Fermüller C., Godo L., Hájek P. (Editors), Studies in Logic, College Publications, forthcoming.

THANKS!

Image: A mathematical states and a mathem