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CNRS - Université Paris I, France

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?
◮ To which degree is the agent successful and powerful in

collective decision making?

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?
◮ To which degree is the agent successful and powerful in

collective decision making?
◮ · · ·

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?
◮ To which degree is the agent successful and powerful in

collective decision making?
◮ · · ·

◮ The aim of this lecture is to briefly mention:

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?
◮ To which degree is the agent successful and powerful in

collective decision making?
◮ · · ·

◮ The aim of this lecture is to briefly mention:
◮ the main (basic) centrality and prestige measures

A. Rusinowska c©2011 Influence and Centrality



Introduction

◮ Social networks play a significant role in explaining our
activities, decisions, many social and economic phenomena.

◮ Given nodes that represent agents (players) and links that
represent relationships between the agents (communication,
influence, dominance ...), the following questions may appear:

◮ How central is a node (player) in the network?
◮ What is his position and prestige?
◮ How influential is his opinion?
◮ To which degree is the agent successful and powerful in

collective decision making?
◮ · · ·

◮ The aim of this lecture is to briefly mention:
◮ the main (basic) centrality and prestige measures
◮ some concepts of influence in social networks.
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◮ A network is represented by a graph (N, g), where
◮ N = {1, 2, ..., n} set of nodes (agents, players, vertices)
◮ g = [gij ] real-valued n × n matrix (adjacency matrix)

◮ gij - relationship between i and j (possibly weighted and/or
directed), also referred to as a link ij or an edge

◮ G = collection of all possible networks on n nodes
◮ In what follows we consider an unweighted network g with

gij =

{
1 if there is a link between i and j
0 otherwise,

and we assume that g is undirected (gij = gji for all i , j ∈ N).
◮ Ni (g) = neighborhood (set of neighbors) of i in g

Ni (g) = {j ∈ N : gij = 1}

◮ di (g) = degree of i in g = number of i ’s neighbors in g , i.e.,

di (g) = |Ni (g)|
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◮ Walk = sequence of links i1i2, · · · , iK−1iK such that gik ik+1

= 1
for each k ∈ {1, · · · ,K − 1}
(a node or a link may appear more than once)

◮ Path = walk in which all links and all nodes are distinct.
◮ Geodesic between two nodes is a shortest path between them.
◮ d(i , j ; g) = geodesic distance between i and j in g

If there is a path between i and j in g , then

d(i , j ; g) = the number of links in a shortest path between i and j

d(i , j ; g) = min
paths P from i to j

∑

(k,l)∈P

gkl .

If there is no path between i and j in g , we set d(i , j ; g) = ∞.
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◮ How can one node be reached from another one in g?
◮ Walk = sequence of links i1i2, · · · , iK−1iK such that gik ik+1

= 1
for each k ∈ {1, · · · ,K − 1}
(a node or a link may appear more than once)

◮ Path = walk in which all links and all nodes are distinct.
◮ Geodesic between two nodes is a shortest path between them.
◮ d(i , j ; g) = geodesic distance between i and j in g

If there is a path between i and j in g , then

d(i , j ; g) = the number of links in a shortest path between i and j

d(i , j ; g) = min
paths P from i to j

∑

(k,l)∈P

gkl .

If there is no path between i and j in g , we set d(i , j ; g) = ∞.
◮ gk = kth power of g ; g0 := I with I = n × n identity matrix,

where
gk
ij = number of walks of length k that exist between i and j
in g .
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node in a network.
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Standard measures of centrality

◮ The concept of centrality captures a kind of prominence of a
node in a network.

◮ Since the late 1940’s a variety of different centrality measures
that focus on specific characteristics inherent in prominence of
an agent have been developed.

◮ Measures of centrality can be categorized into the following
main groups (Jackson (2008)):

(1) Degree centrality - how connected a node is
(2) Closeness centrality - how easily a node can reach other nodes
(3) Betweenness centrality - how important a node is in terms of

connecting other nodes
(4) Prestige- and eigenvector-related centrality - how important,

central, or influential a node’s neighbors are.

◮ For extended surveys, see e.g. Jackson (2008), Goyal (2007),
Wasserman & Faust (1994), Freeman (1979), Everett &
Borgatti (2005).
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i (g) of node i in network g is given by

Cd
i (g) =

di (g)

n − 1
=
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n − 1
∈ [0, 1]
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Degree centrality of a node

◮ The degree centrality (Shaw (1954), Nieminen (1974)):
How connected is a node in terms of direct connections?

◮ The degree centrality Cd
i (g) of node i in network g is given by

Cd
i (g) =

di (g)

n − 1
=

|Ni (g)|

n − 1
∈ [0, 1]

◮ Index of the node’s communication activity: the more ability
to communicate directly with others, the higher the centrality.

6

7

5 4 3

1

2

Cd
i (g) = 0.5 for i ∈ {3, 5}, Cd

i (g) = 0.33 for i /∈ {3, 5}.
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Closeness centrality of a node

◮ The closeness centrality (Beauchamp (1965), Sabidussi
(1966)) is based on proximity:
How easily can a node reach other nodes in a network?
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◮ The closeness centrality C c
i (g) of node i in network g is
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i (g) =
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◮ The closeness centrality (Beauchamp (1965), Sabidussi
(1966)) is based on proximity:
How easily can a node reach other nodes in a network?

◮ The closeness centrality C c
i (g) of node i in network g is

C c
i (g) =

n − 1∑
j 6=i d(i , j ; g)

◮ Measure of the node’s independence or efficiency: the
possibility to communicate with many others depends on a
minimum number of intermediaries.
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Closeness centrality of a node

◮ The closeness centrality (Beauchamp (1965), Sabidussi
(1966)) is based on proximity:
How easily can a node reach other nodes in a network?

◮ The closeness centrality C c
i (g) of node i in network g is

C c
i (g) =

n − 1∑
j 6=i d(i , j ; g)

◮ Measure of the node’s independence or efficiency: the
possibility to communicate with many others depends on a
minimum number of intermediaries.

6

7

5 4 3

1

2

C c
4 (g) = 0.60, C c

3 (g) = C c
5 (g) = 0.55, Cd

i (g) = 0.4 otherwise.
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Betweenness centrality of a node (1/2)

◮ The betweenness centrality (Bavelas (1948), Freeman (1977,
1979)):
How important is a node in terms of connecting other nodes?
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Betweenness centrality of a node (1/2)

◮ The betweenness centrality (Bavelas (1948), Freeman (1977,
1979)):
How important is a node in terms of connecting other nodes?

◮ The betweenness centrality Cb
i (g) of node i in network g is

Cb
i (g) =

2

(n − 1)(n − 2)

∑

k 6=j :i /∈{k,j}

Pi (kj)

P(kj)

Pi (kj) = number of geodesics between k and j containing
i /∈ {k , j}
P(kj) = total number of geodesics between k and j
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Betweenness centrality of a node (1/2)

◮ The betweenness centrality (Bavelas (1948), Freeman (1977,
1979)):
How important is a node in terms of connecting other nodes?

◮ The betweenness centrality Cb
i (g) of node i in network g is

Cb
i (g) =

2

(n − 1)(n − 2)

∑

k 6=j :i /∈{k,j}

Pi (kj)

P(kj)

Pi (kj) = number of geodesics between k and j containing
i /∈ {k , j}
P(kj) = total number of geodesics between k and j

◮ Index of the potential of a node for control of communication:
the possibility to intermediate in the communications of
others is of importance.

A. Rusinowska c©2011 Influence and Centrality



Betweenness centrality of a node (2/2)

Cb
i (g) =

2

(n − 1)(n − 2)

∑

k 6=j :i /∈{k,j}

Pi (kj)

P(kj)

6

7

5 4 3

1

2

Cb
4 (g) = 0.60

Cb
3 (g) = Cb

5 (g) = 0.53

Cb
i (g) = 0 for i ∈ {1, 2, 6, 7}

A. Rusinowska c©2011 Influence and Centrality



Katz prestige

◮ Measures of centrality that are based on the idea that a node’s
importance is determined by the importance of its neighbors.
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Katz prestige

◮ Measures of centrality that are based on the idea that a node’s
importance is determined by the importance of its neighbors.

◮ The Katz prestige CPK
i (g) of node i in g is defined as

CPK
i (g) =

∑

j 6=i

gij
CPK
j (g)

dj(g)

If j has more relationships, then i gets less prestige from being
connected to j . This definition is self-referential.
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Katz prestige

◮ Measures of centrality that are based on the idea that a node’s
importance is determined by the importance of its neighbors.

◮ The Katz prestige CPK
i (g) of node i in g is defined as

CPK
i (g) =

∑

j 6=i

gij
CPK
j (g)

dj(g)

If j has more relationships, then i gets less prestige from being
connected to j . This definition is self-referential.

◮ Calculating CPK (g) - finding the unit eigenvector of g̃ :

CPK (g) = g̃CPK (g)

(I− g̃)CPK (g) = 0

g̃ - the normalized adjacency matrix g with g̃ij =
gij

dj (g)
,

we set g̃ij = 0 for dj(g) = 0.
CPK (g) - the n × 1 vector of CPK

i (g), i ∈ N.
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Second prestige measure of Katz

◮ CPK2(g , a) = the second prestige measure of Katz (1953)
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◮ CPK2(g , a) = the second prestige measure of Katz (1953)

◮ Introducing an attenuation parameter a to adjust the measure
for the lower ‘effectiveness’ of longer walks in a network.
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Second prestige measure of Katz

◮ CPK2(g , a) = the second prestige measure of Katz (1953)

◮ Introducing an attenuation parameter a to adjust the measure
for the lower ‘effectiveness’ of longer walks in a network.

◮ The prestige of a node is a weighted sum of the walks that
emanate from it, and a walk of length k is of worth ak , where
0 < a < 1. The vector of prestige of nodes is

CPK2(g , a) = ag1+ a2g21+ · · ·+ akgk1+ · · ·
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Second prestige measure of Katz

◮ CPK2(g , a) = the second prestige measure of Katz (1953)

◮ Introducing an attenuation parameter a to adjust the measure
for the lower ‘effectiveness’ of longer walks in a network.

◮ The prestige of a node is a weighted sum of the walks that
emanate from it, and a walk of length k is of worth ak , where
0 < a < 1. The vector of prestige of nodes is

CPK2(g , a) = ag1+ a2g21+ · · ·+ akgk1+ · · ·

◮ For a sufficiently small, CPK2(g , a) is finite and

CPK2(g , a)− agCPK2(g , a) = ag1

CPK2(g , a) = (I− ag)−1 ag1.
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Bonacich centrality

◮ A two-parameter family of prestige measures which can be
seen as a direct extension of CPK2(g , a).
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◮ An agent can have some status which does not depend on its
connections to others.
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◮ A two-parameter family of prestige measures which can be
seen as a direct extension of CPK2(g , a).

◮ An agent can have some status which does not depend on its
connections to others.

◮ Bonacich centrality (Bonacich (1987)) is given by

CB(g , a, b) = ag1+ abg21+ · · ·+ abkgk+11+ · · ·

CB(g , a, b) = (I− bg)−1 ag1

where a and b are parameters, and b is sufficiently small.
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Bonacich centrality

◮ A two-parameter family of prestige measures which can be
seen as a direct extension of CPK2(g , a).

◮ An agent can have some status which does not depend on its
connections to others.

◮ Bonacich centrality (Bonacich (1987)) is given by

CB(g , a, b) = ag1+ abg21+ · · ·+ abkgk+11+ · · ·

CB(g , a, b) = (I− bg)−1 ag1

where a and b are parameters, and b is sufficiently small.
◮ b captures how the value of being connected to another node

decays with distance.
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seen as a direct extension of CPK2(g , a).

◮ An agent can have some status which does not depend on its
connections to others.

◮ Bonacich centrality (Bonacich (1987)) is given by

CB(g , a, b) = ag1+ abg21+ · · ·+ abkgk+11+ · · ·

CB(g , a, b) = (I− bg)−1 ag1

where a and b are parameters, and b is sufficiently small.
◮ b captures how the value of being connected to another node

decays with distance.
◮ a captures the base value on each node.
◮ For b = 0, CB(g , a, b) takes into account only walks of length

1 and reduces to adi (g).
◮ Obviously CPK2(g , a) and CB(g , a, b) coincide when a = b.
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topology changes over time through addition or removal of
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Measuring centrality in dynamic networks

◮ Dynamic networks - networks that evolve over time (whose
topology changes over time through addition or removal of
links between agents)

◮ Despite the growing literature on dynamic networks, still
insufficient attention is paid to network dynamics.

◮ In particular, studying centrality usually avoids the dynamic
processes of network formation.

◮ Work in progress (Caulier, Grabisch & R):
◮ introducing the extensions of the standard (static) measures of

centrality for dynamic networks
◮ studying how the importance of an agent measured by its

centrality varies when considering dynamic interactions.

◮ Work in progress (Grabisch & R) - axiomatic characterizations
of the centrality measures.
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The yes-no (one-step) model of influence

SOCIAL NETWORK, PLAYERS, INFLUENCE

inclinations i → → decisions Bi → group decision
(‘yes’ or ‘no’) influence function B gd(Bi)

◮ A social network with the set of players N := {1, ..., n}

◮ The players (agents, actors, voters) make a YES-NO decision

◮ An agent has an inclination to say either YES (+1) or NO (-1)

◮ i = (i1, ..., in) inclination vector, where ik ∈ {0, 1}, k ∈ N

◮ I = {+1,−1}n the set of all inclination vectors

◮ B : I → I influence function Bi - decision vector

◮ Power indices in voting literature.
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More investigations of the influence model

◮ Grabisch & Rusinowska (2009, 2010a,b, 2011a,b)

◮ Introducing influence indices and tools to analyze the
influence function, studying properties of influence functions

◮ Generalizing the yes-no model to multi-choice games

◮ A model of influence with a continuum of actions

◮ Comparing the influence model to command games and
studying the exact relation between these two frameworks

◮ Lattices in social networks with influence

◮ Iterating influence

◮ A dynamic model of influence based on aggregation functions.
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◮ Several issues:
◮ stochastic influence mechanism, rather than deterministic
◮ dynamic process of influence rather than one step model.

How do the opinions of agents evolve? Do they converge?
◮ The opinion of an agent obtained as an aggregation (not

necessarily linear) of the opinions of the others.

◮ Aim of the paper:
◮ to propose a dynamic model of influence based on aggregation

functions (each agent modifies his opinion independently of
the others, by aggregating the current opinion of all agents,
possibly including himself)

◮ to provide a general analysis of convergence in the aggregation
model and to give more practical conditions based on
influential players.
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Model of influence based on aggregation functions (2/8)

◮ We use the set notation:
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◮ We use the set notation:
◮ S ⊆ N denotes the set of ‘yes’-inclined voters
◮ B(S) denotes the set of players deciding for ‘yes’, where

B : 2N → 2N is the influence function.

◮ Generalization to a stochastic influence function - An
influence function B can be coded by a 2n × 2n row-stochastic
matrix B = [bS ,T ]S ,T⊆N , where an entry bS ,T is the
probability that B(S) is T :

bS ,T := Prob(B(S) = T ).

◮ We suppose that the process of influence does not stop after
one step, but may iterate.

◮ Assumptions:
◮ The process is Markovian, i.e., the probability bS,T depends on

S (the present situation) and T (the future situation), and not
on the whole history.

◮ The process is stationary, i.e., bS,T is constant over time.
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Model of influence based on aggregation functions (3/8)

◮ Considered so far: linear models for combining opinions,
where the aggregation is done through a weighted average
with normalized weights.
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A. Rusinowska c©2011 Influence and Centrality



Model of influence based on aggregation functions (3/8)

◮ Considered so far: linear models for combining opinions,
where the aggregation is done through a weighted average
with normalized weights.

◮ One could imagine other ways to aggregate opinions.

◮ An (n-place) aggregation function is a function
A : [0, 1]n → [0, 1] satisfying

1. A(0, 0, . . . , 0) = 0, A(1, 1, . . . , 1) = 1 (boundary conditions)
2. If x ≤ x′ then A(x) ≤ A(x′) (nondecreasingness).

◮ Numerous examples: all kinds of means (geometric, harmonic,
quasi-arithmetic) and their weighted version, any combination
of minimum and maximum (lattice polynomials or Sugeno
integrals), Choquet integrals, triangular norms, copulas, etc.
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Model of influence based on aggregation functions (4/8)

◮ To each player i , associate an aggregation function Ai , which
specifies the way agent i modifies his opinion from the opinion
of the other agents and himself.
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◮ To each player i , associate an aggregation function Ai , which
specifies the way agent i modifies his opinion from the opinion
of the other agents and himself.

◮ Supposing that S is the set of agents saying ’yes’, we compute

x = (A1(1S), . . . ,An(1S))

which indicates the probability of each agent to say ’yes’ after
influence.
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Model of influence based on aggregation functions (4/8)

◮ To each player i , associate an aggregation function Ai , which
specifies the way agent i modifies his opinion from the opinion
of the other agents and himself.

◮ Supposing that S is the set of agents saying ’yes’, we compute

x = (A1(1S), . . . ,An(1S))

which indicates the probability of each agent to say ’yes’ after
influence.

◮ Considering that these probabilities are independent among
agents, we find that the probability of transition from the
yes-coalition S to the yes-coalition T is

bS ,T =
∏

i∈T

xi
∏

i 6∈T

(1− xi ), ∀S ,T ⊆ N,

which determines B.
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Model of influence based on aggregation functions (5/8)

Definition

1. Let Ai be the aggregation function of agent i . Agent j ∈ N is
influential in Ai if Ai (1j) > 0 and Ai (1N\j) < 1.

2. The graph of influence is a directed graph GA1,...,An
= (N,E )

whose set of nodes is N, and there is an arc (i , j) from i to j
if i is influential in Aj .
We denote its undirected version by G 0

A1,...,An
.
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Model of influence based on aggregation functions (6/8)

◮ The process always converges to the consensus states N or ∅.
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1. The trivial terminal classes are always terminal classes.
2. Coalition S is a terminal state if and only if

Ai (1S) = 1 ∀i ∈ S and Ai (1S) = 0 otherwise.

3. There are no other terminal states than the trivial terminal
classes if and only if for all S ⊂ N, S 6= ∅, either there is some
i ∈ S such that Ai (1S) < 1 or there is some i ∈ N \ S such
that Ai (1S) > 0.
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◮ The process always converges to the consensus states N or ∅.

◮ {∅} and {N} are called trivial terminal classes.

◮ When are they the only terminal states?

◮ Theorem
Suppose B is obtained from an aggregation model, with
aggregation functions A1, . . . ,An. Then
1. The trivial terminal classes are always terminal classes.
2. Coalition S is a terminal state if and only if

Ai (1S) = 1 ∀i ∈ S and Ai (1S) = 0 otherwise.

3. There are no other terminal states than the trivial terminal
classes if and only if for all S ⊂ N, S 6= ∅, either there is some
i ∈ S such that Ai (1S) < 1 or there is some i ∈ N \ S such
that Ai (1S) > 0.

4. There are no other terminal states than the trivial terminal
classes if the undirected graph G 0

A1,...,An
is connected.
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Model of influence based on aggregation functions (7/8)

◮ Study of terminal classes not reduced to singletons.
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◮ Study of terminal classes not reduced to singletons.

◮ Theorem
Suppose B is obtained from an aggregation model, with
aggregation functions A1, . . . ,An. Then terminal classes are:

1. either singletons {S}, S ∈ 2N ,
2. or cycles of nonempty sets {S1, . . . , Sk} of any length

2 ≤ k ≤
(

n
⌊n/2⌋

)
(and therefore they are periodic of period k)

with the condition that all sets are pairwise incomparable (by
inclusion)
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1. either singletons {S}, S ∈ 2N ,
2. or cycles of nonempty sets {S1, . . . , Sk} of any length

2 ≤ k ≤
(

n
⌊n/2⌋

)
(and therefore they are periodic of period k)

with the condition that all sets are pairwise incomparable (by
inclusion)

3. or collections C of nonempty sets with the property that
C = C1 ∪ · · · ∪ Cp, where each subcollection Cj is a Boolean
lattice [Sj , Sj ∪ Kj ], Sj 6= ∅, Sj ∪ Kj 6= N, and at least one Kj is
nonempty.
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◮ Study of terminal classes not reduced to singletons.

◮ Theorem
Suppose B is obtained from an aggregation model, with
aggregation functions A1, . . . ,An. Then terminal classes are:

1. either singletons {S}, S ∈ 2N ,
2. or cycles of nonempty sets {S1, . . . , Sk} of any length

2 ≤ k ≤
(

n
⌊n/2⌋

)
(and therefore they are periodic of period k)

with the condition that all sets are pairwise incomparable (by
inclusion)

3. or collections C of nonempty sets with the property that
C = C1 ∪ · · · ∪ Cp, where each subcollection Cj is a Boolean
lattice [Sj , Sj ∪ Kj ], Sj 6= ∅, Sj ∪ Kj 6= N, and at least one Kj is
nonempty.

◮ We call cyclic terminal classes those terminal classes of the
second type and regular terminal classes those of the third
type. Regular terminal classes can be periodic.
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Model of influence based on aggregation functions (8/8)

◮ Sufficient conditions so that regular terminal classes cannot
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there is no path from an agent in S to i .
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◮ Theorem
There is no normal regular terminal class if there is no
subgraph S of GA1,...,An

satisfying the following two
conditions:

1. There is no ingoing arc into S
2. There exists an agent i ∈ N \ S which is not related to S , i.e.,

there is no path from an agent in S to i .

◮ Lemma
Two simple (but strong) sufficient conditions to forbidding
any cyclic terminal class are:

1. There exists j ∈ N such that Aj takes values 0,1 only for ∅,N.
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Model of influence based on aggregation functions (8/8)

◮ Sufficient conditions so that regular terminal classes cannot
exist:

◮ Theorem
There is no normal regular terminal class if there is no
subgraph S of GA1,...,An

satisfying the following two
conditions:

1. There is no ingoing arc into S
2. There exists an agent i ∈ N \ S which is not related to S , i.e.,

there is no path from an agent in S to i .

◮ Lemma
Two simple (but strong) sufficient conditions to forbidding
any cyclic terminal class are:

1. There exists j ∈ N such that Aj takes values 0,1 only for ∅,N.
2. There exists j ∈ N such that all agents are influential for Aj .

A. Rusinowska c©2011 Influence and Centrality


