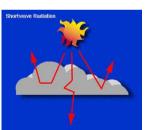
Ice nucleation in neat and polluted water

Eva Pluhařová, Luboš Vrbka and Pavel Jungwirth Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague


Motivation

 water in nature mostly freezes heterogeneously

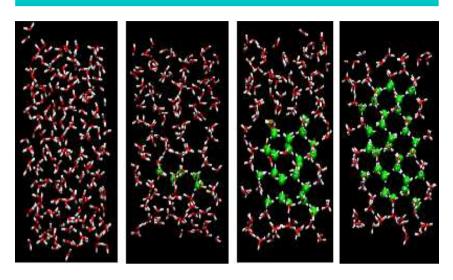
 homogeneous nucleation controls the formation of cirrus and polar stratospheric clouds affecting directly radiative of the Earth



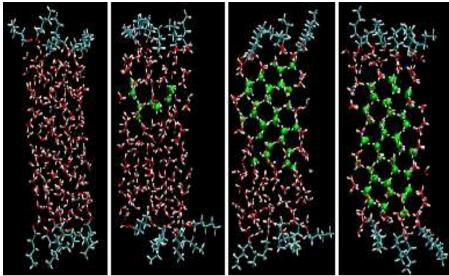
- Is homogeneous ice nucleation initiated preferentially at the surface or in the bulk?
- surface nucleation can not be confirmed using existing experimental data
- formation of ice nucleus can be affected by surface contamination

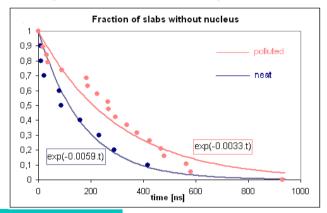
Methods

MD simulations


- NE6 water model
- meting temperature approx. 275 K

simulation cell


- Gromacs 3.3.1
- supercooled to 250 K
- periodic boundary conditions
- slab thickness 30 Å
- 192 water molecules
- 12 pentanol molecules (model of pollutant)
- long simulations (~100 ns)


Results

- simulations indicate that freezing starts mostly in the subsurface
- freezing is faster, if nucleus is formed in the center of the slab
- average time of freezing: 36 ns

- subsurface slightly preferred
- average time of freezing: 49 ns

Conclusion

- freezing starts from the subsurface region, subsurface is preferred for neat water more than for polluted water
- freezing rate depends on the location of nucleus in both cases
- formation of nucleus takes longer time and freezing rate is slower for polluted water