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Plan of the talk (joint with T.Strobl)

1. Q-manifolds. Morphisms and gauge symmetries.

2. Q-bundles and characteristic classes.

3. Examples (inspired by sigma models).

Alexei Kotov Characteristic classes associated to Q-bundles



Gelfand-Neimark and Serre-Swann

correspondence

Smooth manifold M
Commutative C ∗−algebra
A = C∞(M)

Submanifolds of M Ideals of A

Smooth maps
Morphisms of commutative
algebras Φ(fg) = Φ(f )Φ(g)

Vector fields X on M
Derivatives of A

X (fg) = X (f )g + f X (g)

Vector bundles on M Projective modules of A
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Graded manifolds

Graded commutative manifold

Graded commutative algebra:

◮ A = ⊕i A
i ,

◮ AiAj ⊂ Ai+j ,

◮ fg = (−1)ijgf for each
f ∈ Ai , g ∈ Aj

Graded smooth maps

Morphisms of graded
commutative algebras
Φ(fg) = Φ(f )Φ(g)

Vector fields X on M

of degree k

Graded derivatives of degree k :
X : Ai → Ai+k , such that
X (fg)=X (f )g+(−1)kj f X (g),
for each f ∈ A, g ∈ Aj
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Graded manifolds

As it follows from the definition of a graded commutative algebra,
A0 is commutative subalgebra of A and Ai are A0− modules.

Basic example: V = ⊕kV k is a Z−graded vector space;

A = C∞(V 0) ⊗ S∗(V + ⊕ V−) ,

where

S∗(W ) = T ∗(W )/〈a ⊗ b − (−1)deg(a) deg(b)b ⊗ a〉

for each graded vector space W and V± = ⊕±k>0V
k .

A graded manifold M is a locally ringed space (M,A) where M is
a topological space and A is a sheaf of graded commutative
algebras, such that M admits a cover by a countable set of
coordinate charts the restriction of A to which is isomorphic to the
basic example. The Euler field is the unique 0-th order derivative ǫ
defined by the property ǫ(f ) = jf for each f ∈ Aj .
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Graded manifolds

M is a graded manifold of degree p, iff A generated by Ai , i ≤ k

Example: E [p] - a graded manifold of degree p

Let p : E → M be a vector bundle of rank k, {Uα} an open cover
of M, and p−1(Uα) ≃ Uα × R

k a trivialization with base
coordinates xµ and fiber coordinates ηa.

We put deg xµ = 0, deg ηa = p. The Euler field is

ǫ = pηa ∂

∂ηa
.

Transition cocycle is linear in fiber coordinates, therefore it
preserves ǫ.

A ≃

{
Γ(M,Λ∗E ∗) , p ∈ 2Z + 1
Γ(M,S∗E ∗) , p ∈ 2Z .
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Q-manifolds

A Q-manifold (Q-manifold of degree p) is a graded manifold
(graded manifold of degree p) endowed with a vector field Q of
degree 1 which obeys the Master equation Q2 = 0.

A morphism of Q− manifolds is a degree preserving map such that
the push-forward of the Q− field on the source graded manifold is
well-defined and equals to the Q− field on the target manifold.

More precisely, given a morphism of graded manifolds
Φ : M1 → M2, the following chain property holds:

Q1 ◦ Φ∗ − Φ∗ ◦ Q2 = 0 ,

where Φ∗ : A2 → A1 is the pull-back map acting on functions.
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L∞ algebroids as Q1−manifolds

There is a one-to-one correspondence between Q1 manifolds and
Lie algebroids (E , ρ, [, ]). The morphism of Lie algebroids is the
morphism of the corresponding Q− manifolds.

Given a vector bundle E → M and a Q-structure on E [1], one has

A0 = C∞(M)
Q
−→ A1 = Γ(E ∗)

Q
−→ A2 = Γ(Λ2E ∗) .

We define:

◮ ρ(s)f 〉 = 〈Qf , s〉, f ∈ C∞(M), s ∈ Γ(E )

◮ 〈α, [s1, s2]〉 = 〈Qα, s1 ∧ s2〉 − ρ(s1)〈α, s2〉 + ρ(s2)〈α, s1〉,

α ∈ Γ(E ∗), si ∈ Γ(E ).
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Derived brackets

A graded Lie algebra g is a graded vector space g = ⊕ig
i together

with a bilinear operation of degree 0 [, ] : Λ2g → g which satisfies
the graded Jacobi condition:

[a, [b, c]] = [[a, b], c] + (−1)ij [a, [b, c]] ,

where a ∈ gi , b ∈ gj .

Example Vector fields on a graded manifold with respect to the
supercommutator [X1,X2] = X1X2 − (−1)k1k2X2X1, where Xi is a
derivative of degree ki .
A differential graded Lie algebra g is a graded Lie algebra together
with a differential δ of degree 1, which satisfies the compatibility
condition: δ[a, b] = [δa, b] + (−1)i [a, δb], where a ∈ gi .

Example Vector fields on a Q-manifold, δ = adQ : ad2
Q = 0
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Derived brackets

Let (g, δ) be a differential graded Lie algebra. Define the derived
bracket

[a, b]′δ := [a, [δ, b]]

If h is a graded commutative subalgebra of g, then (h, [, ]δ) is
graded Lie algebra with a shift of grading.

Example g the Lie algebra of vector fields on a Q1 manifold,
h = Γ(M,E ) acting by contractions. The induced derived bracket
defines the corresponding Lie algebroid structure.

In particular, E = TM, A = Ω(M), and Q is the de Rham operator
d. Then the derived bracket simply reproduces the known formula:

i[X ,Y ] = [iX , [d, iY ]] .
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L∞ algebroids as Q-manifolds

Examples

1. Graded Lie algebroid, iff Qm = 0, m 6= 1: Q1 defines a graded
Lie algebroid bracket

2. Differential graded Lie algebroid, iff Qm = 0, m > 1: Q1

defines a graded Lie algebroid bracket, Q0 a C∞(M)−linear
(fiber) differential compatible with the graded Lie algebroid
structure

3. Differential graded Lie 2-algebroid, iff Qm = 0, m > 2
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Q-manifolds. Morphisms, gauge symmetries.

We start with a simple example of g−valued 1-forms on a smooth
manifold M, where g is a Lie algebra. Given A ∈ Ω1(M, g),
interpreted as a connection in a trivial bundle M × G , Lie(G )= g,
we look at its curvature:

FA := dA +
1

2
[A,A] .

The group of G−valued functions on M is acting on connections
by:

Ag = g−1dg + Adg−1(A) ,

where g−1dg is the pull-back by g of the (left) Maurer-Cartan
form on the Lie group and Ad is the adjoint action.
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Q-manifolds. Morphisms, gauge symmetries.

The infinitesimal version is governed by a g−valued function :

δǫA :=
d

dt
Aexp(tǫ) |t=0= dǫ+ [A, ǫ] .

The condition of flatness, FA = 0, can be also regarded as
Maurer-Cartan equation for A.

Let us adapt this example to the language of dg or Q-manifolds.
As we already know, a Lie algebra can be treated as a Q-manifold
g[1], such that the algebra of functions becomes isomorphic to
Λ(g∗) with the Q-field given by the Chevalley-Eilenberg differential:

d(α)(η, η′) = −α([η, η′]) , α ∈ g∗ , η, η′ ∈ g

or equivalently (in a chosen basis): dξi = −1
2C i

jkξ
j ∧ ξk .
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Q-manifolds. Morphisms, gauge symmetries.

The product of T [1]M and g[1] is again a Q-manifold, the
Q-structure of which is given by the sum of de Rham and
Chevalley-Eilenberg derivations extended to the product in the
standard way. A g−valued 1-form on M can be thought of as a
degree preserving map ϕ : T [1]M → g[1] and its graph as a section
of the bundle

T [1]M × g[1] → T [1]M . (1)

The pull-back of ϕ is acting as follows: for each ω ∈ Ω(M),
α ∈ Λp(g∗) one has

ϕ∗(α⊗ ω) = α(A ∧, . . . ∧, A
︸ ︷︷ ︸

p times

) ∧ ω .
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Q-manifolds. Morphisms, gauge symmetries.

Any g−valued function ǫ, acting by the contraction ιǫ on
Ω(M) ⊗ Λ(g∗), can be considered as a super-derivation of degree
-1, which super-commutes with Ω(M). The last property implies
that it can be identified with a vertical vector field on the total
space of (1). The following identity holds ∀ω ∈ Ω(M), α ∈ Λp(g∗):

(dϕ∗ − ϕ∗ (d + dg)) (α⊗ ω) =

∑

k

(−1)k+1α(A ∧, . . . ∧,

k
︷︸︸︷

FA
∧, . . . ∧, A ) ∧ ω,

ϕ∗Lǫ (α⊗ ω) =
∑

k

α(A, ∧, . . . ∧,

k
︷︸︸︷

δǫA ∧, . . . ∧, A ) ∧ ω ,

where Lǫ = [Q, ιǫ], δǫA is the gauge transformation defined above.
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Q-manifolds. Morphisms, gauge symmetries.

Note that:

◮ The bundle map T [1]M × g[1] → T [1]M is a Q-morphism.

◮ Instead of thinking of an infinitesimal gauge transformation as
a flow on the space of connections, we define a vector field on
the total space of a bundle of Q-manifolds , the action of
which on the space of connections, regarded as sections of the
bundle, can be naturally induced.

◮ The curvature FA is the only obstruction for A to be a
Q-morphism.

◮ A is extended as a morphism of graded manifolds, but its
infinitesimal variation δǫA is extended (by the Leibnitz rule) as
a derivation covering A.
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Q-manifolds. Morphisms, gauge symmetries.

A general fact: the space of infinitesimal variations (the tangent
space) of a smooth map ψ : M → N can be identified with the
space of sections of the pullback bundle ψ∗(TN) or, equivalently,
with the space of derivations δ : C∞(N) → C∞(M) covering ψ:

δ(hh′) = δ(h)ψ∗(h′) + (−1)deg(δ) deg(h)ψ∗(h)δ(h′)

for any h, h′ ∈ C∞(N).

For each morphism (in the category of graded manifolds) of
Q-manifolds ψ : M1 → M2, the obstruction for ψ to be a
Q-morphism

F := Q1ψ
∗ − ψ∗Q2

is a derivation of degree 1 covering ψ or a section of ψ∗T [1]M2.
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Q-manifolds. Morphisms, gauge symmetries.

Let π : P → M be a principal G-bundle. The local description is:

◮ A local cover {Uα} of M;

◮ A trivialization π−1Uα ≃ Uα × G ;

◮ A transition cocycle gαβ : Uα ∩ Uβ → G which acts on fibers
by left multiplication.

The Atiyah algebroid A(P) of π is TP/G , such that the space of
sections is Γ(TP)G , the bracket is the Lie bracket on G-invariant
vector fields and the anchor map ρ is induced by π∗.

◮ The trivialization is ρ−1TUα ≃ TUα × g where g is identified
with left invariant vector fields on G ;

◮ The transition cocycle is g−1
αβ dgαβ + Ad

g−1
αβ

consisting of

gauge transformations.
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Q-manifolds. Morphisms, gauge symmetries.

◮ An Atiyah algebroid is a locally trivial bundle of Q-manifolds
over T [1]M with a typical fiber g[1] glued by a cocycle which
consists of gauge transformations:

Atiyah algebroid : A(P)[1] → T [1]M .

◮ A connection in π, which is nothing but a lift of vector fields
on M to G-invariant on the total space, is a section of this
bundle in the category of graded manifolds:

G − connection : T [1]M → A(P)[1] .
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Q-bundles

Let us examine once more the trivial example, which is a brick
underlying a global design. Suppose M = N ×F is a product of
two Q-manifolds N and F and π : M → N is a bundle given by
the projection to the first factor.

Proposition Let G be a graded Lie subalgebra of vector fields on
F , closed under the derived bracket. Then the space of functions
on N taking values in G is a Lie subalgebra of vertical vector fields
closed under the derived bracket on the total space N ×F .

Let us use the notation for the following Lie algebra of vector fields
on the total space:

G′ := adQ (C∞(N ,G)) ∩ D0(N ×F) .
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Q-bundles

Is is not a surprise for us that G′ consists of vertical vector fields.
Indeed, suppose we are given X ∈ G′, then there exists some
element ǫ ∈ G such that X = [Q, ǫ]. Both of two vector fields in
the commutator are π−projectable, since π∗(Q) = Q1 and
π∗(ǫ) = 0, thus π∗(X ) = 0.

It well-known that exponentiating a vertical vector field (at least
locally), we obtain a fiber-wisely acting automorphism, i.e. an
automorphism Ψ satisfying π ◦ Ψ = π. Apparently, the set of
fiber-wisely acting automorphisms is a subgroup of all
automorphisms of a bundle and a composition of Ψ with any
section of π is again a section. In this way we can now return to
the general, nontrivial bundle situation, formulating the following:
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Q-bundles

Definition A Q-bundle π : M → M1 with typical fiber F and a
holonomy algebra G ⊂ D<0(F) (a chosen graded Lie subalgebra of
vector fields on F , closed under the derived bracket) is a surjective
Q-morphism, satisfying the local triviality condition: there exists an
open cover {Ui} of M1 such that the restriction of π to each Ui

admits a trivialization π−1(Ui ) ≃ Ui ×F in the category of
Q-manifolds and this trivialization is glued over Ui ∩ Uj by inner
automorphisms which belong to exp(G′) where G′ is as above with
N = Ui ∩ Uj .

A gauge field is a section of π in the category of graded manifolds,
that is, a degree preserving map ϕ : M1 → M which obeys
π ◦ ϕ = Id. A gauge transformation (an infinitesimal gauge
transformation) is a fiber-wisely acting inner automorphism
(vertical inner derivation) of the total space of π.
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Characteristic classes of Q-bundles

Question:

What is a meaning of the Chern-Weil formalism
S(g∗)G → Heven(M,R) in terms of Q−bundles?

For a principal bundle we choose a connection A with the curvature
FA and a G-invariant polynomial χ ∈ S r (g∗)G , then obtain:

χ(FA
∧, , . . . ∧, ,FA) ∈ Ω2r

cl (M)

and take its cohomology class which does not depend on the
choice of connections.
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Characteristic classes of Q-bundles

The operator
F := Q1ϕ

∗ − ϕ∗Q2 , (2)

called the field strength, being a replacement of the curvature, is a
degree one derivation of functions on the target manifold M2

taking values in functions in the source manifold M1 and covering
ϕ∗.

T [1]M1
ϕ∗- T [1]M2

M1

Q1

6

ϕ
- M2

Q2

6

where the homological vector fields are considered as maps and,
being of degree one, the tangent bundle was shifted in degree so
that the maps are morphisms of graded manifolds.
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Characteristic classes of Q-bundles

Now one notes that both ways from M1 to T [1]M2 end in the
same fiber over M2; thus it is meaningful to define the difference
f : ϕ∗ ◦ Q1 − Q2 ◦ ϕ, covering ϕ

T [1]M2

M1
ϕ

-

f
-

M2

?

It is easy to convince oneself that for any function h ∈ C∞(M2)
and any α, β ∈ C∞(T [1]M2) one has

f ∗(h) = ϕ∗(h) , f ∗(dh) = F (h) , f ∗(αβ) = f ∗(α)f ∗(β) . (3)

We shall see below that f is a Q-morphism, if T [1]M2 is endowed
with a suitable Q-structure.
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Characteristic classes of Q-bundles

For any graded manifold M, the algebra of functions on T [1]M
admits a simple description as the algebra of super differential
forms Ω(M) (according to the Bernstein-Leites sign convention).
More precisely, the algebra of forms is generated by h and dh for
all functions h with the following relations:

h dh′ = (−1)deg(h)(deg(h′)+1)dh′ h ,

d(hh′) = dh h′ + (−1)deg(h)h dh′ .

A vector field X of degree p gives a contraction of degree p − 1
acting as follows:

ιX (f dh) = (−1)deg(f )(deg(X )+1)f X (h) .

The super Lie derivative along X , an operator of degree p, is
defined as the commutator

LX := ιXd + (−1)deg(X )dιX .
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Characteristic classes of Q-bundles

By construction, LX super-commutes with the de Rham
differential and agrees with the action of vector fields on functions,
LX (f ) = X (f ). Furthermore, one can also check that the Lie
derivative respects the super-Lie algebra of vector fields,
generalizing the formulas for even manifolds, such that the
following identities hold:

[LX ,LY ] = L[X ,Y ] , [LX , ιY ] = ι[X ,Y ] .

In particular, if Q is a homological vector field, we immediately
obtain that

[d,LQ ] = [LQ ,LQ ] = 0 .
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Characteristic classes of Q-bundles

As a corollary we conclude that the total space of T [1]M for a
Q-manifold M is a bi-graded manifold supplied with a couple of
super-commuting Q-structures which are of degree one w.r.t. the
first and the second gradings, respectively. Let us denote the total
differential as QTM = d + LQ .

Proposition The map f : M1 → T [1]M2 is a Q-morphism
w.r.t. the total Q-structure on the target, that is, the following
chain property holds:

Q1f
∗ − f ∗QTM2

= 0 . (4)
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Characteristic classes of Q-bundles

A natural example of the chain map property of f is provided by
the Weil algebra. It is well-known that, if one has a graded
morphism from Λ(g∗) of a Lie algebra g to some differential graded
commutative algebra A, which is not necessarily a chain map, we
can always extend it as a chain map, acting from the Weil algebra
W (g) = S∗(g∗) ⊗ Λ(g∗) to A. The construction is working as
follows: given a graded morphism Λ(g∗) → A, we identify it with
some A which belongs to the dg Lie algebra A⊗ g, where the
differential and the bracket are extended by linearity:

d(α⊗ X ) := dα⊗ X , [α⊗ X , β ⊗ Y ] := αβ ⊗ [X ,Y ] ,

where α, β ∈ A and X ,Y ∈ g.
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Characteristic classes of Q-bundles

Defining FA := dA + 1
2 [A,A] (we recognize the curvature of a

connection in a trivial bundle as a particular example), the required
map W (g) → A is

Φ ⊗ ω 7→ Φ( FA, . . . ,FA
︸ ︷︷ ︸

q times

)ω( A, . . . ,A
︸ ︷︷ ︸

p times

) , Φ ∈ Sq(g∗) , ω ∈ Λp(g∗) .

One can easily check that the grading and differential in the Weil
algebra are choosen is such a way that the Weil algebra becomes
isomorphic to Ω(g[1]) supplied with the above total differential.
Furthermore, the chain map described above is nothing but our
map f , if M2 = g[1] and A = C∞(M1).

S∗(g∗)G can be thought of as differential forms on g[1] annihilated
by the action of g by shifts and adjoint transformations.
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Characteristic classes of Q-bundles

Definition A differential form ω ∈ Ω(F) is called a (generalized)
G-base form, if Lǫ(ω) = 0 = LadQ(ǫ)(ω) for each ǫ ∈ G. We denote
the space of G-base forms as Ω(F)G .

Theorem Let π : M → N be a Q-bundle with a typical fiber F , a
holonomy algebra G, and ϕ a section of π (in the graded sense).
Then there is a well-defined map in cohomology

Hp(Ω(F)G ,QTF) → Hp(C∞(N ),QN ) ,

which does not depend on homotopies of ϕ.
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Some applications

Theorem Let (S, ω) be a symplectic Qp-manifold, p ∈ N+, N a
(p + 2)-dimensional manifold with boundary ∂N = Σ, and ϕ a
(degree preserving) map from T [1]N to S. Then

∫

N

f ∗ω = SAKSZ
Σ,(cl) (5)

where SAKSZ
Σ,(cl) is the (classical part of the) topological sigma model

on the (p + 1)-dimensional Σ obtained by the AKSZ-method.

◮ For p = 1 this gives the Poisson sigma model;

◮ For p = 2 the Courant sigma model;

◮ The above holds for arbitrary dimensions.
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Some applications

Given a Q-bundle the typical fiber F of which is a PQ-manifold
and the holonomy algebra is a subalgebra of the Lie algebra of all
hamiltonian vector fields of negative degree, we immediately obtain
the canonical characteristic class provided by Theorem: the
corresponding basic form on the fiber is simply the symplectic form.

For an arbitrary PQ-bundle (a Q-bundle with PQ-fibers) over a
base T [1]N for a smooth manifold N one has a straightforward
generalization of the 2d Chern class which is an even (odd)
cohomology class if p is odd (even), respectively.
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Some applications

In particular, for the Atiyah algebroid of a principal G−bundle for a
G the Lie algebra of which is supplied with a non-degenerate
invariant symmetric form, the corresponding PQ-bundle has a
typical fiber g[1] together with a symplectic form ω provided by the
invariant metric. The canonical characteristic class is nothing but
the 2d Chern class of the principal G−bundle and the Theorem
simply sounds as the well-known local statement:

“Second Chern form = d (Chern−Simons form)′′ .

For the case p = 1 the corresponding PQ-bundle covers a locally
trivial Poisson fibration and the corresponding characteristic class
gives the image in H3(M,R) of the Dixmier-Douady class of a
certain gerbe.
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