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Commutativity of algebra of functions on space X

is
localization of points of X

Gel’fand-Naimark:
equivalence of categories C0(X) ↔ X,

commutative C∗-algebras ↔ loc. comp. Hausdorff spaces;
points x ∈ X are characters (or 1-dim irreps) of X

x(f) := f(x)

Noncommutativity

[p, x] = 1 ⇒ ∆p∆x ≥ 1

localization of points is ruled out



Pathological spaces:

Equivalence relation R on X;

the quotient Y = X/R can be bad even for good X

Classically: function on the quotient

A(Y ) := {f ∈ A(X) ; f is R− invariant}

often not many, only constant functions: A(Y ) = C

NCG: a noncommutative algebra

A(Y ) := A(ΓR)

of functions on the graph ΓR ⊂ X×X of the equivalence relation

(compact support, of rapid decay,...)



convolution product:

(f1 ∗ f2)(x, y) =
∑

x∼u∼y
f1(x, u)f2(u, y)

involution:

f∗(x, y) = f(y, x)

the quotient Y = X/R is a noncommutative space with a non-

commutative algebra of functions A(Y ) := A(ΓR);

as good as X to do geometry:

exterior forms, metric, integration, vector bundles,

connections, curvature, ...

with new phenomena coming from noncommutativity



The celebrated noncommutative torus aka

the irrational rotation algebra

Aθ = C∞(T2
θ) ' C∞(S1/θZ)

More general examples

Toric noncommutative manifolds a.k.a. isospectral deformations

deformations of a classical Riemannian mfld;

satisfy all properties of a nc spin geometry:



Theorem 1 (Connes-L.). Let M be a compact Riemannian spin

manifold (no boundary) whose isometry group has rank r ≥ 2.

Then M admits natural isospectral deformations to noncommu-

tative geometries Mθ.

θ = (θjk = −θkj) θjk ∈ R j, k = 1, . . . , r

idea: deform the standard spectral triple describing the Rie-

mannian geometry of M along a torus embedded in the isometry

group to get an isospectral triple

(C∞(Mθ),H, D, γ)

recent noncompact examples



Deforming a torus action

M an m dim compact mfld no boundary (Riemannian, spin)

an isometric smooth action σ of Tr, n ≥ 2

decompose C∞(M) into spectral subspaces indexed by the dual
group Zr = T̃r: a t ∈ Zr labels a character of Tr

e2πis 7→ e2πi t·s

the r-th spectral subspace for σ on C∞(M): functions ft s.t.

σs(ft) = e2πi t·s ft,

for each f ∈ C∞(M), a sum f =
∑
t∈Zr ft;

a unique rapidly convergent series



θ = (θjk = −θkj) a real antisymmetric r × r matrix

the θ-deformation of C∞(M): replace the ordinary product by a
deformed product. on spectral subspaces is given by

ft ×θ gt′ := ft σ1
2t·θ

(gt′) = eπi t·θ·t
′
ftgt′,

denote C∞(Mθ) := (C∞(M),×θ)

the action σ of Tr extends to C∞(Mθ)

at the level of the C∗-algebra of continuous functions one has
a strict deformation quantization in the direction of the Poisson
structure defined by the matrix θ (cf. Rieffel)



the action of Tr on C∞(M) extends to an action on the deRham

complex Ω∗(M) commuting with the exterion derivative d

with the same techniques, one deforms the exterior product,

while unchanging d to get a complex

(Ω∗(Mθ), d)

with Ω0(Mθ) = C∞(Mθ)

it is not graded commutative in general

The Hodge operator ∗ on Ω∗(M) of the Riemannian metric is

twisted to an Hodge operator ∗θ on Ω∗(Mθ)



Finite summable spectral triple

(noncommutative spin geometries)

A spectral triple (A,H, D) is:

• a cmpl unital ∗-algebra A with a faithful ∗-rep. π : A → B(H),

H a (separable) Hilbert space,

• a self-adjoint operator D on H (“the Dirac operator”) s. t.

(i) (D+ i)−1 is compact

(ii) [D,π(a)] is bounded for all a ∈ A



The spectral triple is graded (or even) if there exists a Z2-grading

operator γ on H, γ = γ∗, γ2 = 1, s.t.

γD = −Dγ, π(a)γ = γπ(a), a ∈ A

With 0 < µ < ∞, the spectral triple is µ+-summable (of metric

dimension µ) if (D2 + 1)−1/2 is in the Dixmier ideal Lµ+(H).



M a compact Riemannian spin manifold (no boundary)

the canonical spectral triple on M

H := L2(M,S) the Hilbert space of spinors;

D the Dirac operator of the metric of M ;

C∞(M) act on spinors pointwisely:

⇒ (C∞(M),H, D)



Back to toric nc manifolds

From the canonical spectral triple on M : (C∞(M),H, D)

a double cover c : T̃r → Tr and a representation of T̃r on H by

unitary operators U(s), s.t

U(s)DU(s)−1 = D, U(s)π(f)U(s)−1 = π(σc(s)(f)).

P = (p1, p2, . . . , pr) infinitesimal gen.s of the toric action

U(s) = exp (2πi s · P )



For T ∈ B(H) an action T̃r 3 s 7→ αs(T ) := U(s)TU(s)−1

a spectral decomposition of T ∈ B(H): T =
∑
Tt ; t ∈ Zr and Tt

is homogeneous of degree r for the action of T̃r:

αs(Tt) = e2πir·sTt, ∀ s ∈ T̃r

a twisted representation on H of the smooth elements of B(H)

Lθ(T ) :=
∑

t
Tt exp

{
πi tjθjkpk

}

in particular we have Lθ(C
∞(M));

it is isomorphic, as an algebra, to C∞(Mθ):

Lθ(f ×θ g) = Lθ(f)Lθ(g)



think of Lθ as a quantization map from

Lθ : C∞(M) → C∞(Mθ)

the datum (Lθ(C
∞(M)),H, D) is a nc spin geometry

(also a twisted real structure J

and a Z2-grading γ of H – for the even case)

all spectral properties are unchanged;

the triples are m+-summable (of metric dimension m)

m = dimM



Some recent experimental findings: equivariant spectral triples

The guiding principle:

equivariance with respect to a ‘quantum symmetry’

this will build all the geometry from scratch

Symmetries

implemented by the action of a Hopf ∗-algebra Uq(g), a quantum

universal enveloping algebra;



Let U = (U ,∆, S, ε) be a Hopf ∗-algebra and A be a left U-module

∗-algebra, i.e., there is a left action . of U on A,

h . xy = (h(1) . x)(h(2) . y),

h . 1 = ε(h)1, (h . x)∗ = S(h)∗ . x∗,

notation ∆(h) = h(1) ⊗ h(2).

A U-equivariant ∗-representation π of A on V (a dense subspace

of H) is a ∗-representation of the left crossed product ∗-algebra

Ao U



defined as the ∗-algebra generated by the two ∗-subalgebras A
and U with crossed commutation relations

hx = (h(1) . x)h(2), h ∈ U , x ∈ A

that is, there is also a ∗-representation λ of U on V s. t.

λ(h)π(x) ξ = π(h(1) . x)λ(h(2)) ξ,

for all h ∈ U, x ∈ A and ξ ∈ V.

A linear operator D on V is equivariant if it commutes with λ(h),

for all h ∈ U and ξ ∈ V

Dλ(h) ξ = λ(h)D ξ



Examples:

toric noncommutative manifolds

(including and generalizing nc tori)

the manifold of quantum SU(2)

families of quantum two spheres

higher dimensional quantum orthogonal spheres

quantum projective spaces



A recent general strategy for
isospectral Dirac operators on compact quantum groups
(deforming simply connected simple compact Lie groups)

via a Drinfel’d twist

Neshveyev-Tuset, OA/0703161 ;

the quantum Dirac operator is of the form

Dq = F D F−1 , ⇒ Spec(Dq) = Spec(D)

with F a Drinfel’d twist implementing the deformed coproduct
and antipode on the symmetry Hopf algebra Uq(LieG))



“ There exists formulas for q-analogues of the Dirac operator

on quantum groups ..... ; let us call Q these “naive” Dirac

operators. Now the fundamental equation to define the thought

for true Dirac operator D which we used above implicitly on

the deformed 3-sphere (after suspension to the 4-sphere and for

deformation parameters which are complex of modulus one) is,

[D]q2 = Q .

where the symbol [x]q has the usual meaning in q-analogues, ...

The main point is that it is only by virtue of this equation that

the commutators [D, a] will be bounded .... ”

A. Connes, G. L., Noncommutative Manifolds, the Instanton

Algebra and Isospectral Deformations, CMP (2001).



After some initial skepticism, this programme was completed in

L. Dabrowski, G. Landi, A. Sitarz, W. van Suijlekom, J.C. Varilly

The Dirac operator on SUq(2), CMP (2005).

An isospectral nc geometry on the ‘manifold underlying’ SUq(2)

Proposition 2. The spectral triple (A(SUq(2)),H, D) is regular

and 3+-summable. It has simple dimension spectrum given by

Σ = {1,2,3}.
Its KO-dimension is 3.

The equivariance is with respect to an action of the quantum

universal envelopping algebra U = Uq(su(2))



The nc geometry of A(SUq(2))

The algebra:

With 0 < q < 1, let A = A(SUq(2)) be the ∗-algebra generated

by a and b, with relations:

ba = qab, b∗a = qab∗, bb∗ = b∗b,

a∗a+ q2b∗b = 1, aa∗ + bb∗ = 1

these state that the defining matrix is unitary

U =

(
a b

− qb∗ a∗

)



A(SUq(2)) is a Hopf ∗-algebra (a quantum group) with

• coproduct:

∆

(
a b

− qb∗ a∗

)
:=

(
a b

− qb∗ a∗

)
.
⊗
(

a b
− qb∗ a∗

)

• counit:

ε

(
a b

− qb∗ a∗

)
:=

(
1 0
0 1

)

• antipode:

S

(
a b

− qb∗ a∗

)
=

(
a∗ − qb
b∗ a

)



The symmetry:

The quantum universal envelopping algebra U = Uq(su(2)) is the

∗-algebra generated by e, f, k, with k invertible, and relations

ek = qke, kf = qfk,

k2 − k−2 = (q − q−1)(fe− ef),

the ∗-structure is simply

k∗ = k, f∗ = e, e∗ = f



The Hopf ∗-algebra structure

• coproduct:

∆k = k ⊗ k, ∆f = f ⊗ k+ k−1 ⊗ f, ∆e = e⊗ k+ k−1 ⊗ e

• counit:

ε(k) = 1, ε(f) = 0, ε(e) = 0

• antipode:

Sk = k−1, Sf = −qf, Se = −q−1e



The action of U on A
A natural bilinear pairing between U and A,

〈k, a〉 = q
1
2, 〈k, a∗〉 = q−

1
2, 〈e,−qb∗〉 = 〈f, b〉 = 1

gives commuting l. and r. U-module algebra structures on A:

h . x := x(1) 〈h, x(2)〉, x / h := 〈h, x(1)〉x(2)

we use the notation ∆(x) = x(1) ⊗ x(2)

The invertible antipode transforms the right action / into a sec-

ond left action of U on A, commuting with the first

h · x := x / S−1(ϑ(h)),

with the autom. ϑ, ϑ(k) := k−1, ϑ(f) := −e, ϑ(e) := −f



The representation theory of Uq(su(2))

The irreducible finite dim representations σl of Uq(su(2)) are la-
belled by nonnegative half-integers (the spin) l ∈ 1

2N0:

σl(k) |lm〉 = qm |lm〉,

σl(f) |lm〉 =
√

[l −m][l+m+ 1] |l,m+ 1〉,

σl(e) |lm〉 =
√

[l −m+ 1][l+m] |l,m− 1〉,
on the irreducible U-module Vl = span{|lm〉, m = −l, . . . , l}

σl is a ∗-representation, with respect to the hermitian scalar
product on Vl for which the vectors |lm〉 are orthonormal.

the brackets denote q-integers

[n] = [n]q :=
qn − q−n

q − q−1
provided q 6= 1



Left regular representation of A(SUq(2))

The left regular representation of A as an equivariant represen-

tation with respect to the two left actions . and · of U

With λ and ρ mutually commuting representations of U on V, a

representation π of the ∗-algebra A on V is (λ, ρ)-equivariant if

λ(h)π(x)ξ = π(h(1) · x)λ(h(2))ξ,

ρ(h)π(x)ξ = π(h(1) . x) ρ(h(2))ξ, ∀ h ∈ U , x ∈ A, ξ ∈ V

As a representation space the preHilbert space

V :=
∞⊕

2l=0

Vl ⊗ Vl, |lmn〉 := |lm〉 ⊗ |ln〉, m, n = −l, . . . , l



Two copies of Uq(su(2)) act via the irreps σl:

λ(h) = σl(h)⊗ id, ρ(h) = id⊗σl(h)

A (λ, ρ)-equivariant ∗-repr π of A(SUq(2)) on the Hilbert space
V is the left regular representation. It has the form:

π(a) |lmn〉 = A+
lmn|l

+m+n+〉+A−lmn|l
−m+n+〉,

π(b) |lmn〉 = B+
lmn|l

+m+n−〉+B−lmn|l
−m+n−〉,

with suitable explicit constants A±lmn, B
±
lmn.

Here l± := l ± 1
2, m± := m± 1

2, n± := n± 1
2



Spin representation

We amplify the left regular representation π of A to the spinor
representation π′ = π ⊗ id on

W := V ⊗ C2 = V ⊗ V1
2

We also set ρ′ = ρ⊗ id on W.

But, we replace λ on V by its tensor product with σ1
2

on C2:

λ′(h) := (λ⊗ σ1
2
)(∆h) = λ(h(1))⊗ σ1

2
(h(2))

The spinor representation π′ of A on W is (λ′, ρ′)-equivariant.

A basis {|jµn↑〉, |jµn↓〉} for W from its q-Clebsch-Gordan decomp.



Equivariant Dirac operator

Any self-adjoint operator on H = (V⊗C2)cl, that commutes with
both actions ρ′ and λ′ of Uq(su(2)) is of the form

D|jµn↑〉 = d
↑
j |jµn↑〉, D|jµn↓〉 = d

↓
j |jµn↓〉,

with d
↑
j and d

↓
j real eigenvalues of D; depend only on j;

Restrictions on eigenvalues comes by requiring boundedness of
the commutators [D,π′(x)] for x ∈ A

Unbounded commutators are obtained with the “naive q-Dirac”

d
↑
j =

2 [2j + 1]

q+ q−1
, d

↓
j = −d↑j [BibikovKulish]

q-analogues of the classical eigenvalues of D/ − 1
2;



D/ is the classical (‘round’) Dirac operator on the sphere S3;

An operator D with spectrum the one of the classical D/ [CL]

With eigenvalues “linear in j”:

d
↑
j = c

↑
1j + c

↑
2, d

↓
j = c

↓
1j + c

↓
2,

with c
↓
1c
↑
1 < 0 (for a nontrivial sign), all commutators [D,π′(x)]

for x ∈ A are bounded operators.

up to irrelevant scaling factors the choice of c↑j , c
↓
j is immaterial;

with d
↑
j = 2j + 3

2, d
↓
j = −2j − 1

2,

the spectrum of D (with multiplicity) is the classical one

Essentially the only possibility for a Dirac operator satisfying a
(modified) first-order condition



A full analysis of the Local Index Formula in

L. Dabrowski, et al.,
The local index formula for SUq(2), K-Theory (2005).

The dimension spectrum is worked out via a symbol map from
order zero pseudodifferential operators on the algebra describing
the space to a noncommutative version of the cosphere bundle

For all cases:
an interesting pseudo-differential calculus

Formulæ for Connes-Moscovici local index thm

A lot of experimental evidence for a general strategy for Local In-
dex Formulas on quantum groups and their homogeneous spaces



The next level

The spectral triple (A,H, D) is regular if

A ∪ [D,A] ⊂ OP0 :=
⋂
j∈N dom δj ;

δ is the unbounded derivation on B(H) : δ(a) = [|D|, a].

For a regular spectral triple, pseudodifferential operators of order

less or equal than zero make up the algebra Ψ0(A) generated by⋃
k∈N

δk(A ∪ [D,A]);

it is a subalgebra of OP0, Ψ0(A) ⊂ OP0.



The “smoothing operators” OP−∞ are a two-sided ideal in Ψ0(A),

OP−∞ := {T ∈ OP0 : |D|nT ∈ OP0 , ∀ n ∈ N}

contribute holomorphic terms; can be dropped in from many

computations. (in index computations)

Locality is insensitivity to smoothing perturbations:

a functional Φ : Ψ0(A) → C is local if

Ψ|OP−∞ = 0

locality makes complicated expressions computable;

allows to neglect irrelevant details



For a spectral triple is of dimension µ, the “zeta-type” functions

ζa(z) := TrH
(
a(|D|)−z

)
, a ∈ Ψ0(A),

are holomorphic for z ∈ C with Re z > µ

The spectral triple has dimension spectrum Σ ⊂ C, Σ a countable

set, if all ζa(z), a ∈ Ψ0(A), extend to meromorphic functions on

C with poles in Σ as unique singularities.

For Σ made only of simple poles, a trace on Ψ0(A)∫
− T := Ress=0 TrH

(
T |D|−s

)



skip this at a first reading

A real structure on (A,H, D)

We need to weaken the original definition in order to obtain a

nontrivial spin geometry on the coordinate algebra of quantum

groups and of associated quantum (homogeneous) spaces

A real structure J for the spectral triple (A,H, D) is given by an

antilinear isometry J on H such that

J2 = ±1, JD = ±DJ,

[π(a), Jπ(b)J−1] ∈ I, [[D,π(a)], Jπ(b)J−1] ∈ I, a, b ∈ A,



with I an operator ideal of ‘infinitesimals’

If the spectral triple has grading γ, there is in addition

Jγ = ±γJ

The three signs above depend on the KO-dimension of the triple

(modulo 8)

The original definition corresponds to I = 0

Examples coming from quantum groups require I = OP−∞



skip this at a first reading

An antiunitary operator J is equivariant if it leaves V invariant

and if it is the antiunitary part in the polar decomposition of

an antilinear (closed) operator T that implements the antilinear

involutory automorphism h 7→ (Sh)∗, S the antipode of U, i.e.

Tλ(h) ξ = λ(S(h)∗)T ξ,

for all h ∈ U and ξ ∈ V.

A (real graded) spectral triple (A,H, D, γ, J) is U-equivariant if

the representation of A and the operators D and J are equivariant

(and γ commutes with the equivariant representation).



The local index formula for 3-dimensional geometries

A Fredholm index of the operator D, ϕ : K1(A) → Z.

ϕ([u]) := Index(PuP ) = dimkerPUP − dimkerPU∗P.

With F = SignD and P = 1
2(1 + F ).

Computed by pairing K1(A) with “a nonlocal” cyclic cocycle

χ1(a0, a1) = Tr(a0 [F, a1]) ;

the Fredholm module (H, F ) over A = A(SUq(2)) is 1-summable

since all commutators [F, π(x)] are trace-class



The C–M local index theorem expresses the index map in terms
of a local cocycle φodd = (φ1, φ2)

φ1(a0, a1) :=
∫
− a0 [D, a1] |D|−1 −

1

4

∫
− a0∇([D, a1]) |D|−3

+
1

8

∫
− a0∇2([D, a1]) |D|−5,

φ3(a0, a1, a2, a3) :=
1

12

∫
− a0 [D, a1] [D, a2] [D, a3] |D|−3,

∇(T ) := [D2, T ]

With [F, a] traceclass for each a ∈ A,

φ1(a0, a1) =
∫
− a0 δ(a1)F |D|−1 −

1

2

∫
− a0 δ

2(a1)F |D|−2

+
1

4

∫
− a0 δ

3(a1)F |D|−3,

φ3(a0, a1, a2, a3) =
1

12

∫
− a0 δ(a1) δ(a2) δ(a3)F |D|−3.



With the additional use of a simple dimension spectrum not con-
taining 0 and bounded above by 3 ; the Chern character χ1 is
equal to φodd − (b+B)φev where the η-cochain φev = (φ0, φ2) is

φ0(a) := Tr(Fa |D|−z)
∣∣∣
z=0

,

φ2(a0, a1, a2) :=
1

24

∫
− a0 δ(a1) δ

2(a2)F |D|−3;

φ1 = χ1 + bφ0 +Bφ2, φ3 = bφ2.

With the same conditions on the dimension spectrum and com-
mutators [F, a], the local Chern character φodd = ψ1−(b+B)φ′ev,

ψ1(a0, a1) := 2
∫
− a0 δ(a1)P |D|−1 −

∫
− a0 δ

2(a1)P |D|−2

+
2

3

∫
− a0 δ

3(a1)P |D|−3,



and φ′ev = (φ′0, φ
′
2),

φ′0(a) := Tr(a |D|−z)
∣∣∣
z=0

,

φ′2(a0, a1, a2) := −
1

24

∫
− a0 δ(a1) δ

2(a2)F |D|−3.

The term in P |D|−3 would vanish if the latter were traceclass

[Connes] (this is the statement that P has metric dimension 2)

Summing up, up to coboundaries, the cyclic 1-cocycles χ1 can

be given by means of one single (b, B)-cocycle ψ1:

χ1 = ψ1 − bβ, where β(a) = 2Tr(Pa |D|−z)
∣∣∣
z=0



a vast beautiful new territory out there

that cries to be explored

thank you for the moment !!


