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Commutativity of algebra of functions on space X
IS
localization of points of X

Gel'fand-Naimark:
equivalence of categories Cp(X) « X,

commutative C*-algebras « loc. comp. Hausdorff spaces;
points x € X are characters (or 1-dim irreps) of X

z(f) == f(z)

Noncommutativity
[p,z] =1 = ApAx > 1
localization of points is ruled out



Pathological spaces:

Equivalence relation R on X;
the quotient Y = X/R can be bad even for good X

Classically: function on the quotient

AY) ={fe A(X) ; f is R —invariant}

often not many, only constant functions: A(Y) =C

NCG: a noncommutative algebra

AY) == A(TR)

of functions on the graph I'p C X x X of the equivalence relation
(compact support, of rapid decay,...)



convolution product:

(fr*fo)(z,y) = > fi(z,u)fo(u,y)

T~UNY

involution:

ff(x,y) = f(y,x)

the quotient Y = X/R is a noncommutative space with a non-
commutative algebra of functions A(Y) := A(l'r);

as good as X to do geometry:
exterior forms, metric, integration, vector bundles,

connections, curvature, ...

with new phenomena coming from noncommutativity



T he celebrated noncommutative torus aka
the irrational rotation algebra

Ag = C™(T3) ~ C>(S/0z)

More general examples
Toric noncommutative manifolds a.k.a. isospectral deformations

deformations of a classical Riemannian mfld;
satisfy all properties of a nc spin geometry:



Theorem 1 (Connes-L.). Let M be a compact Riemannian spin
manifold (no boundary) whose isometry group has rank r > 2.
Then M admits natural isospectral deformations to noncommu-
tative geometries My.

9=(9]k=—<9k]) ijGR 1, k=1,...,r

idea: deform the standard spectral triple describing the Rie-
mannian geometry of M along a torus embedded in the isometry
group to get an isospectral triple

(COO(M9)7 H, D, /7)

recent nhoncompact examples



Deforming a torus action
M an m dim compact mfld no boundary (Riemannian, spin)
an isometric smooth action o of T", n > 2

decompose C°(M) into spectral subspaces indexed by the dual

group Z" = T": a t € Z" labels a character of T
eQ?T’iS . 627775 t-s

the r-th spectral subspace for o on C*°(M): functions f; s.t.

os(fr) = 2™ S fy,

for each f € C*°(M), a sum f =3 ,cpr ft;
a unique rapidly convergent series



0 = (0, = —0k;) a real antisymmetric r x r matrix

the 6-deformation of C°*°(M): replace the ordinary product by a
deformed product. on spectral subspaces is given by

) =™ t-0-t

ft Xg gy = fi O-%t_g(gt/ ftgy,

denote C®(Mp) = (C°°(M), xp)
the action o of T" extends to C°°(My)
at the level of the C*-algebra of continuous functions one has

a strict deformation quantization in the direction of the Poisson
structure defined by the matrix 6 (cf. Rieffel)



the action of T" on C°°(M) extends to an action on the deRham
complex Q*(M) commuting with the exterion derivative d

with the same techniques, one deforms the exterior product,
while unchanging d to get a complex

(€2%(Mp),d)
with QO(MQ) = COO(MQ)

it is not graded commutative in general

The Hodge operator « on Q*(M) of the Riemannian metric is
twisted to an Hodge operator xg on Q2*(Mpy)



Finite summable spectral triple
(noncommutative spin geometries)

A spectral triple (A, H, D) is:

e acmpl unital x-algebra A with a faithful x-rep. = : A — B(H),
H a (separable) Hilbert space,

e a self-adjoint operator D on ‘H (“the Dirac operator”) s. t.
() (D+0D)~1is compact

(ii) [D,w(a)] is bounded for all a € A



The spectral triple is graded (or even) if there exists a Z»-grading
operator v on H, v = ~*, 2 =1, s.t.

vD = —Dx, w(a)y =vn(a), a€A

With 0 < u < oo, the spectral triple is ptT-summable (of metric
dimension u) if (D24 1)~1/2 is in the Dixmier ideal LT (H).



M a compact Riemannian spin manifold (no boundary)
the canonical spectral triple on M

H = L?(M,S) the Hilbert space of spinors;

D the Dirac operator of the metric of M;

C°(M) act on spinors pointwisely:

= (C>*°(M),H, D)



Back to toric nc manifolds
From the canonical spectral triple on M : (C*®°(M),H, D)

a double cover ¢ : T" — T" and a representation of T" on H by
unitary operators U(s), s.t

U(s)DU(s)" ' =D,  UGS)r(HU(s) ™ =7(o,5) ().

P = (p1,po,...,pr) infinitesimal gen.s of the toric action

U(s) = exp (2wis- P)



For T € B(H) an action T" 3 s as(T) 1= U(s)TU(s)~?

a spectral decomposition of T € B(H): T =T} ; t € Z" and T}
is homogeneous of degree r for the action of T7:

as(T)) = ™57, vV seT”

a twisted representation on H of the smooth elements of B(H)

L@(T) — Zt Ty exp {ﬂ'i tjejkpk}

in particular we have Ly(C°*°(M));
it is isomorphic, as an algebra, to C°°(Mpy):

Lo(f x9g9) = Lo(f)Lg(9)



think of Ly as a quantization map from

Lg : COO(M) — COO(MQ)

the datum (Ly(C*®°(M)),H, D) is a nc spin geometry
(also a twisted real structure J
and a Z»-grading v of H — for the even case)

all spectral properties are unchanged;

the triples are mtT-summable (of metric dimension m)
m =dim M



Some recent experimental findings: equivariant spectral triples

The guiding principle:

equivariance with respect to a ‘quantum symmetry’
this will build all the geometry from scratch

Symmetries

implemented by the action of a Hopf x-algebra U;(g), a quantum
universal enveloping algebra;



Letd = (U, A, S,e) be a Hopf x-algebra and A be a left /-module
x-algebra, i.e., there is a left action > of U/ on A,

h > Ty = (h(l) > CC)(h(Q) > y)7

h>1=¢e(h)l, (h>z)"=S(h)">2",

notation A(h) = h(]_) &) h(2>

A U-equivariant x-representation = of A on V (a dense subspace
of H) is a x-representation of the left crossed product x-algebra

A XU



defined as the x-algebra generated by the two x-subalgebras A
and U with crossed commutation relations

h$:(h(1)l>x)h(2), held, e A

that is, there is also a x-representation A of &/ on V s. t.

A(h) () & = 7(h(y>x) A(h(2)) &,
forall hel, z€ Aand £ € V.

A linear operator D on V is equivariant if it commutes with \(h),
forall held and £ €V

DA(R) € = A(h)D ¢



Examples:

toric noncommutative manifolds
(including and generalizing nc tori)

the manifold of quantum SU(2)
families of quantum two spheres
higher dimensional quantum orthogonal spheres

quantum projective spaces



A recent general strategy for
iIsospectral Dirac operators on compact quantum groups
(deforming simply connected simple compact Lie groups)

via a Drinfel’d twist
Neshveyev-Tuset, OA/0703161 ;

the quantum Dirac operator is of the form

Dy,=FD F1 = Spec(Dg) = Spec(D)

with F a Drinfel’'d twist implementing the deformed coproduct
and antipode on the symmetry Hopf algebra U,;(LieG))



“ There exists formulas for g-analogues of the Dirac operator
on quantum groups ..... . let us call Q these "naive’ Dirac
operators. Now the fundamental equation to define the thought
for true Dirac operator D which we used above implicitly on
the deformed 3-sphere (after suspension to the 4-sphere and for
deformation parameters which are complex of modulus one) is,

[D]2=Q.

where the symbol [z], has the usual meaning in g-analogues, ...
The main point is that it is only by virtue of this equation that
the commutators [D, a] will be bounded .... "



After some initial skepticism, this programme was completed in

An isospectral nc geometry on the ‘manifold underlying’ SU4(2)

Proposition 2. The spectral triple (A(SU4(2)),H, D) is regular
and 31t-summable. It has simple dimension spectrum given by
> =4{1,2,3}.

Its KO-dimension is 3.

The equivariance is with respect to an action of the quantum
universal envelopping algebra U = U,(su(2))



The nc geometry of A(SU4(2))
The algebra:

With 0 < ¢ < 1, let A = A(SU4(2)) be the x-algebra generated
by a and b, with relations:

ba = qab, b*a = qab”, bb* = b*D,

a*a + ¢°b*b = 1, aa* + bb* =1

these state that the defining matrix is unitary

a b
o= o)



A(SU4(2)) is a Hopf x-algebra (a quantum group) with

e Coproduct:

e Counit;:

a by. (1 O
. —qgb* a*] " \O0 1

a b\ [(a® —qgb
(S )= )

e antipode:



The symmetry:

The quantum universal envelopping algebra U = U,(su(2)) is the
x-algebra generated by e, f, k, with k invertible, and relations

ek = qke, kf = aqfk,

k2 —k 2= (q¢—q ) (fe—ef),

the x-structure is simply

K=k, ff=e €"'=Ff



The Hopf x-algebra structure

e coproduct:

Ak=k®k Af=Ffk+k 10f Ae=cxk+k lxe

e Counit;:

e(k) =1, e(f) =0, e€(e)=0

e antipode:

Sk=k"1 Sf=—qf, Se=-—q le



The action of 4/ on A

A natural bilinear pairing between & and A,

ko) =q3, (k,a*)=gq 3,  {e,—qb") = (f,b)=1

gives commuting I. and r. U-module algebra structures on A:

h>x = x(1> <h,x(2)>, r<dh = <h,aj(1)> x<2)

we use the notation A(z) = z(1) ® z(p)

The invertible antipode transforms the right action < into a sec-
ond left action of U4 on A, commuting with the first

h-z:=x15 1(9(h)),
with the autom. ¥, O(k) ;= k™1, O(f) = —e, O(e) = —f



The representation theory of U,(su(2))

The irreducible finite dim representations o; of Uy(su(2)) are la-
belled by nonnegative half-integers (the spin) [ € %No:

oy(k) |tm) = ™ |im),

oy (f) [tm) = \/Il = m]ll 4+ m + 1] I, m + 1),

o1(e) |lm) = /Il = m + 1][l + m] |l,m — 1),

on the irreducible /-module  V; = span{|lm), m = —I,...,l}

o; IS a x-representation, with respect to the hermitian scalar
product on V; for which the vectors |lm) are orthonormal.

the brackets denote g-integers

n

q" —q~

— provided q#1
q—4qg

[n] = [nlq =



Left regular representation of A(SU4(2))

The left regular representation of A as an equivariant represen-
tation with respect to the two left actions > and - of U

With A and p mutually commuting representations of 4/ on V, a
representation = of the x-algebra A on V is (A, p)-equivariant if

A(h) m(x)§ = w(h(qy - ) A(h(2))E,
p(h) m(x)é = W(h(l) > ) p(h(Q))g, Vheld, xe A £V

AsS a representation space the preHilbert space

oo
V= VeV, [ Imn) ;= |lm) ® |In), m,n = —1l,...,1
2[=0



Two copies of Uy(su(2)) act via the irreps oy:

A(h) = oy(h) ®id, o(h) = id ®a;(h)

A (A, p)-equivariant =-repr m of A(SUq4(2)) on the Hilbert space
V is the left regular representation. It has the form:

w(a) [lmn) = Al_l,r_nn|l+m+n+> + A;rnn|l_m+n+>,

w(b) |lmn) = BT ITmTn™) + Bl:rm|l_m+n_>,

Imn

+ B:I:

with suitable explicit constants A;" . B; - .

Here liizl:t%, mi:zmzlz%, niizn:t%



Spin representation

We amplify the left regular representation « of A to the spinor
representation 7’ = 7 ® id on

W=VRC?°=VeV;
2
We also set p' = p®id on W.

But, we replace A on V by its tensor product with o1 on C2:
2

N = ® a%)(Ah) = A(h(1)) ® a%(h(z))
The spinor representation «’ of A on W is (), p')-equivariant.

A basis {|junT), |junl)} for W from its ¢-Clebsch-Gordan decomp.



Equivariant Dirac operator

Any self-adjoint operator on 'H = (V@CQ)CZ, that commutes with
both actions p’ and X of U,(su(2)) is of the form

D|junty = dl|junl),  Dljunl) = d}|junl),

with d} and d} real eigenvalues of D; depend only on j;

Restrictions on eigenvalues comes by requiring boundedness of
the commutators [D,n'(x)] for x € A

Unbounded commutators are obtained with the “naive g-Dirac”

1 2[25+1] L . .
d; = i ta 1 d; = —d; [BibikovKulish]

g-analogues of the classical eigenvalues of ) — %;




) is the classical (‘round’) Dirac operator on the sphere S3:
An operator D with spectrum the one of the classical Ip [CL]

With eigenvalues “linear in 3"
d}=c}j—|—c£, d#zc%j—l—c%,

with c%cl < 0 (for a nontrivial sign), all commutators [D, n'(z)]
for x € A are bounded operators.

up to irrelevant scaling factors the choice of cT-,c} IS immaterial;
: T _n:1 3 L .1

with d; = 27 + 5, d; = —2j — 3,

the spectrum of D (with multiplicity) is the classical one

Essentially the only possibility for a Dirac operator satisfying a
(modified) first-order condition



A full analysis of the Local Index Formula in

The dimension spectrum is worked out via a symbol map from
order zero pseudodifferential operators on the algebra describing
the space to a noncommutative version of the cosphere bundle

For all cases:
an interesting pseudo-differential calculus

Formulae for Connes-Moscovici local index thm

A lot of experimental evidence for a general strategy for Local In-
dex Formulas on quantum groups and their homogeneous spaces



The spectral triple (A, H, D) is regular if
0._ j.
AU[D,A] c OPY:.= ﬂjeNdomd ,
6 is the unbounded derivation on B(H) : 6(a) = [|D|, a].
For a regular spectral triple, pseudodifferential operators of order
less or equal than zero make up the algebra WO(A) generated by

| oF(AU D, AD;
keN

it is a subalgebra of OP9, w0(A4) c OPY.



The “smoothing operators’ OP~°° are a two-sided ideal in \IJO(A),

OP > :={T eOP® : ID|"T € OP® ,VneN}

contribute holomorphic terms; can be dropped in from many
computations. (in index computations)

l_ocality is insensitivity to smoothing perturbations:
a functional & : W9(4) — C is local if

Vgp-ee =0

locality makes complicated expressions computable;
allows to neglect irrelevant details



For a spectral triple is of dimension u, the “zeta-type” functions

Ca(2) == Try(a(IDNTZ),  a€WO(A),

are holomorphic for z € C with Rez > pu

The spectral triple has dimension spectrum > C C, > a countable
set, if all (u(2), a € WO(A), extend to meromorphic functions on
C with poles in X as unique singularities.

For X made only of simple poles, a trace on WO(A4)

7[T = Res,—q TrH<T|D|_S)



A real structure on (A, H, D)

We need to weaken the original definition in order to obtain a
nontrivial spin geometry on the coordinate algebra of quantum
groups and of associated quantum (homogeneous) spaces

A real structure J for the spectral triple (A, H, D) is given by an
antilinear isometry J on ‘H such that

J? = +1, JD = +DJ,

[7(a), Jr(b)J 1] € T, ([D,7(a)],Jr(0)J Y eZ, a,beA,



with Z an operator ideal of ‘infinitesimals’

If the spectral triple has grading ~, there is in addition
Jy = x~vJ

The three signs above depend on the KO-dimension of the triple
(modulo 8)

T he original definition corresponds to Z =0

Examples coming from quantum groups require Z = OP™°



An antiunitary operator J is equivariant if it leaves V invariant
and if it is the antiunitary part in the polar decomposition of
an antilinear (closed) operator T that implements the antilinear
involutory automorphism h — (Sh)*, S the antipode of U, i.e.

TA(h) € = A(S(R)")T &,
for all heUd and £ € V.

A (real graded) spectral triple (A, H,D,~,J) is U-equivariant if
the representation of A and the operators D and J are equivariant
(and v commutes with the equivariant representation).



The local index formula for 3-dimensional geometries

A Fredholm index of the operator D, ¢ : K1(A) — Z.

o([u]) ;= Index(PuP) = dimker PUP — dim ker PU*P.
With F = SignD and P = (1 + F).

Computed by pairing K1(A) with “a nonlocal” cyclic cocycle

x1(ao,a1) = Tr(ag [F,a1]) ;

the Fredholm module (H, F') over A = A(SU4(2)) is 1-summable
since all commutators [F, 7 (x)] are trace-class



The C—M local index theorem expresses the index map in terms
of a local cocycle ¢oqq = (¢1, P2)

$1(ag,a1) = ag [D,a1] D% ~ 5 ag V([D,a1]) D3
+ - f a0 V2D, a1 DI,

1 _
¢3(ap,a1,ap,a3) 1= EY[GO (D, a1] [D, a5 [D,a3] |D| >,

V(T) := [D?,T]
With [F,a] traceclass for each a € A,
$1(a0,a1) = f agd(a)FIDI ™ — - f ag6?(ar) FID| 2
+, f a08*@)FIDI 3,

1
#3(ag,a1,a2,a3) = -5 agd(a1) 6(az) 8(az) F|D| >,



With the additional use of a simple dimension spectrum not con-
taining 0 and bounded above by 3 ; the Chern character 7 is

equal to ¢oqq — (b + B)gpev Where the n-cochain ¢ev = (¢, ¢2) is
¢o(a) := Tr(Fa|D|™7)

2=0’
1 _
¢2(ag,a1,a2) = 2—47[% 5(a1) 6%(ap)F|D|3;

$1 = x1 + boo + Boo, »3 = bgo.

With the same conditions on the dimension spectrum and com-
mutators [F, a], the local Chern character ¢oqq = 1 — (b+ B) oLy,

YP1(ag,a1) = 27[% 5(a1)P|D|™1 - 7[610 5%(a1)P|D| "2

2
+24 a0 8> (@)PID| 2,



and ¢y = (¢, ¥5),

¢o(a) :=Tr(a|D|™%)|__,
1

#2(ag, a1,02) 1=~ ag 6(a1) 6%(az)F|D| 3.

The term in P|D|=3 would vanish if the latter were traceclass
[Connes] (this is the statement that P has metric dimension 2)

Summing up, up to coboundaries, the cyclic 1-cocycles x1 can
be given by means of one single (b, B)-cocycle 1:

X1 =1 — b3, where [B(a)=2Tr(Pal|D| %)

z=0



a vast beautiful new territory out there

that cries to be explored

thank you for the moment !!



