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0.Abelian extensions of Lie algebras

Let 0 > a— § — g — 0 be a topologically
split short exact sequence of locally convex
Lie algebras; a abelian

(an abelian extension of g by a). Then

a carries a g-module structure; (z,a) — z.a.

Let 0: g — g cont. lin. section of ¢ =
w:gxg—a, w(z,y) = [o(z)o(y)]-o(lz,y]).

Then w is a cont. 2-cocycle:

Z rz.w(y,z) —w([z,y],z) =0

cyc.

and g = a @, g with the bracket

[(a,z),(d,2)] = (z.d/ —2'.a +w(x, ), [z,2]).

Ext(g,a) & H?(g,a) := Z%(g,a)/B*(g,a),

(2nd Lie algebra cohomology)
where Z2(g,a) (cont. 2-cocycles) and

B?(g,a) = {w(z,y) = £([z,y]),£ € Hom(g,a)}.
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1. The classical algebras

¢t simple fin. dim. complex Lie algebra
Loop algebra: £(¥) := C>®(St,¢), SI =R/Z
Lf, g](®) == [f (), g(D)].

Universal central extension £(£) = C @ L(¥)
with cocycle

1
w(f.0) = [ w(f.g)dt= [ r(f.dg),
(k is the Cartan—Killing form).

Affine Kac—Moody algebra (untwisted):
L(€) x C4.

Virasoro alg.: vit = C @, V(SY)¢ (cent. ext.)
n(f$,95) = lo f'g' — g"f dt.

Both (affine Kac-Moody and Virasoro) are
contained in a central extension:

C @yyopy (L&) x V(SH).

What is H2(L(£) x V(SD)¢, C)7?



Goals and Problems

M: a compact connected smooth manifold
V(M): smooth vector fields on M
t a finite-dim. Lie algebra (not nec. simple)

Problem 1: Determine all central extensions
of C°(M,¢).

Problem 2: Determine V(M)-covariant
central extensions V ¢, C*°(M,t) by natural
V(M)-modules V. Are there natural universal
extensions of this type?

Problem 3: Determine the “twists” of the
extensions (V @, C°(M,8)) x V(M), i.e., the
space H2(V(M), V).

Problem 4: Which of these extensions are
integrable to Lie group extensions?

Problem 5: Can we do the same for aut(P),

where gq: P — M is a principal K-bundle?

(Trivial case: aut(Mx K) & C®°(M,e)xV(M))
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2. Abelian extensions of semidirect sums

h = n x g topological Lie algebra, ¢: h — g.
V' a topological h-module,
VT (n-invariants in V') is a closed h-submodule

Inflation: I: H?(g, V") — H2(h,V), [w] — [¢*w]

Restrictions: Ry: H2(h,V) — H?(g,V)
Ro: H2(h,V) — H2(n,V)lo

H2(n, V)8l consists of those classes [f] for
which there exista a cont. bilinear 8: gxn — V
with x.f = dy(0(x)) for =z € g. Equivalently:

z.(v,n) ;== (xz.v+0(x)(n),xz.n)

defines an actionofgonn =V &fnandnxg
IS an extension of nx g by V.
Thm. If nis perfect and V = V" then

(Rn, Rg): H2(h,V) — H>(n, 8l @ H2(g, V)

IS a linear isomorphism.



3. Central extensions of C°°(M,£)

¢ fin. dim. Lie alg., g = C°°(M, %)

k € Sym2(e, V) inv. symm. bilinear

n € C2(¢, V) = Alt2(¢, V) 2-cochain
Three fundamental types of cocycles:

(D) ws(f,9) = [x(f,dg)]
values in Q (M, V) := QI(M,V)/dC>®(M, V)

(II) wy(f,g9) =n(f,g9) € C*°(M,V),; den = 0.

() wrn(f,9) = w(f,dg) —rk(g,df) —d(n(f, g))
values in QY(M, V) if dn = C(k), where
C(k)(z,y,z) = x([z,y], z) is assoc. 3-cocycle

Thm. (N., Wagemann, '05;

based on Haddi '92, Zusmanovich '94)

For ¢ perfect and w € Z2(g,R), there exist
k; € Sym2(e, V)t n, € C2(,, V), i = 1,2,3,
and

B1 € ﬁl(M, V1)’ (a closed 1-current),

B € C*(M,V5)" (a distribution),

B3 € QY(M,V3) (a 1-current) with

(w] = [ﬁlowml‘|‘620W772‘|‘63ow%3,773] € Hz(gaR)-
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More on the fundamental cocycles

e All coboundaries in B2(g,R) are of type (II):
Bowy, B€CO(M,E), n(f,g)=1[f 9]

e Type (II) is needed iff H2(¢,R) # 0.

e Type (III) is needed iff 3k € Sym2(¢, R)*
such that C(k) is non-zero 3-coboundary.

e [C(k)] = 0 = k vanishes on Levi subalgs;
Converse is false: 4 50-dim. counterex.
(Angelopoulos/Benayadi '93).

e If £ is semisimple, then type (I) suffices. If
Ky € x € — V() is universal, then
Wi, € Z2(g, QT (M, V(£)) is universal for g.

Example: ¢ =T*h =bh* x b, h simple
k((a,z), (. 2") = () + a(z’) and
n((a, ), (o, 2")) = o/(z) — a(2") satisfy
C(k) = dgn.



An instructive exact sequence:

Thm: (N., Wagemann; M. Bordemann '97)
For each finite-dimensional Lie algebra & and
each trivial &-module V, there exists an exact
seguence

{0} — H?(¢,V)—H'(t, Hom(¢t,V))—
sym2(¢, V) —< L H3(E, V)— H2(¢, Hom(E, V))

—H(e, Sym2(e, V)).

Note: C(k) = dgn is equivalent to

¢(2)(y) = r(z,y)—n(z,y) € Z' (¢, Hom(E, V).



4. Classification of twists

The spaces
3 = QY(M,R),C>®(M,R), Q1 (M, R)

are V(M )-modules and the fund. cocycles
W = wg, wn, wk,n are V(M )-invariant.

We thus obtain abelian extensions

(3 Bw C°(M,€)) x V(M)
of C°(M,8) x V(M).

Its twists are classified by the elements of the
spaces

H2(V(M), 2" (M, R)),

H2(V(M),C>(M,R)), and

H2(V(M), Q1 (M,R)).



Cocycles from differential forms

Source 1: Each closed p-form w € QP(M,R)
defines a Lie algebra cocycle in ZP(V(M),C*®(M,R)).

Thm. (Shiga/Tsujishita '77) The kernel of
the natural homomorphism

®: Hir(M,R) - H*(V(M),C>*°(M,R))

is the ideal of all classes subordinated to the
Pontrjagin classes py1,...,p[, 4] OF M.

Source 2: Each closed p+g¢-form w € QPTI(M,R)
also defines a Lie algebra p-cocycle on V(M)
with values in

QUM,R) = QI4(M,R)/dQ?~ (M, R),

wPl(X1, .. Xp) 1= [ix, - ix,w] € QUM R).
(Hochschild/Serre; '53):
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Cocycles from affine connections

V affine connectin on M
((X) :=LxV € QY (M,End(TM)) (1-cocycle)

5(:81, e ,ack) L= ZUESk tr(ma(l) s xa(k))
invar. pol. on gl;(R), d =dim M.

Thm.: (Koszul '74)
v = B, ...,0) € ZF(V(M),QF(M,R)) and
[v,] does not depend on V.

Thm.: (Tsujishita '81; Beggs '87)

M connected, paracompact smooth manifold:
H*(V(M),2*(M,R)) =

H*(V(M),C®°(M,R)) ® {(¢p;,i =1,.. .,d)alg
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Special case: M parallelizable, k € QY (M,R%)
trivializing 1-form. Then

Lxk=—0(X) -k,
defines a crossed homo.:

0: V(M) — C®(M,gl;(R))

Thm.: (Billig, N., '06) M is parallelizable =

V(X1 ., X)) = Yses, san(o)
tI’(@(XU(l))/\dQ(XO(Q))/\- . -/\d@(XU(k)))

defines an ﬁk_l(M, R)-valued cocycle with

d oy = Yy,

and ¢k(X1> - 7Xk) — ZO‘ESk Sgn(a)
tl’(d@(Xa(l)) VANRICIERVAN dQ(Xa(k)))
describes Koszul's cocycles in terms of 6.
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T he classification of twists

Classical case: M =S!. Then
H2(V(S1),Cc>°(S1,R)) is 2-dimensional and
H2(V(SY),R) = H2(V(S1), @' (S}, R)) & R

(Virasoro cocycle)

T he following theorem is based on results of
Gelfand-Fuks, Haefliger and Tsujishita.

Thm. (Y. Billig, N., '06) Form M cpt, TM
trivial, d =dim M > 1 we have:
o H2(V(M),C>(M,R)) £ H5-(M,R)®H}ix(M,R)

Here [a] € HY(M,R) corresponds to o A v,
where ¢ (X) = divX if M is orientable.

o H2(V(M), 2 (M,R)) = R[¢Y1Ap1]@H (M, R).
Here [a] € H1(M,R) corresponds to a A 1.

« H2(V(M), Q" (M,R)) B
H3r(M,R) & R[1 A 1] & R[],
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5. Integrability to Lie group extensions
K a 1l-connected Lie group, L(K) = ¢.

Thm.: (Maier, N., '03) For x € Sym2(¢, V)¢
the Lie algebra ﬁl(M, R) @, C°(M, ) is in-
tegrable if and only if the closed left invariant
3-form C(k)! on K satisfies:

MNe = / C(k)' CV s discrete.
m3(K)

This is true if V. =V (£) and « is universal.

Thm.: The Lie algebra extensions of C*°(M, ¢)
by C®(M,V), resp., QY(M,V) corresponding
to cocycles of the types wyp and wgy are al-
ways integrable.

Ex. If K is a Lie group with Lie algebra

t= V @n E, then the Lie algebra of COO(M,@
is C°(M,V) ®u, C°(M,¥).
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Integrability of the twists

For the 2-cocycles on V(M) we have the
following sufficient conditions for
integrability of the corresponding abelian Lie
algebra extension:

values in ﬁl(M, R):
o we Z3x(M,R) and [y, yyw C R discrete.
e 1)1 A1 and 1), are integrable.

values in Q1(M, R):

e )1 A1)y is integrable.

e o € Zijr(M,R) and [ (yr)a C R discrete
= o A Y1 is integrable.

values in C*°(M,R):

o o € Zgr(M,R) with [ o CR discrete,
= «al?l is integrable (prequantization).

o 3 € Zir(M,R) with [ (18 C R discrete,
= B A7 Is integrable.

15



6. Generalizations to non-trivial bundles
Cocycles of type (I)

qg: P — M principal K-bundle, L(K) = ¢

gau(P) = {f € CP(P,t): f(g.k) = Ad(k)"1.f(p)}
its gauge algebra.

V a K-module on which ¢ acts trivially
VY assoc. flat vector bundle with fiber V.

For k € Sym2(¢, V)¥ and V conn. on P we
obtain a 2-cocycle on gau(P) by:

wn (£:9) = [k(f,V9)] € Q1 (M, V).
Note: [wY] does not depend on V.

Thm. (N., Wockel, '07) If ng(K) is finite,
then t.f.a.e.:
(1) wY is integrable for each K-bundle P.

(2) wY is integrable for P =S x K.
(3) The period group Mk = [, (k) C(k)' CV

is discrete.
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Cocycles of type (II)

Let n € Z2(¢, V) and@::V@nﬁ and
12272 >5K—>K-—1

a central Lie group extension with L(K) = ¢t.

Then the conjugation action of K on itself
lifts to an action on K and we obtain an
associated Lie group bundle K = (P x K)/K.
Then we have a central Lie group extension

1— C®(M,Z) - TK — Gau(P) — 1
integrating the Lie algebra extension

0 — C®(M,V) — FAd(P) — gau(P) — 1.
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Cocycles of type (III)

Consider a cocycle
wY € Z2(gau(P), 2 (M, V))

of type (I) and assume that K acts trivially
on V.

Lemma T here exists a bundle map
n € Alt2(Ad(P),V) for which

W/Zn(fa g) L= ’%(fa vg) o K’(ga Vf) o d(n(fa g))

is a cocycle with values in Q1(M,V) if and
only if [C(k)] =0 in H3(¢, V).

Then wY, is a lift of 2wy to QY (M, V).

kM

Problems:
e Classification of central extensions for gau(P).

e Integrability of the cocycles “"Zn'

e Extendability of cocycles to aut(P) = V(P)¥.
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