# Infinite dimensional Lie algebras beyond Kac-Moody and Virasoro algebras

Karl-Hermann Neeb

ESF-Conference

Algebraic Aspects in Geometry

October 18-23, 2007

#### 0. Abelian extensions of Lie algebras

Let  $0 \to \mathfrak{a} \hookrightarrow \widehat{\mathfrak{g}} \xrightarrow{q} \mathfrak{g} \to 0$  be a topologically split short exact sequence of locally convex Lie algebras;  $\mathfrak{a}$  abelian (an abelian extension of  $\mathfrak{g}$  by  $\mathfrak{a}$ ). Then  $\mathfrak{a}$  carries a  $\mathfrak{g}$ -module structure;  $(x,a) \mapsto x.a.$ 

Let  $\sigma \colon \mathfrak{g} \to \widehat{\mathfrak{g}}$  cont. lin. section of  $q \Rightarrow \omega \colon \mathfrak{g} \times \mathfrak{g} \to \mathfrak{a}$ ,  $\omega(x,y) := [\sigma(x), \sigma(y)] - \sigma([x,y])$ . Then  $\omega$  is a cont. 2-cocycle:

$$\sum_{cyc.} x.\omega(y,z) - \omega([x,y],z) = 0$$

and  $\widehat{\mathfrak{g}} \cong \mathfrak{a} \oplus_{\omega} \mathfrak{g}$  with the bracket  $[(a,x),(a',x')] = (x.a'-x'.a+\omega(x,x'),[x,x']).$ 

$$\operatorname{Ext}(\mathfrak{g},\mathfrak{a}) \cong H^2(\mathfrak{g},\mathfrak{a}) := Z^2(\mathfrak{g},\mathfrak{a})/B^2(\mathfrak{g},\mathfrak{a}),$$
 (2nd Lie algebra cohomology) where  $Z^2(\mathfrak{g},\mathfrak{a})$  (cont. 2-cocycles) and 
$$B^2(\mathfrak{g},\mathfrak{a}) = \{\omega(x,y) = \ell([x,y]), \ell \in \operatorname{Hom}(\mathfrak{g},\mathfrak{a})\}.$$

#### 1. The classical algebras

 $\mathfrak k$  simple fin. dim. complex Lie algebra Loop algebra:  $\mathcal L(\mathfrak k):=C^\infty(\mathbb S^1,\mathfrak k),\ \mathbb S^1=\mathbb R/\mathbb Z$  [f,g](t):=[f(t),g(t)].

Universal central extension  $\widehat{\mathcal{L}}(\mathfrak{k})=\mathbb{C}\oplus_{\omega}\mathcal{L}(\mathfrak{k})$  with cocycle

$$\omega(f,g) = \int_0^1 \kappa(f,g') dt = \int_{\mathbb{S}^1} \kappa(f,dg),$$

( $\kappa$  is the Cartan–Killing form).

Affine Kac–Moody algebra (untwisted):  $\widehat{\mathcal{L}}(\mathfrak{k}) \rtimes \mathbb{C} \frac{d}{dt}$ .

Virasoro alg.:  $\mathfrak{vir} = \mathbb{C} \oplus_{\eta} \mathcal{V}(\mathbb{S}^1)_{\mathbb{C}}$  (cent. ext.)  $\eta(f\frac{d}{dt}, g\frac{d}{dt}) = \int_0^1 f''g' - g''f' \, dt.$ 

Both (affine Kac-Moody and Virasoro) are contained in a central extension:

$$\mathbb{C} \oplus_{\omega + \eta} \left( \mathcal{L}(\mathfrak{k}) \rtimes \mathcal{V}(\mathbb{S}^1)_{\mathbb{C}} \right).$$

What is  $H^2(\mathcal{L}(\mathfrak{k}) \times \mathcal{V}(\mathbb{S}^1)_{\mathbb{C}}, \mathbb{C})$ ?

#### **Goals and Problems**

M: a compact connected smooth manifold  $\mathcal{V}(M)$ : smooth vector fields on M  $\mathfrak{k}$  a finite-dim. Lie algebra (not nec. simple)

**Problem 1:** Determine all central extensions of  $C^{\infty}(M, \mathfrak{k})$ .

**Problem 2:** Determine  $\mathcal{V}(M)$ -covariant central extensions  $V \oplus_{\omega} C^{\infty}(M, \mathfrak{k})$  by natural  $\mathcal{V}(M)$ -modules V. Are there natural universal extensions of this type?

**Problem 3:** Determine the "twists" of the extensions  $(V \oplus_{\omega} C^{\infty}(M, \mathfrak{k})) \rtimes \mathcal{V}(M)$ , i.e., the space  $H^2(\mathcal{V}(M), V)$ .

**Problem 4:** Which of these extensions are integrable to Lie group extensions?

**Problem 5:** Can we do the same for  $\mathfrak{aut}(P)$ , where  $q: P \to M$  is a principal K-bundle? (Trivial case:  $\mathfrak{aut}(M \times K) \cong C^{\infty}(M, \mathfrak{k}) \rtimes \mathcal{V}(M)$ )

#### 2. Abelian extensions of semidirect sums

 $\mathfrak{h}=\mathfrak{n}\rtimes\mathfrak{g}$  topological Lie algebra,  $q\colon\mathfrak{h}\to\mathfrak{g}$ . V a topological  $\mathfrak{h}$ -module,  $V^{\mathfrak{n}}$  ( $\mathfrak{n}$ -invariants in V) is a closed  $\mathfrak{h}$ -submodule

Inflation: 
$$I: H^2(\mathfrak{g}, V^{\mathfrak{n}}) \to H^2(\mathfrak{h}, V), [\omega] \mapsto [q^*\omega]$$

Restrictions: 
$$R_{\mathfrak{g}} \colon H^2(\mathfrak{h}, V) \to H^2(\mathfrak{g}, V)$$
  
 $R_{\mathfrak{n}} \colon H^2(\mathfrak{h}, V) \to H^2(\mathfrak{n}, V)^{[\mathfrak{g}]}$ 

 $H^2(\mathfrak{n},V)^{[\mathfrak{g}]}$  consists of those classes [f] for which there exist a cont. bilinear  $\theta: \mathfrak{g} \times \mathfrak{n} \to V$  with  $x.f = d_{\mathfrak{n}}(\theta(x))$  for  $x \in \mathfrak{g}$ . Equivalently:

$$x.(v,n) := (x.v + \theta(x)(n), x.n)$$

defines an action of  $\mathfrak{g}$  on  $\widehat{\mathfrak{n}} = V \oplus_f \mathfrak{n}$  and  $\widehat{\mathfrak{n}} \rtimes \mathfrak{g}$  is an extension of  $\mathfrak{n} \rtimes \mathfrak{g}$  by V.

**Thm.** If  $\mathfrak{n}$  is perfect and  $V = V^{\mathfrak{n}}$ , then

$$(R_{\mathfrak{n}}, R_{\mathfrak{g}}) \colon H^2(\mathfrak{h}, V) \to H^2(\mathfrak{n}, V)^{[\mathfrak{g}]} \oplus H^2(\mathfrak{g}, V)$$

is a linear isomorphism.

# 3. Central extensions of $C^{\infty}(M, \mathfrak{k})$

 $\mathfrak{k}$  fin. dim. Lie alg.,  $\mathfrak{g}=C^{\infty}(M,\mathfrak{k})$   $\kappa\in \operatorname{Sym}^2(\mathfrak{k},V)^{\mathfrak{k}}$  inv. symm. bilinear  $\eta\in C^2(\mathfrak{k},V)=\operatorname{Alt}^2(\mathfrak{k},V)$  2-cochain Three fundamental types of cocycles:

(I) 
$$\omega_{\kappa}(f,g) := [\kappa(f,dg)]$$
  
values in  $\overline{\Omega}^1(M,V) := \Omega^1(M,V)/dC^{\infty}(M,V)$ 

(II) 
$$\omega_{\eta}(f,g) = \eta(f,g) \in C^{\infty}(M,V)$$
;  $d_{\mathfrak{k}}\eta = 0$ .

(III) 
$$\omega_{\kappa,\eta}(f,g) = \kappa(f,dg) - \kappa(g,df) - d(\eta(f,g))$$
 values in  $\Omega^1(M,V)$  if  $d\eta = C(\kappa)$ , where  $C(\kappa)(x,y,z) = \kappa([x,y],z)$  is assoc. 3-cocycle

**Thm.** (N., Wagemann, '05; based on Haddi '92, Zusmanovich '94) For  $\mathfrak{k}$  perfect and  $\omega \in Z^2(\mathfrak{g},\mathbb{R})$ , there exist  $\kappa_i \in \operatorname{Sym}^2(\mathfrak{k},V_i)^{\mathfrak{k}}, \ \eta_i \in C^2(\mathfrak{k},V_i), \ i=1,2,3,$  and

$$eta_1 \in \overline{\Omega}^1(M, V_1)'$$
 (a closed 1-current),  $eta_2 \in C^\infty(M, V_2)'$  (a distribution),  $eta_3 \in \Omega^1(M, V_3)'$  (a 1-current) with

$$[\omega] = [\beta_1 \circ \omega_{\kappa_1} + \beta_2 \circ \omega_{\eta_2} + \beta_3 \circ \omega_{\kappa_3,\eta_3}] \in H^2(\mathfrak{g},\mathbb{R}).$$

#### More on the fundamental cocycles

- All coboundaries in  $B^2(\mathfrak{g}, \mathbb{R})$  are of type (II):  $\beta \circ \omega_{\eta}$ ,  $\beta \in C^{\infty}(M, \mathfrak{k})'$ ,  $\eta(f, g) = [f, g]$ .
- Type (II) is needed iff  $H^2(\mathfrak{k},\mathbb{R}) \neq 0$ .
- Type (III) is needed iff  $\exists \kappa \in \operatorname{Sym}^2(\mathfrak{k}, \mathbb{R})^{\mathfrak{k}}$  such that  $C(\kappa)$  is non-zero 3-coboundary.
- $[C(\kappa)] = 0 \Rightarrow \kappa$  vanishes on Levi subalgs; Converse is false:  $\exists$  50-dim. counterex. (Angelopoulos/Benayadi '93).
- If  $\mathfrak{k}$  is semisimple, then type (I) suffices. If  $\kappa_u : \mathfrak{k} \times \mathfrak{k} \to V(\mathfrak{k})$  is universal, then  $\omega_{\kappa_u} \in Z^2(\mathfrak{g}, \overline{\Omega}^1(M, V(\mathfrak{k})))$  is universal for  $\mathfrak{g}$ .

**Example:**  $\mathfrak{k} = T^*\mathfrak{h} = \mathfrak{h}^* \rtimes \mathfrak{h}$ ,  $\mathfrak{h}$  simple  $\kappa((\alpha, x), (\alpha', x')) = \alpha'(x) + \alpha(x')$  and  $\eta((\alpha, x), (\alpha', x')) = \alpha'(x) - \alpha(x')$  satisfy  $C(\kappa) = d_{\mathfrak{p}}\eta$ .

#### An instructive exact sequence:

**Thm:** (N., Wagemann; M. Bordemann '97) For each finite-dimensional Lie algebra  $\mathfrak{k}$  and each trivial  $\mathfrak{k}$ -module V, there exists an exact sequence

$$\{0\} \to H^{2}(\mathfrak{k}, V) \longrightarrow H^{1}(\mathfrak{k}, \operatorname{Hom}(\mathfrak{k}, V)) \longrightarrow$$

$$\operatorname{Sym}^{2}(\mathfrak{k}, V)^{\mathfrak{k}} \xrightarrow{C} H^{3}(\mathfrak{k}, V) \longrightarrow H^{2}(\mathfrak{k}, \operatorname{Hom}(\mathfrak{k}, V))$$

$$\longrightarrow H^{1}(\mathfrak{k}, \operatorname{Sym}^{2}(\mathfrak{k}, V)).$$

**Note:** 
$$C(\kappa) = d_{\mathfrak{k}}\eta$$
 is equivalent to 
$$\zeta(x)(y) := \kappa(x,y) - \eta(x,y) \in Z^1(\mathfrak{k}, \mathsf{Hom}(\mathfrak{k},V)).$$

#### 4. Classification of twists

The spaces

$$\mathfrak{z} = \overline{\Omega}^1(M,\mathbb{R}), C^{\infty}(M,\mathbb{R}), \Omega^1(M,\mathbb{R})$$

are  $\mathcal{V}(M)$ -modules and the fund. cocycles  $\omega = \omega_{\kappa}, \omega_{\eta}, \omega_{\kappa,\eta}$  are  $\mathcal{V}(M)$ -invariant.

We thus obtain abelian extensions

$$(\mathfrak{z}\oplus_{\omega}C^{\infty}(M,\mathfrak{k}))
times\mathcal{V}(M)$$
 of  $C^{\infty}(M,\mathfrak{k})
times\mathcal{V}(M).$ 

Its twists are classified by the elements of the spaces

$$H^2(\mathcal{V}(M),\overline{\Omega}^1(M,\mathbb{R})),$$
  
 $H^2(\mathcal{V}(M),C^\infty(M,\mathbb{R})),$  and  
 $H^2(\mathcal{V}(M),\Omega^1(M,\mathbb{R})).$ 

#### Cocycles from differential forms

**Source 1:** Each closed p-form  $\omega \in \Omega^p(M, \mathbb{R})$  defines a Lie algebra cocycle in  $Z^p(\mathcal{V}(M), C^{\infty}(M, \mathbb{R}))$ .

**Thm.** (Shiga/Tsujishita '77) The kernel of the natural homomorphism

$$\Phi: H_{\mathsf{dR}}^{\bullet}(M, \mathbb{R}) \to H^{\bullet}(\mathcal{V}(M), C^{\infty}(M, \mathbb{R}))$$

is the ideal of all classes subordinated to the Pontrjagin classes  $p_1, \ldots, p_{\lfloor n/4 \rfloor}$  of M.

**Source 2:** Each closed p+q-form  $\omega \in \Omega^{p+q}(M,\mathbb{R})$  also defines a Lie algebra p-cocycle on  $\mathcal{V}(M)$  with values in

$$\overline{\Omega}^q(M,\mathbb{R}) = \Omega^q(M,\mathbb{R})/\mathrm{d}\Omega^{q-1}(M,\mathbb{R}),$$

$$\omega^{[p]}(X_1,\ldots,X_p) := [i_{X_p}\cdots i_{X_1}\omega] \in \overline{\Omega}^q(M,\mathbb{R}).$$

(Hochschild/Serre; '53):

#### Cocycles from affine connections

 $\nabla$  affine connectin on M $\zeta(X) := \mathcal{L}_X \nabla \in \Omega^1(M, \operatorname{End}(TM))$  (1-cocycle)

 $\beta(x_1,\ldots,x_k) := \sum_{\sigma \in S_k} \operatorname{tr}(x_{\sigma(1)} \cdots x_{\sigma(k)})$  invar. pol. on  $\mathfrak{gl}_d(\mathbb{R})$ ,  $d = \dim M$ .

Thm.: (Koszul '74)  $\psi_k:=\beta(\zeta,\ldots,\zeta)\in Z^k(\mathcal{V}(M),\Omega^k(M,\mathbb{R})) \text{ and } [\psi_k] \text{ does not depend on } \nabla.$ 

**Thm.:** (Tsujishita '81; Beggs '87) M connected, paracompact smooth manifold:  $H^{\bullet}(\mathcal{V}(M), \Omega^{\bullet}(M, \mathbb{R})) \cong H^{\bullet}(\mathcal{V}(M), C^{\infty}(M, \mathbb{R})) \otimes \langle \psi_i, i = 1, \dots, d \rangle_{alg}$ 

**Special case:** M parallelizable,  $\kappa \in \Omega^1(M, \mathbb{R}^d)$  trivializing 1-form. Then

$$\mathcal{L}_X \kappa = -\theta(X) \cdot \kappa,$$

defines a crossed homo .:

$$\theta \colon \mathcal{V}(M) \to C^{\infty}(M, \mathfrak{gl}_d(\mathbb{R}))$$

**Thm.:** (Billig, N., '06) M is parallelizable  $\Rightarrow$ 

$$\overline{\psi}_k(X_1, \dots, X_k) := \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \operatorname{tr}(\theta(X_{\sigma(1)}) \wedge \operatorname{d}\theta(X_{\sigma(2)}) \wedge \dots \wedge \operatorname{d}\theta(X_{\sigma(k)}))$$

defines an  $\overline{\Omega}^{k-1}(M,\mathbb{R})$ -valued cocycle with

$$\mathtt{d} \circ \overline{\psi}_k = \psi_k$$

and 
$$\psi_k(X_1,\ldots,X_k) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma)$$
  

$$\operatorname{tr}(\operatorname{d}\theta(X_{\sigma(1)}) \wedge \cdots \wedge \operatorname{d}\theta(X_{\sigma(k)}))$$

describes Koszul's cocycles in terms of  $\theta$ .

#### The classification of twists

Classical case:  $M=\mathbb{S}^1$ . Then  $H^2(\mathcal{V}(\mathbb{S}^1),C^\infty(\mathbb{S}^1,\mathbb{R}))$  is 2-dimensional and  $H^2(\mathcal{V}(\mathbb{S}^1),\mathbb{R})=H^2(\mathcal{V}(\mathbb{S}^1),\overline{\Omega}^1(\mathbb{S}^1,\mathbb{R}))\cong \mathbb{R}$  (Virasoro cocycle)

The following theorem is based on results of Gelfand-Fuks, Haefliger and Tsujishita.

**Thm.** (Y. Billig, N., '06) Form M cpt, TM trivial,  $d = \dim M > 1$  we have:

• 
$$H^2(\mathcal{V}(M), C^{\infty}(M, \mathbb{R})) \cong H^2_{\mathsf{dR}}(M, \mathbb{R}) \oplus H^1_{\mathsf{dR}}(M, \mathbb{R})$$

Here  $[\alpha] \in H^1(M,\mathbb{R})$  corresponds to  $\alpha \wedge \overline{\psi}_1$ , where  $\overline{\psi}_1(X) = \text{div}X$  if M is orientable.

- $H^2(\mathcal{V}(M), \Omega^1(M, \mathbb{R})) = \mathbb{R}[\overline{\psi}_1 \wedge \psi_1] \oplus H^1(M, \mathbb{R}).$ Here  $[\alpha] \in H^1(M, \mathbb{R})$  corresponds to  $\alpha \wedge \psi_1.$
- $H^2(\mathcal{V}(M), \overline{\Omega}^1(M, \mathbb{R})) \cong$   $H^3_{\mathsf{dR}}(M, \mathbb{R}) \oplus \mathbb{R}[\overline{\psi}_1 \wedge \psi_1] \oplus \mathbb{R}[\overline{\psi}_2].$

#### 5. Integrability to Lie group extensions

K a 1-connected Lie group,  $L(K) = \mathfrak{k}$ .

**Thm.:** (Maier, N., '03) For  $\kappa \in \operatorname{Sym}^2(\mathfrak{k}, V)^{\mathfrak{k}}$  the Lie algebra  $\overline{\Omega}^1(M, \mathbb{R}) \oplus_{\omega_{\kappa}} C^{\infty}(M, \mathfrak{k})$  is integrable if and only if the closed left invariant 3-form  $C(\kappa)^l$  on K satisfies:

$$\Pi_{\kappa} := \int_{\pi_3(K)} C(\kappa)^l \subseteq V$$
 is discrete.

This is true if  $V = V(\mathfrak{k})$  and  $\kappa$  is universal.

**Thm.:** The Lie algebra extensions of  $C^{\infty}(M, \mathfrak{k})$  by  $C^{\infty}(M, V)$ , resp.,  $\Omega^{1}(M, V)$  corresponding to cocycles of the types  $\omega_{\eta}$  and  $\omega_{\kappa,\eta}$  are always integrable.

**Ex.** If  $\widehat{K}$  is a Lie group with Lie algebra  $\widehat{\mathfrak{k}} = V \oplus_{\eta} \mathfrak{k}$ , then the Lie algebra of  $C^{\infty}(M, \widehat{\mathfrak{k}})$  is  $C^{\infty}(M, V) \oplus_{\omega_{\eta}} C^{\infty}(M, \mathfrak{k})$ .

#### Integrability of the twists

For the 2-cocycles on  $\mathcal{V}(M)$  we have the following **sufficient** conditions for integrability of the corresponding abelian Lie algebra extension:

# values in $\overline{\Omega}^1(M,\mathbb{R})$ :

- $\omega \in Z^3_{dR}(M,\mathbb{R})$  and  $\int_{H_3(M)} \omega \subseteq \mathbb{R}$  discrete.
- $\overline{\psi}_1 \wedge \psi_1$  and  $\overline{\psi}_2$  are integrable.

# values in $\Omega^1(M,\mathbb{R})$ :

- $\overline{\psi}_1 \wedge \psi_1$  is integrable.
- $\alpha \in Z^1_{dR}(M, \mathbb{R})$  and  $\int_{\pi_1(M)} \alpha \subseteq \mathbb{R}$  discrete  $\Rightarrow \alpha \wedge \psi_1$  is integrable.

# values in $C^{\infty}(M,\mathbb{R})$ :

- $\alpha \in Z^2_{dR}(M, \mathbb{R})$  with  $\int_{\pi_2(M)} \alpha \subseteq \mathbb{R}$  discrete,  $\Rightarrow \alpha^{[2]}$  is integrable (prequantization).
- $\beta \in Z^1_{dR}(M, \mathbb{R})$  with  $\int_{\pi_1(M)} \beta \subseteq \mathbb{R}$  discrete,  $\Rightarrow \beta \wedge \overline{\psi}_1$  is integrable.

# 6. Generalizations to non-trivial bundles Cocycles of type (I)

 $q: P \to M$  principal K-bundle,  $L(K) = \mathfrak{k}$ 

 $\mathfrak{gau}(P)\cong\{f\in C^\infty(P,\mathfrak{k}): f(g.k)=\mathrm{Ad}(k)^{-1}.f(p)\}$  its gauge algebra.

V a K-module on which  $\mathfrak k$  acts trivially  $\mathbb V$  assoc. flat vector bundle with fiber V.

For  $\kappa \in \operatorname{Sym}^2(\mathfrak{k}, V)^K$  and  $\nabla$  conn. on P we obtain a 2-cocycle on  $\mathfrak{gau}(P)$  by:

$$\omega_{\kappa}^{\nabla}(f,g) := [\kappa(f,\nabla g)] \in \Omega^{1}(M,\mathbb{V}).$$

**Note:**  $[\omega_{\kappa}^{\nabla}]$  does not depend on  $\nabla$ .

**Thm.** (N., Wockel, '07) If  $\pi_0(K)$  is finite, then t.f.a.e.:

- (1)  $\omega_{\kappa}^{\nabla}$  is integrable for each K-bundle P.
- (2)  $\omega_{\kappa}^{\nabla}$  is integrable for  $P = \mathbb{S}^1 \times K$ .
- (3) The period group  $\Pi_{\kappa} = \int_{\pi_3(K)} C(\kappa)^l \subseteq V$  is discrete.

# Cocycles of type (II)

Let  $\eta \in Z^2(\mathfrak{k}, V)$  and  $\widehat{\mathfrak{k}} := V \oplus_{\eta} \mathfrak{k}$  and

$$1 \to Z \to \widehat{K} \to K \to 1$$

a central Lie group extension with  $\mathbf{L}(\widehat{K}) = \widehat{\mathfrak{k}}$ .

Then the conjugation action of K on itself lifts to an action on  $\widehat{K}$  and we obtain an associated Lie group bundle  $\widehat{\mathcal{K}}=(P\times\widehat{K})/K$ . Then we have a central Lie group extension

$$\mathbf{1} o C^{\infty}(M,Z) o \Gamma \widehat{\mathcal{K}} o \mathsf{Gau}(P) o \mathbf{1}$$

integrating the Lie algebra extension

$$\mathbf{0} \to C^{\infty}(M, V) \to \Gamma \widehat{\mathsf{Ad}}(P) \to \mathfrak{gau}(P) \to \mathbf{1}.$$

# Cocycles of type (III)

Consider a cocycle

$$\omega_{\kappa}^{\nabla} \in Z^2(\mathfrak{gau}(P), \overline{\Omega}^1(M, \mathbb{V}))$$

of type (I) and assume that K acts trivially on V.

**Lemma** There exists a bundle map  $\eta \in Alt^2(Ad(P), \mathbb{V})$  for which

$$\omega_{\kappa,\eta}^{\nabla}(f,g) := \kappa(f,\nabla g) - \kappa(g,\nabla f) - \mathrm{d}(\eta(f,g))$$

is a cocycle with values in  $\Omega^1(M,V)$  if and only if  $[C(\kappa)] = 0$  in  $H^3(\mathfrak{k},V)$ .

Then  $\omega_{\kappa,\eta}^{\nabla}$  is a lift of  $2\omega_{\kappa}^{\nabla}$  to  $\Omega^{1}(M,V)$ .

#### **Problems:**

- Classification of central extensions for  $\mathfrak{gau}(P)$ .
- Integrability of the cocycles  $\omega_{\kappa,\eta}^{\nabla}$ .
- Extendability of cocycles to  $\mathfrak{aut}(P) = \mathcal{V}(P)^K$ .