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Holomorphic Poisson Manifolds

Holomorphic Poisson Manifolds

DEFINITION: A holomorphic Poisson manifold is a complex
manifold X whose sheaf of holomorphic functions Oy is a sheaf
of Poisson algebras.

f,ge Ox = {f,g} € Ox
{f, g} = w(df,dg) = m;(0,,f0,9 — 9;10,9)
i<j

T = Zﬂ,}@zi A Oy, s.t.mj € Ox

i<j

FacT: (Ox,{:-}) is holomorphic Poisson
IFF 7 € [(A2T"0X) satisfies [r, 7] = 0 and o7 = 0



Holomorphic Poisson Manifolds

Real and imaginary parts of =

NTIOX € A2TeX = N2TX @i N2 TX
T = 7R+ in; where g, m € T(A2TX)

QUESTION: Are wr and 7, real Poisson structures?

And conversely, given two real poisson structures 7z and m,
when does m = wg + iw; define a holomorphic Poisson
structure?



Holomorphic Poisson Manifolds

Poisson Nijenhuis structures

[Magri-Morosi]

Recall that a Poisson Nijenhuis structure on a manifold X
consists of a pair (7, N), where 7 is a Poisson tensor on X and
N : TX — TX is a Nijenhuis tensor such that the following
compatibility conditions are satisfied:

Noﬂ'ﬁ = 7T'IioN>'<
[O‘75]TFN = [N*O"IB]W + [04, N*/B]W - N*[O‘aﬂ]w

where 7y is the bivector field on X defined by the relation
w4 = 7f.N* and for any bivector field # on M,

[, Bl3 := Lasa(B) — Lasg(e) — d(F(e, B)),  Va,B e QY (M).



Holomorphic Poisson Manifolds

QUESTION: Are mg and «, real Poisson structures?

THEOREM: Given a complex manifold X with associated
almost complex structure J, the following are equivalent:

T =7pR+ T € F(/\2T1’0X)
is a holomorphic Poisson bivector field;

(m,J) is a Poisson Nijenhuis structure on X
and ﬂf}q = W?OJ*;

Jr = <6/ ’J/> (€ End(TM & T*M)) is a generalized
complex structure and m = 7j.J*.

Thus (g, /) is a biHamiltonian structure on X.



Holomorphic Poisson Manifolds

Symplectic Foliations

FAcT: Let (X, 7) be a holomorphic Poisson manifold, and 7g
and 7, the real and imaginary parts of .

Then the symplectic foliations of wg and 7, coincide, and their
leaves are exactly the holomorphic symplectic leaves of .



Holomorphic Lie Algebroids

Holomorphic Vector Bundles (HVB)

GivenaHVB A 2 X,

A denotes its sheaf of holomorphic sections
and A, its sheaf of smooth sections.
Clearly, A is a sheaf of Ox-modules

while A is a sheaf of C>°(X)-modules.
Moreover A is a subsheaf of A.

The tangent bundle TX — X of a complex manifold X is
naturally a HVB. We will denote its sheaf of holomorphic
sections, i.e. the sheaf of holomorphic vector fields, by © .

The cotangent bundle 7*X — X of a complex manifold X is
naturally a HVB. We will denote its sheaf of holomorphic
sections, i.e. the sheaf of holomorphic 1-forms, by Q.



Holomorphic Lie Algebroids

Holomorphic Lie Algebroids (HLA)

DEFINITION: A HLAisa HVB A — X, equipped with a
holomorphic bundle map A 2 TX, called the anchor map, and
a structure of sheaf of complex Lie algebras on A4, such that

the anchor map p induces a homomorphism of sheaves of
complex Lie algebras from A to ©y;

and the Leibniz identity
[V, W] = (o(V))W + F[V, W]

holds for all V, W € A(U), f € Ox(U) and all open subsets
U of X.



Holomorphic Lie Algebroids

EXAMPLES:

The tangent bundle TX — X of a complex manifold X is
naturally a HLA.

The cotangent bundle T*X — X of a holomorphic Poisson
manifold (X, ) is a HLA with anchor 7# : T*X — TX and
bracket

[, Bl = LataB — Lyzga + 5d((a, 8)),

for all o, 3 € QL.



Holomorphic Lie Algebroids

Underlying Real Lie Algebroid (1/2)

Some special real Lie algebroids give rise to HLAs.

By forgetting the complex structure, a HVB A — X becomes a
real (smooth) vector bundle, andaHVB map p: A— TX
becomes a real (smooth) vector bundle map.

Let A— X be a HVB whose underlying real vector bundle is
endowed with a Lie algebroid structure (A, p, [, ]) such that, for
any open subset U C X, (1) [A(U), A(U)] ¢ A(U) and (2) the
restriction of the Lie bracket [-, -] to A(U) is C-linear. Then the
restriction of [-, -] and p from I'(A) to .A makes A a HLA.



Holomorphic Lie Algebroids

Underlying Real Lie Algebroid (2/2)

Actually, any HLA can be obtained out of such a real Lie
algebroid, in a unique way.

FAcT: Given a structure of HLA on a HVB A — X with anchor
map A % TX, there exists a unique structure of real smooth Lie
algebroid on the vector bundle A — X with respect to the same
anchor map p such that the inclusion of sheaves A C A, is a
morphism of sheaves of real Lie algebras.

In the sequel, we will use Ag to denote the underlying real Lie
algebroid of a HLA A.



Holomorphic Lie Algebroids

Underlying Imaginary Lie Algebroid

Take a HLA (A — X, p,[-,*]).

Consider the bundle map j : A — A defining the fiberwise
complex structure on A.

FAcT: The Nijenhuis torsion of j w.r.t. the bracket of the
real Lie algebroid Ag vanishes.

Therefore, one can define a new (real) Lie algebroid
structure on A, denoted by (A — X, pj, [-,];), where the
anchor p; is poj and the bracket on I'(A) is given by

[V, W] = [V, W] + [V, jW] —j[V.W], YV, W eT(A).

[Carifiena-Grabowski-Marmo]

A= (A— X, pj,[]j) will be called the underlying
imaginary Lie algebroid

A j: A/ — Agis a Lie algebroid isomorphism



Holomorphic Lie Algebroids

Holomorphic Lie-Poisson structures

The Lie algebroid structures on a given vector bundle are in 1-1
correspondence with the so-called fiberwise linear Poisson
structures on the dual bundle.

This correspondence extends to the holomorphic context.

FACT: Let A— X be a holomorphic vector bundle.
The following are equivalent:

A is a holomorphic Lie algebroid;

there exists a fiberwise-linear holomorphic Poisson
structure on Homc¢(A, C).



Holomorphic Lie Algebroids

Consider a holomorphic Lie algebroid (A — X, p, [+, -]).

Its complex dual bundle Hom¢(A, C) is a fiberwise linear
holomorphic Poisson manifold, whose holomorphic
Poisson tensor is denoted by .

Let 7r and 7, be its real and imaginary parts. Then
7y = VW 'rg and mg := W 71, are fiberwise R-linear
Poisson tensors on the real dual bundle Homg(A, R).
These Poisson structures therefore correspond to real Lie
algebroids on A — X, which are denoted by
(A— X, pg, [, ) and (A — X, pg, [, '|3), respectively.

QUESTION: Obtain an explicit description of the Lie algebroid
structures Ay and Ag in terms of the holomorphic Lie algebroid
structure on A.



Holomorphic Lie Algebroids

QUESTION: Obtain an explicit description of the Lie algebroid
structures Ay and Ag in terms of the holomorphic Lie algebroid
structure on A.

FAcT: Let (A — X,p,[,-]) be a holomorphic Lie algebroid.

The Lie algebroid (A — X, 4px, 4], ]») is isomorphic to the
real Lie algebroid Ag;

The Lie algebroid (A — X, —4pg, —4[-, -]3) is isomorphic to
the imaginary Lie algebroid A,.



Holomorphic Lie Algebroids

Equivalent definition of HLA

Let (A, p, [, -]) be areal Lie algebroid, where A — X'is a
holomorphic vector bundle. The following are equivalent:

(A, p,[,]) is a holomorphic Lie algebroid;
if J4 and Jx denote the almost complex structures on A
and X respectively, the map

A2 17

L

TXT> X
X

defines a Lie algebroid isomorphism.



Integration

Integration

A (holomorphic) Lie algebroid is integrable if there exists an
s-connected and s-simply connected (holomorphic) Lie
groupoid of which it is the infinitesimal version.

QUESTION: Given a holomorphic Lie algebroid A with
underlying real Lie algebroid Ag, what is the relation between
the integrability of A and the integrability of Ag?

THEOREM: A is integrable
IFF Ais integrable
IFF Ag is integrable



Integration

Holomorphic Symplectic Groupoids/Realizations

A holomorphic symplectic groupoid is a holomorphic Lie
groupoid I' = X together with a holomorphic symplectic 2-form
w € 920(I") such that the graph of multiplication A ¢ T x ' x T is
a Lagrangian submanifold, where T stands for the I equipped
with the opposite symplectic structure.

Given a holomorphic symplectic groupoid I' = X, its
holomorphic Lie algebroid is isomorphic to the cotangent Lie
algebroid (T*X), — X, where 7 is the induced holomorphic
Poisson structure on X.

Conversely, a holomorphic Poisson manifold (X, ) is said to be
integrable if it is the induced holomorphic Poisson structure on
the unit space of a holomorphic symplectic groupoid I' = X.
We say that I = X integrates the holomorphic Poisson
structure (X, 7).



Integration

THEOREM: A holomorphic Poisson manifold is integrable if,
and only if, either its real or its imaginary part is integrable as a
real Poisson manifold.

This theorem can be derived from the equivalence between
holomorphic Poisson manifolds and Poisson Nijenhuis
structures. See Crainic or S-Xu.



Cohomology

Holomorphic Lie Algebroid Cohomology

Let A— X be a HLA.
We have got the complex of sheaves over X

a, q,
Qn: 042l B gk 9 gkt G

where QX stands for the sheaf of holomorphic sections of
AKA* — X (and Q4 = Ox).

By definition, the holomorphic Lie algebroid cohomology of
A is the cohomology H*(X, Q%) of this complex of sheaves.

EXAMPLE: X =complex mfd, A= TX

H* (X, Q%) =~ Hpr(X)



Cohomology

QUESTION: Given an arbitrary holomorphic Lie algebroid A,
find a complex Lie algebroid L whose cohomology groups are
isomorphic to those of A.

ANSWER: L= T01X 1 A'0

When A = (T*X), (where X is a holomorphic Poisson
manifold), then L is the /—1-eigenbundle of the generalized
complex structure J4.



Cohomology

Matched Pair of Lie Algebroids

[Lu,Mackenzie,Mokri]
A and B are (C or R) Lie algebroids over same base mfd M
Bisan A-module: T(A)®T(B) —T(B):(X,Y)— VxY
Aisa B-module: T(B)®T(A) —T(A):(Y,X)— VyX
Compatibility conditions:

[a(X),b(Y)] = —a(VyX) + b(VxY),
Vx[Y1, Y] = [Vx Y1, Yo] + [Y1, VX Yo] + Vy, x Y1 = Vy, x Y,
Vy[X1, Xo] = [Vy Xy, Xo] + [X1, Vy Xo] + Vv, v X1 — Vv, v Xe,

where Xi, Xo, X € T(A) and Yy, Yo, Y € [(B).

a = anchor of A
b = anchor of B



Cohomology

Given a matched pair (A, B) of Lie algebroids, there is a Lie
algebroid structure A < B on the direct sum vector bundle
A @ B, with anchor ¢(X @ Y) = a(X) + b(Y) and bracket

[X1 ® Y, Xo Yg] = ([X1,X2] +VY1X2 — Vy2X1)
® ([Vy, Yol + Vx, Ya — Vi, Y1).

Conversely, if A® B has a Lie algebroid structure for which
A® 0 and 0 4 B are Lie subalgebroids, then the
representations V defined by

[X@0,0@ Y]:—VyX@VxY

endow the couple (A, B) with a matched pair structure.



Cohomology

EXAMPLE:

X = complex mfd

Set Vo1 X0 = pr! 0 01, x1.0]

and V1,0 X% = pr&1[x10, X01]

for all X%' € x97(X) and X' € x10(X).

Then (T%'X, T19X) is a matched pair.

TO1 X b THOX ~ TeX as CLAs

More generally, given a holomorphic Lie algebroid A, the couple

(A%1, A10) is a matched pair of Lie algebroids and A% q A™-0
is isomorphic, as a complex Lie algebroid, to Ac.



Cohomology

WELL-KNOWN FACT: Let E be a complex vector bundle over
a complex manifold X. Then E is a holomorphic vector bundle
if, and only if, E is a T%' X-module — i.e. there exists a flat
791 X-connection on E.

FACT: Let Abe a holomorphic Lie algebroid over a complex
manifold X. Then the couple (7% X, A'0) is naturally a
matched pair of complex Lie algebroids.

Conversely, given a complex manifold X and a matched pair
(T%'X, B), where B is a complex Lie algebroid over X whose
anchor takes its values in T1:0.X, there exists a holomorphic Lie
algebroid A such that B ~ A'0 as complex Lie algebroids.



Cohomology

THEOREM: Forany HLA A — X,

H*(X,Q%) = H(T%' X 0 A0 C) |

IDEA OF THE PROOF: Use a double complex

m whose total cohomology is H*(T%' X 1 A0, C)
m and which is a resolution of the complex of sheaves Q7.



Holomorphic Poisson Manifolds Holomorphic Lie Algebroids Integration Cohomology

FACT: Let A and B be a pair of Lie algebroids over M with
mutual actions V. The couple (A, B) is a matched pair IFF the
diagram

0,
F(AKA* @ A BY) —2 T(AKHTA* @ AIB*)

o Jos

r /\kA* ® /\l+1B* —T /\k+1A* ® /\l+1B*
Oa

commutes, where 94 and dg denote the Lie algebroid
cohomology differential operators of A with values in the
module A®B* and of B with values in the module A®A*,
respectively.

The Lie algebroid cohomology of A >t B (with trivial coefficients)
is isomorphic to the total cohomology of this double complex.



Cohomology

Taking A = T%'X and B = A0 in this double complex,
by the holomorphic Poincaré Lemma, we obtain a resolution of
the complex of sheaves Qj:

da dy° dy°

0—— Q% *>590,0 ®C)0(o .Agé;o i> Qg)(’1 ®C)o(o ./452305*> cee
dA d)14,0 d;\ 0

0——=Q) 4;599(,0 Do A0 Qg)(,1 . (1),0054>
da da,° dy°

0—> 04 —"0% @ce A% 2> 0% g ALY

where Q5 ®cy 59 denotes the sheaf of sections of the
complex vector bundle (T%*X)* @ ATAT0 — X,



Holomorphic Poisson Ma Holomorphic Lie Algebroids Integration Cohomology

THEOREM: Let (X, ) be a holomorphic Poisson manifold.
The following cohomologies are all isomorphic:
the holomorphic Poisson cohomology of (X, 7);
the holomorphic Lie algebroid cohomology of (7*X);
the complex Lie algebroid cohomology of Ty ba (T0X)%;
the total cohomology of the double complex

N |
QUk(X, TH10X) 9 Q0K+ (X, 7—/+1,ox% .

§ :

Qovk(X, TI’OX) 9 QO,k-H (X, -,-I,Ox)g)*> ..




Cohomology

In particular, if 7 = 0, we obtain:

H((T"X)o) = @ H'(X, T).
i+j=k



Since the restrictions of the operators 2, - and —ia% from
C>(X,C) to Ox are one and the same, there are different
natural ways one can extend a differential operator defined
on Oy to an operator defined on C>*(X,C).

Here m = Y 7m0, A 07 € T(A2T10X) is a bidifferential operator
on C*°(X.C). We have already made the choice of the
extension.



Note that the complex dual Hom¢(A, C) of a holomorphic vector
bundle A — X is again a holomorphic manifold, which is also a
holomorphic vector bundle over X. We denote by

p : Hom¢(A, C) — X the projection onto the base manifold.
There is a one-one correspondence between holomorphic
sections V € A(U) and fiberwise-linear holomorphic functions
Iy on Home(A|y, C): Vao € Home(Aly, C)

Iy(a) = a(V]p)-

Here the Lie algebroid structure on (A, p, [, -]) and the Poisson
structure on Hom¢(A, C) are related by the following equations:

{p*f.lv} = p*(p(V)(f))
{v;lw} = hvw

forany V, W € A(U) and f € Ox(U).



Given a complex vector bundle A — X, we denote its complex
and real dual bundles by Hom¢ (A, C) — X and
Homg(A,R) — X, respectively.

There is an isomorphism of real vector bundles

Homg (A, R) =0 Hom¢(A, C)

ml lpc

X . X.

Note that W=1(£) = R.€.



B A— XisaHLA

For all X0 € r(T%1X) and A'? ¢ (A"0), set
Vot A0 =0 and Vo X®" = pr&[pcA"0, XO1].

Then (T%1X, A'0) is a matched pair of CLAs.

Ac =A% b AM0 — TR g AT s TR ba TR0 = ToX



STEP 1  Given a matched pair (A, B), A< Bis a Lie
algebroid.

Its Lie algebroid differential
F(A*(A® B)) 22, r(A*H (A® B)Y),

is defined by

n

(dANBa)((-’\Ov R CI’?) = Z(_1)IC(CI)(Q(CO7 R 5f7 R Cn))
i=0
+Z I+]Oé[C[7Cj] CO7...,5,...,6j,...,Cn),

i<j

and satisfies d3_g = 0.



STEP 2 Now, remember that

A(AGB) = ) AFA* @ B,
k+I=n

It is easy to see that
daa(T(NFA*QABY)) (A2 A AT B el (AT A*on BY)
O T(ANA* @ A1 B*) @ T(AFTA* @ ATF2BY).

Moreover, since A and B are Lie subalgebroids of A B, the
stronger relation

daasT (NA* @ N'B*) C T(NTTA* @ AIBY) @& T(AKA* @ A1)

holds.



STEP 3 Composing da..s With the natural projections on
each of the direct summands

F(AKHT A @ A'BY)

r(/\kA* ® /\IB*) rd(“fjf’k+1A* ® /\IB*) D (/\kA* ® /\/+1B*))
F(AKA* @ AH1BY),

we get two operators 94 and 0.

From d4_g = 0, it follows that 93 = 0, 93 = 0 and
8,4035 = 3508,4



The operator d; is defined by the relation
(dﬂ'a)(y1 PR Yk) = [7Tv a(Y1 ’ T Yk)]+(_1)k[7r’ YiA-- -/\YK]JO[,

where Yi, ..., Y are arbitrary elements of X%1(X).
Alternatively, if w € QOK(X) and P € X/0(X), then

n
Or(w@P)=w@[m, Pl + > (inedw) @ (6 A P),
i=1

where (61, ..., e,) is a basis of T,°X and (e',...,e") is the
dual basis of (7, °X)*.
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