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Holomorphic Poisson Manifolds

DEFINITION: A holomorphic Poisson manifold is a complex
manifold X whose sheaf of holomorphic functions OX is a sheaf
of Poisson algebras.

f ,g ∈ OX =⇒ {f ,g} ∈ OX

{f ,g} = π(df ,dg) =
∑
i<j

πij
(
∂zi f∂zj g − ∂zj f∂zi g

)
π =

∑
i<j

πij∂zi ∧ ∂zj s.t. πij ∈ OX

More

FACT: (OX , {·, ·}) is holomorphic Poisson
IFF π ∈ Γ(∧2T 1,0X ) satisfies [π, π] = 0 and ∂̄π = 0
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Real and imaginary parts of π

∧2T 1,0X ⊂ ∧2TCX = ∧2TX ⊕ i ∧2 TX
π = πR + iπI where πR, πI ∈ Γ(∧2TX )

QUESTION: Are πR and πI real Poisson structures?
And conversely, given two real poisson structures πR and πI ,
when does π = πR + iπI define a holomorphic Poisson
structure?



Holomorphic Poisson Manifolds Holomorphic Lie Algebroids Integration Cohomology

Poisson Nijenhuis structures

[Magri-Morosi]

Recall that a Poisson Nijenhuis structure on a manifold X
consists of a pair (π,N), where π is a Poisson tensor on X and
N : TX → TX is a Nijenhuis tensor such that the following
compatibility conditions are satisfied:

N◦π] = π]◦N∗

[α, β]πN = [N∗α, β]π + [α,N∗β]π − N∗[α, β]π

where πN is the bivector field on X defined by the relation
π]N = π]◦N∗ and for any bivector field π̂ on M,

[α, β]π̂ := Lπ̂]α(β)− Lπ̂]β(α)− d
(
π̂(α, β)

)
, ∀α, β ∈ Ω1(M).
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QUESTION: Are πR and πI real Poisson structures?

THEOREM: Given a complex manifold X with associated
almost complex structure J, the following are equivalent:

1 π = πR + iπI ∈ Γ(∧2T 1,0X )
is a holomorphic Poisson bivector field;

2 (πI , J) is a Poisson Nijenhuis structure on X
and π]R = π]I ◦J

∗;

3 Jπ =

(
J π]I
0 −J∗

)
(∈ End(TM ⊕ T ∗M)) is a generalized

complex structure and π]R = π]I ◦J
∗.

Thus (πR, πI) is a biHamiltonian structure on X .
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Symplectic Foliations

FACT: Let (X , π) be a holomorphic Poisson manifold, and πR
and πI the real and imaginary parts of π.

Then the symplectic foliations of πR and πI coincide, and their
leaves are exactly the holomorphic symplectic leaves of π.
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Holomorphic Vector Bundles (HVB)

Given a HVB A
p−→ X ,

A denotes its sheaf of holomorphic sections
and A∞ its sheaf of smooth sections.
Clearly, A is a sheaf of OX -modules
while A∞ is a sheaf of C∞(X )-modules.
Moreover A is a subsheaf of A∞.

The tangent bundle TX → X of a complex manifold X is
naturally a HVB. We will denote its sheaf of holomorphic
sections, i.e. the sheaf of holomorphic vector fields, by ΘX .

The cotangent bundle T ∗X → X of a complex manifold X is
naturally a HVB. We will denote its sheaf of holomorphic
sections, i.e. the sheaf of holomorphic 1-forms, by ΩX .
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Holomorphic Lie Algebroids (HLA)

DEFINITION: A HLA is a HVB A→ X , equipped with a
holomorphic bundle map A

ρ−→ TX , called the anchor map, and
a structure of sheaf of complex Lie algebras on A, such that

1 the anchor map ρ induces a homomorphism of sheaves of
complex Lie algebras from A to ΘX ;

2 and the Leibniz identity

[V , fW ] =
(
ρ(V )f

)
W + f [V ,W ]

holds for all V ,W ∈ A(U), f ∈ OX (U) and all open subsets
U of X .
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EXAMPLES:

1 The tangent bundle TX → X of a complex manifold X is
naturally a HLA.

2 The cotangent bundle T ∗X → X of a holomorphic Poisson
manifold (X , π) is a HLA with anchor π] : T ∗X → TX and
bracket

[α, β]π = Lπ]αβ − Lπ]βα + 1
2d
(
π(α, β)

)
,

for all α, β ∈ Ω1
X .
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Underlying Real Lie Algebroid (1/2)

Some special real Lie algebroids give rise to HLAs.

By forgetting the complex structure, a HVB A→ X becomes a
real (smooth) vector bundle, and a HVB map ρ : A→ TX
becomes a real (smooth) vector bundle map.

Let A→ X be a HVB whose underlying real vector bundle is
endowed with a Lie algebroid structure (A, ρ, [·, ·]) such that, for
any open subset U ⊂ X , (1) [A(U),A(U)] ⊂ A(U) and (2) the
restriction of the Lie bracket [·, ·] to A(U) is C-linear. Then the
restriction of [·, ·] and ρ from Γ(A) to A makes A a HLA.
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Underlying Real Lie Algebroid (2/2)

Actually, any HLA can be obtained out of such a real Lie
algebroid, in a unique way.

FACT: Given a structure of HLA on a HVB A→ X with anchor
map A

ρ−→ TX , there exists a unique structure of real smooth Lie
algebroid on the vector bundle A→ X with respect to the same
anchor map ρ such that the inclusion of sheaves A ⊂ A∞ is a
morphism of sheaves of real Lie algebras.

In the sequel, we will use AR to denote the underlying real Lie
algebroid of a HLA A.
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Underlying Imaginary Lie Algebroid

1 Take a HLA (A→ X , ρ, [·, ·]).
2 Consider the bundle map j : A→ A defining the fiberwise

complex structure on A.
3 FACT: The Nijenhuis torsion of j w.r.t. the bracket of the

real Lie algebroid AR vanishes.
4 Therefore, one can define a new (real) Lie algebroid

structure on A, denoted by (A→ X , ρj , [·, ·]j), where the
anchor ρj is ρ◦j and the bracket on Γ(A) is given by

[V ,W ]j = [jV ,W ] + [V , jW ]− j[V ,W ], ∀V ,W ∈ Γ(A).

[Cariñena-Grabowski-Marmo]
5 AI := (A→ X , ρj , [·, ·]j) will be called the underlying

imaginary Lie algebroid
6 j : AI → AR is a Lie algebroid isomorphism
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Holomorphic Lie-Poisson structures

The Lie algebroid structures on a given vector bundle are in 1-1
correspondence with the so-called fiberwise linear Poisson
structures on the dual bundle.

This correspondence extends to the holomorphic context.

FACT: Let A→ X be a holomorphic vector bundle.
The following are equivalent:

1 A is a holomorphic Lie algebroid;
2 there exists a fiberwise-linear holomorphic Poisson

structure on HomC(A,C). More
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1 Consider a holomorphic Lie algebroid (A→ X , ρ, [·, ·]).
2 Its complex dual bundle HomC(A,C) is a fiberwise linear

holomorphic Poisson manifold, whose holomorphic
Poisson tensor is denoted by π.

3 Let πR and πI be its real and imaginary parts. Then
π< := Ψ−1

∗ πR and π= := Ψ−1
∗ πI are fiberwise R-linear

Poisson tensors on the real dual bundle HomR(A,R). More

4 These Poisson structures therefore correspond to real Lie
algebroids on A→ X , which are denoted by
(A→ X , ρ<, [·, ·]<) and (A→ X , ρ=, [·, ·]=), respectively.

QUESTION: Obtain an explicit description of the Lie algebroid
structures A< and A= in terms of the holomorphic Lie algebroid
structure on A.
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QUESTION: Obtain an explicit description of the Lie algebroid
structures A< and A= in terms of the holomorphic Lie algebroid
structure on A.

FACT: Let (A→ X , ρ, [·, ·]) be a holomorphic Lie algebroid.

1 The Lie algebroid (A→ X ,4ρ<,4[·, ·]<) is isomorphic to the
real Lie algebroid AR;

2 The Lie algebroid (A→ X ,−4ρ=,−4[·, ·]=) is isomorphic to
the imaginary Lie algebroid AI .
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Equivalent definition of HLA

Let (A, ρ, [·, ·]) be a real Lie algebroid, where A→ X is a
holomorphic vector bundle. The following are equivalent:

1 (A, ρ, [·, ·]) is a holomorphic Lie algebroid;
2 if JA and JX denote the almost complex structures on A

and X respectively, the map

TA

��

JA // TA

��
TX JX

// TX

defines a Lie algebroid isomorphism.
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Integration

A (holomorphic) Lie algebroid is integrable if there exists an
s-connected and s-simply connected (holomorphic) Lie
groupoid of which it is the infinitesimal version.

QUESTION: Given a holomorphic Lie algebroid A with
underlying real Lie algebroid AR, what is the relation between
the integrability of A and the integrability of AR?

THEOREM: AI is integrable
IFF A is integrable
IFF AR is integrable
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Holomorphic Symplectic Groupoids/Realizations

A holomorphic symplectic groupoid is a holomorphic Lie
groupoid Γ ⇒ X together with a holomorphic symplectic 2-form
ω ∈ Ω2,0(Γ) such that the graph of multiplication Λ ⊂ Γ× Γ× Γ̄ is
a Lagrangian submanifold, where Γ̄ stands for the Γ equipped
with the opposite symplectic structure.

Given a holomorphic symplectic groupoid Γ ⇒ X , its
holomorphic Lie algebroid is isomorphic to the cotangent Lie
algebroid (T ∗X )π → X , where π is the induced holomorphic
Poisson structure on X .

Conversely, a holomorphic Poisson manifold (X , π) is said to be
integrable if it is the induced holomorphic Poisson structure on
the unit space of a holomorphic symplectic groupoid Γ ⇒ X .
We say that Γ ⇒ X integrates the holomorphic Poisson
structure (X , π).
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THEOREM: A holomorphic Poisson manifold is integrable if,
and only if, either its real or its imaginary part is integrable as a
real Poisson manifold.

This theorem can be derived from the equivalence between
holomorphic Poisson manifolds and Poisson Nijenhuis
structures. See Crainic or S-Xu.
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Holomorphic Lie Algebroid Cohomology

1 Let A→ X be a HLA.
2 We have got the complex of sheaves over X

Ω•A : Ω0
A

dA−→ Ω1
A

dA−→ · · · dA−→ Ωk
A

dA−→ Ωk+1
A

dA−→ · · ·

where Ωk
A stands for the sheaf of holomorphic sections of

∧kA∗ → X (and Ω0
A = OX ).

3 By definition, the holomorphic Lie algebroid cohomology of
A is the cohomology H∗(X ,Ω•A) of this complex of sheaves.

EXAMPLE: X = complex mfd, A = TX

H∗(X ,Ω•X ) ' H∗DR(X )
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QUESTION: Given an arbitrary holomorphic Lie algebroid A,
find a complex Lie algebroid L whose cohomology groups are
isomorphic to those of A.

ANSWER: L = T 0,1X ./ A1,0

When A = (T ∗X )π (where X is a holomorphic Poisson
manifold), then L is the

√
−1-eigenbundle of the generalized

complex structure J4π.
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Matched Pair of Lie Algebroids

[Lu,Mackenzie,Mokri]

A and B are (C or R) Lie algebroids over same base mfd M

B is an A-module: Γ(A)⊗ Γ(B)→ Γ(B) : (X ,Y ) 7→ ∇X Y

A is a B-module: Γ(B)⊗ Γ(A)→ Γ(A) : (Y ,X ) 7→ ∇Y X

Compatibility conditions:

[a(X ),b(Y )] = −a
(
∇Y X

)
+ b

(
∇X Y

)
,

∇X [Y1,Y2] = [∇X Y1,Y2] + [Y1,∇X Y2] +∇∇Y2
X Y1 −∇∇Y1

X Y2,

∇Y [X1,X2] = [∇Y X1,X2] + [X1,∇Y X2] +∇∇X2
Y X1 −∇∇X1

Y X2,

where X1,X2,X ∈ Γ(A) and Y1,Y2,Y ∈ Γ(B).

a = anchor of A
b = anchor of B
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Given a matched pair (A,B) of Lie algebroids, there is a Lie
algebroid structure A ./ B on the direct sum vector bundle
A⊕ B, with anchor c(X ⊕ Y ) = a(X ) + b(Y ) and bracket

[X1 ⊕ Y1,X2 ⊕ Y2] =
(
[X1,X2] +∇Y1X2 −∇Y2X1

)
⊕
(
[Y1,Y2] +∇X1Y2 −∇X2Y1

)
.

Conversely, if A⊕ B has a Lie algebroid structure for which
A⊕ 0 and 0⊕ B are Lie subalgebroids, then the
representations ∇ defined by

[X ⊕ 0,0⊕ Y ] = −∇Y X ⊕∇X Y

endow the couple (A,B) with a matched pair structure.



Holomorphic Poisson Manifolds Holomorphic Lie Algebroids Integration Cohomology

EXAMPLE:

X = complex mfd

Set ∇X 0,1X 1,0 = pr1,0[X 0,1,X 1,0]
and ∇X 1,0X 0,1 = pr0,1[X 1,0,X 0,1]
for all X 0,1 ∈ X0,1(X ) and X 1,0 ∈ X1,0(X ).

Then (T 0,1X ,T 1,0X ) is a matched pair.

T 0,1X ./ T 1,0X ' TCX as CLAs

More generally, given a holomorphic Lie algebroid A, the couple
(A0,1,A1,0) is a matched pair of Lie algebroids and A0,1 ./ A1,0

is isomorphic, as a complex Lie algebroid, to AC.
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WELL-KNOWN FACT: Let E be a complex vector bundle over
a complex manifold X . Then E is a holomorphic vector bundle
if, and only if, E is a T 0,1X -module — i.e. there exists a flat
T 0,1X -connection on E .

FACT: Let A be a holomorphic Lie algebroid over a complex
manifold X . Then the couple (T 0,1X ,A1,0) is naturally a
matched pair of complex Lie algebroids. More

Conversely, given a complex manifold X and a matched pair
(T 0,1X ,B), where B is a complex Lie algebroid over X whose
anchor takes its values in T 1,0X , there exists a holomorphic Lie
algebroid A such that B ' A1,0 as complex Lie algebroids.
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THEOREM: For any HLA A→ X ,

H∗(X ,Ω•A) = H∗(T 0,1X ./ A1,0,C) .

IDEA OF THE PROOF: Use a double complex

whose total cohomology is H∗(T 0,1X ./ A1,0,C)

and which is a resolution of the complex of sheaves Ω•A.
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FACT: Let A and B be a pair of Lie algebroids over M with
mutual actions ∇. The couple (A,B) is a matched pair IFF the
diagram

Γ(∧kA∗ ⊗ ∧lB∗)
∂A //

∂B
��

Γ(∧k+1A∗ ⊗ ∧lB∗)

∂B
��

Γ(∧kA∗ ⊗ ∧l+1B∗)
∂A

// Γ(∧k+1A∗ ⊗ ∧l+1B∗)

commutes, where ∂A and ∂B denote the Lie algebroid
cohomology differential operators of A with values in the
module ∧•B∗ and of B with values in the module ∧•A∗,
respectively. More

The Lie algebroid cohomology of A ./ B (with trivial coefficients)
is isomorphic to the total cohomology of this double complex.
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Taking A = T 0,1X and B = A1,0 in this double complex,
by the holomorphic Poincaré Lemma, we obtain a resolution of
the complex of sheaves Ω•A:

· · · · · · · · · · · ·

0 // Ω2
A

dA

OO

∂̄// Ω0,0
X ⊗C∞X

A2,0
∞

d1,0
A

OO

∂̄ // Ω0,1
X ⊗C∞X

A2,0
∞

d1,0
A

OO

∂̄ // · · ·

0 // Ω1
A

dA

OO

∂̄// Ω0,0
X ⊗C∞X

A1,0
∞

d1,0
A

OO

∂̄ // Ω0,1
X ⊗C∞X

A1,0
∞

d1,0
A

OO

∂̄ // · · ·

0 // Ω0
A

dA

OO

∂̄// Ω0,0
X ⊗C∞X

A0,0
∞

d1,0
A

OO

∂̄ // Ω0,1
X ⊗C∞X

A0,0
∞

d1,0
A

OO

∂̄ // · · ·

where Ω0,k
X ⊗C∞X

Al,0
∞ denotes the sheaf of sections of the

complex vector bundle (T 0,kX )∗ ⊗ ∧lA1,0 → X .
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THEOREM: Let (X , π) be a holomorphic Poisson manifold.
The following cohomologies are all isomorphic:

1 the holomorphic Poisson cohomology of (X , π);
2 the holomorphic Lie algebroid cohomology of (T ∗X )π;

3 the complex Lie algebroid cohomology of T 0,1
X ./ (T 1,0X )∗π;

4 the total cohomology of the double complex

· · · · · ·

Ω0,k (X ,T l+1,0X )

dπ

OO

∂̄ // Ω0,k+1(X ,T l+1,0X )

dπ

OO

∂̄ // · · ·

Ω0,k (X ,T l,0X )

dπ

OO

∂̄ // Ω0,k+1(X ,T l,0X )

dπ

OO

∂̄ // · · ·

More
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In particular, if π = 0, we obtain:

Hk((T ∗X )0
)

=
⊕

i+j=k

H i(X ,T j,0).



Since the restrictions of the operators ∂
∂z , ∂

∂x and −i ∂∂y from
C∞(X ,C) to OX are one and the same, there are different
natural ways one can extend a differential operator defined
on OX to an operator defined on C∞(X ,C).

Here π =
∑
πij∂zi ∧ ∂zj ∈ Γ(∧2T 1,0X ) is a bidifferential operator

on C∞(X .C). We have already made the choice of the
extension. Go back



Note that the complex dual HomC(A,C) of a holomorphic vector
bundle A→ X is again a holomorphic manifold, which is also a
holomorphic vector bundle over X . We denote by
p : HomC(A,C)→ X the projection onto the base manifold.
There is a one-one correspondence between holomorphic
sections V ∈ A(U) and fiberwise-linear holomorphic functions
lV on HomC(A|U ,C): ∀α ∈ HomC(A|U ,C)

lV (α) = α(V |p(α)).

Here the Lie algebroid structure on (A, ρ, [·, ·]) and the Poisson
structure on HomC(A,C) are related by the following equations:

{p∗f , lV} = p∗
(
ρ(V )(f )

)
{lV , lW} = l[V ,W ]

for any V ,W ∈ A(U) and f ∈ OX (U). Go back



Given a complex vector bundle A→ X , we denote its complex
and real dual bundles by HomC(A,C)→ X and
HomR(A,R)→ X , respectively.

There is an isomorphism of real vector bundles

HomR(A,R)

pR
��

Ψ=1−ij∗// HomC(A,C)

pC
��

X id
// X .

Note that Ψ−1(ξ) = <◦ξ. Go back



1 A→ X is a HLA

2 For all X 0,1 ∈ Γ(T 0,1X ) and A1,0 ∈ Γ(A1,0), set

∇X 0,1A1,0 = 0 and ∇A1,0X 0,1 = pr0,1[ρCA1,0,X 0,1].

Then (T 0,1X ,A1,0) is a matched pair of CLAs.

3 AC = A0,1 ./ A1,0 −→ T 0,1
X ./ A1,0 −→ T 0,1

X ./ T 1,0
X = TCX

Go back



STEP 1 Given a matched pair (A,B), A ./ B is a Lie
algebroid.

Its Lie algebroid differential

Γ(∧•(A⊕ B)∗)
dA./B−−−→ Γ(∧•+1(A⊕ B)∗),

is defined by

(dA./Bα)(C0, . . . ,Cn) =
n∑

i=0

(−1)ic(Ci)
(
α(C0, . . . , Ĉi , . . . ,Cn)

)
+
∑
i<j

(−1)i+jα([Ci ,Cj ],C0, . . . , Ĉi , . . . , Ĉj , . . . ,Cn),

and satisfies d2
A./B = 0.



STEP 2 Now, remember that

∧n(A⊕ B)∗ =
⊕

k+l=n

∧kA∗ ⊗ ∧lB∗.

It is easy to see that

dA./B(Γ(∧kA∗⊗∧lB∗)) ⊂ Γ(∧k+2A∗⊗∧l−1B∗)⊕Γ(∧k+1A∗⊗∧lB∗)

⊕ Γ(∧kA∗ ⊗ ∧l+1B∗)⊕ Γ(∧k−1A∗ ⊗ ∧l+2B∗).

Moreover, since A and B are Lie subalgebroids of A ./ B, the
stronger relation

dA./BΓ(∧kA∗ ⊗ ∧lB∗) ⊂ Γ(∧k+1A∗ ⊗ ∧lB∗)⊕ Γ(∧kA∗ ⊗ ∧l+1B∗)

holds.



STEP 3 Composing dA./B with the natural projections on
each of the direct summands

Γ(∧k+1A∗ ⊗ ∧lB∗)

Γ(∧kA∗ ⊗ ∧lB∗)
dA./B//

∂A
33gggggggggggggggggggg

(−1)k∂B ++WWWWWWWWWWWWWWWWWWWW
Γ
(
(∧k+1A∗ ⊗ ∧lB∗)⊕ (∧kA∗ ⊗ ∧l+1B∗)

)
OO

��
Γ(∧kA∗ ⊗ ∧l+1B∗),

we get two operators ∂A and ∂B.

From d2
A./B = 0, it follows that ∂2

A = 0, ∂2
B = 0 and

∂A◦∂B = ∂B◦∂A. Go back



The operator dπ is defined by the relation(
dπα

)
(Y1, . . . ,Yk ) = [π, α(Y1, · · · ,Yk )]+(−1)k [π,Y1∧· · ·∧Yk ] α,

where Y1, . . . ,Yk are arbitrary elements of X0,1(X ).

Alternatively, if ω ∈ Ω0,k (X ) and P ∈ Xl,0(X ), then

dπ(ω ⊗ P) = ω ⊗ [π,P] +
n∑

i=1

(iπ]ei dω)⊗ (ei ∧ P),

where (e1, . . . ,en) is a basis of T 1,0
x X and (e1, . . . ,en) is the

dual basis of (T 1,0
x X )∗. Go back
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