◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Holomorphic Poisson Structures and Groupoids

Mathieu Stiénon

Pennsylvania State University State College, PA

"Algebraic Aspects in Geometry" Bedlewo, Poland - October 07

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

C. Laurent, M. Stiénon, P. Xu, Holomorphic Poisson Structures and Groupoids arXiv:0707.4253

M. Stiénon, P. Xu, Poisson quasi-Nijenhuis manifolds *Comm. Math. Phys.*, 270(3):709–725, 2007.

1 Holomorphic Poisson Manifolds

2 Holomorphic Lie Algebroids

3 Integration

Holomorphic Poisson Manifolds

DEFINITION: A holomorphic Poisson manifold is a complex manifold *X* whose sheaf of holomorphic functions \mathcal{O}_X is a sheaf of Poisson algebras.

$$f, g \in \mathcal{O}_X \implies \{f, g\} \in \mathcal{O}_X$$
$$\{f, g\} = \pi(df, dg) = \sum_{i < j} \pi_{ij} (\partial_{z_i} f \partial_{z_j} g - \partial_{z_j} f \partial_{z_i} g)$$
$$\pi = \sum_{i < j} \pi_{ij} \partial_{z_i} \wedge \partial_{z_j} \qquad \text{s.t. } \pi_{ij} \in \mathcal{O}_X$$

FACT: $(\mathcal{O}_X, \{\cdot, \cdot\})$ is holomorphic Poisson **IFF** $\pi \in \Gamma(\wedge^2 T^{1,0}X)$ satisfies $[\pi, \pi] = 0$ and $\bar{\partial}\pi = 0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□□ のへで

More

Real and imaginary parts of π

$$\wedge^{2} T^{1,0} X \subset \wedge^{2} T_{\mathbb{C}} X = \wedge^{2} T X \oplus i \wedge^{2} T X$$
$$\pi = \pi_{R} + i\pi_{I} \quad \text{where } \pi_{R}, \pi_{I} \in \Gamma(\wedge^{2} T X)$$

QUESTION: Are π_R and π_I real Poisson structures? And conversely, given two real poisson structures π_R and π_I , when does $\pi = \pi_R + i\pi_I$ define a holomorphic Poisson structure?

Poisson Nijenhuis structures

[Magri-Morosi]

Recall that a Poisson Nijenhuis structure on a manifold *X* consists of a pair (π, N) , where π is a Poisson tensor on *X* and $N: TX \rightarrow TX$ is a Nijenhuis tensor such that the following compatibility conditions are satisfied:

$$\mathbf{N}_{\circ}\pi^{\sharp} = \pi^{\sharp}_{\circ}\mathbf{N}^{*}$$
$$[\alpha,\beta]_{\pi_{N}} = [\mathbf{N}^{*}\alpha,\beta]_{\pi} + [\alpha,\mathbf{N}^{*}\beta]_{\pi} - \mathbf{N}^{*}[\alpha,\beta]_{\pi}$$

where π_N is the bivector field on *X* defined by the relation $\pi_N^{\sharp} = \pi^{\sharp_{\circ}} N^*$ and for any bivector field $\hat{\pi}$ on *M*,

$$[\alpha,\beta]_{\hat{\pi}} := \mathcal{L}_{\hat{\pi}^{\sharp}\alpha}(\beta) - \mathcal{L}_{\hat{\pi}^{\sharp}\beta}(\alpha) - \boldsymbol{d}\big(\hat{\pi}(\alpha,\beta)\big), \qquad \forall \alpha,\beta \in \Omega^{1}(\boldsymbol{M}).$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

QUESTION: Are π_R and π_I real Poisson structures?

THEOREM: Given a complex manifold X with associated almost complex structure J, the following are equivalent:

Thus (π_R, π_I) is a biHamiltonian structure on *X*.

Symplectic Foliations

FACT: Let (X, π) be a holomorphic Poisson manifold, and π_R and π_I the real and imaginary parts of π .

Then the symplectic foliations of π_R and π_I coincide, and their leaves are exactly the holomorphic symplectic leaves of π .

Holomorphic Vector Bundles (HVB)

Given a HVB $A \xrightarrow{p} X$, \mathcal{A} denotes its **sheaf of holomorphic sections** and \mathcal{A}_{∞} its **sheaf of smooth sections**. Clearly, \mathcal{A} is a sheaf of \mathcal{O}_X -modules while \mathcal{A}_{∞} is a sheaf of $C^{\infty}(X)$ -modules. Moreover \mathcal{A} is a subsheaf of \mathcal{A}_{∞} .

The tangent bundle $TX \rightarrow X$ of a complex manifold X is naturally a HVB. We will denote its sheaf of holomorphic sections, i.e. the sheaf of holomorphic vector fields, by Θ_X .

The cotangent bundle $T^*X \to X$ of a complex manifold X is naturally a HVB. We will denote its sheaf of holomorphic sections, i.e. the sheaf of holomorphic 1-forms, by Ω_X .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Holomorphic Lie Algebroids (HLA)

DEFINITION: A HLA is a HVB $A \rightarrow X$, equipped with a holomorphic bundle map $A \xrightarrow{\rho} TX$, called the anchor map, and a structure of sheaf of complex Lie algebras on A, such that

- the anchor map ρ induces a homomorphism of sheaves of complex Lie algebras from A to Θ_X;
- 2 and the Leibniz identity

$$[V, fW] = (\rho(V)f)W + f[V, W]$$

holds for all $V, W \in \mathcal{A}(U), f \in \mathcal{O}_X(U)$ and all open subsets U of X.

EXAMPLES:

- 1 The tangent bundle $TX \rightarrow X$ of a complex manifold X is naturally a HLA.
- **2** The cotangent bundle $T^*X \to X$ of a holomorphic Poisson manifold (X, π) is a HLA with anchor $\pi^{\sharp} : T^*X \to TX$ and bracket

$$[\alpha,\beta]_{\pi} = L_{\pi^{\sharp}\alpha}\beta - L_{\pi^{\sharp}\beta}\alpha + \frac{1}{2}d(\pi(\alpha,\beta)),$$

for all $\alpha, \beta \in \Omega^1_X$.

Underlying Real Lie Algebroid (1/2)

Some special real Lie algebroids give rise to HLAs.

By forgetting the complex structure, a HVB $A \rightarrow X$ becomes a real (smooth) vector bundle, and a HVB map $\rho : A \rightarrow TX$ becomes a real (smooth) vector bundle map.

Let $A \to X$ be a HVB whose underlying real vector bundle is endowed with a Lie algebroid structure $(A, \rho, [\cdot, \cdot])$ such that, for any open subset $U \subset X$, (1) $[\mathcal{A}(U), \mathcal{A}(U)] \subset \mathcal{A}(U)$ and (2) the restriction of the Lie bracket $[\cdot, \cdot]$ to $\mathcal{A}(U)$ is \mathbb{C} -linear. Then the restriction of $[\cdot, \cdot]$ and ρ from $\Gamma(A)$ to \mathcal{A} makes A a HLA.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Underlying Real Lie Algebroid (2/2)

Actually, any HLA can be obtained out of such a real Lie algebroid, in a unique way.

FACT: Given a structure of HLA on a HVB $A \rightarrow X$ with anchor map $A \xrightarrow{\rho} TX$, there exists a unique structure of real smooth Lie algebroid on the vector bundle $A \rightarrow X$ with respect to the same anchor map ρ such that the inclusion of sheaves $\mathcal{A} \subset \mathcal{A}_{\infty}$ is a morphism of sheaves of real Lie algebras.

In the sequel, we will use A_R to denote the **underlying real Lie** algebroid of a HLA A.

Underlying Imaginary Lie Algebroid

1 Take a HLA
$$(A \rightarrow X, \rho, [\cdot, \cdot])$$
.

- 2 Consider the bundle map $j : A \rightarrow A$ defining the fiberwise complex structure on *A*.
- **3 FACT:** The Nijenhuis torsion of j w.r.t. the bracket of the real Lie algebroid A_R vanishes.
- 4 Therefore, one can define a new (real) Lie algebroid structure on *A*, denoted by (*A* → *X*, ρ_j, [·, ·]_j), where the anchor ρ_j is ρ_◦j and the bracket on Γ(*A*) is given by

$$[V, W]_j = [jV, W] + [V, jW] - j[V, W], \qquad \forall V, W \in \Gamma(A).$$

[Cariñena-Grabowski-Marmo]

- **5** $A_i := (A \rightarrow X, \rho_j, [\cdot, \cdot]_j)$ will be called the **underlying** imaginary Lie algebroid
- **6** $j: A_I \to A_R$ is a Lie algebroid isomorphism

Holomorphic Lie-Poisson structures

The Lie algebroid structures on a given vector bundle are in 1-1 correspondence with the so-called fiberwise linear Poisson structures on the dual bundle.

This correspondence extends to the holomorphic context.

FACT: Let $A \rightarrow X$ be a holomorphic vector bundle. The following are equivalent:

- **1** A is a holomorphic Lie algebroid;
- 2 there exists a fiberwise-linear holomorphic Poisson structure on Hom_ℂ(*A*, ℂ).

Holomorphic Lie Algebroids

- **1** Consider a holomorphic Lie algebroid $(A \rightarrow X, \rho, [\cdot, \cdot])$.
- Its complex dual bundle Hom_C(A, C) is a fiberwise linear holomorphic Poisson manifold, whose holomorphic Poisson tensor is denoted by π.
- 3 Let π_R and π_I be its real and imaginary parts. Then $\pi_{\Re} := \Psi_*^{-1} \pi_R$ and $\pi_{\Im} := \Psi_*^{-1} \pi_I$ are fiberwise \mathbb{R} -linear Poisson tensors on the real dual bundle $\operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R})$. \frown More
- These Poisson structures therefore correspond to real Lie algebroids on A → X, which are denoted by (A → X, ρ_ℜ, [·, ·]_ℜ) and (A → X, ρ_ℑ, [·, ·]_ℑ), respectively.

QUESTION: Obtain an explicit description of the Lie algebroid structures A_{\Re} and A_{\Im} in terms of the holomorphic Lie algebroid structure on A.

QUESTION: Obtain an explicit description of the Lie algebroid structures A_{\Re} and A_{\Im} in terms of the holomorphic Lie algebroid structure on A.

FACT: Let $(A \rightarrow X, \rho, [\cdot, \cdot])$ be a holomorphic Lie algebroid.

- The Lie algebroid (A → X, 4ρ_ℜ, 4[·, ·]_ℜ) is isomorphic to the real Lie algebroid A_R;
- 2 The Lie algebroid (A → X, -4ρ_ℑ, -4[·, ·]_ℑ) is isomorphic to the imaginary Lie algebroid A_I.

Equivalent definition of HLA

Let $(A, \rho, [\cdot, \cdot])$ be a real Lie algebroid, where $A \to X$ is a holomorphic vector bundle. The following are equivalent:

- **1** $(A, \rho, [\cdot, \cdot])$ is a holomorphic Lie algebroid;
- 2 if J_A and J_X denote the almost complex structures on A and X respectively, the map

defines a Lie algebroid isomorphism.

Integration

A (holomorphic) Lie algebroid is integrable if there exists an *s*-connected and *s*-simply connected (holomorphic) Lie groupoid of which it is the infinitesimal version.

QUESTION: Given a holomorphic Lie algebroid *A* with underlying real Lie algebroid A_R , what is the relation between the integrability of *A* and the integrability of A_R ?

THEOREM: A_i is integrable IFF *A* is integrable IFF A_R is integrable

Holomorphic Symplectic Groupoids/Realizations

A holomorphic symplectic groupoid is a holomorphic Lie groupoid $\Gamma \rightrightarrows X$ together with a holomorphic symplectic 2-form $\omega \in \Omega^{2,0}(\Gamma)$ such that the graph of multiplication $\Lambda \subset \Gamma \times \Gamma \times \overline{\Gamma}$ is a Lagrangian submanifold, where $\overline{\Gamma}$ stands for the Γ equipped with the opposite symplectic structure.

Given a holomorphic symplectic groupoid $\Gamma \rightrightarrows X$, its holomorphic Lie algebroid is isomorphic to the cotangent Lie algebroid $(T^*X)_{\pi} \rightarrow X$, where π is the induced holomorphic Poisson structure on *X*.

Conversely, a holomorphic Poisson manifold (X, π) is said to be *integrable* if it is the induced holomorphic Poisson structure on the unit space of a holomorphic symplectic groupoid $\Gamma \rightrightarrows X$. We say that $\Gamma \rightrightarrows X$ *integrates* the holomorphic Poisson structure (X, π) .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

THEOREM: A holomorphic Poisson manifold is integrable if, and only if, either its real or its imaginary part is integrable as a real Poisson manifold.

This theorem can be derived from the equivalence between holomorphic Poisson manifolds and Poisson Nijenhuis structures. See Crainic or S-Xu.

Holomorphic Lie Algebroid Cohomology

1 Let $A \rightarrow X$ be a HLA.

2 We have got the complex of sheaves over X

$$\Omega_{\mathcal{A}}^{\bullet}: \ \Omega_{\mathcal{A}}^{0} \xrightarrow{d_{\mathcal{A}}} \Omega_{\mathcal{A}}^{1} \xrightarrow{d_{\mathcal{A}}} \cdots \xrightarrow{d_{\mathcal{A}}} \Omega_{\mathcal{A}}^{k} \xrightarrow{d_{\mathcal{A}}} \Omega_{\mathcal{A}}^{k+1} \xrightarrow{d_{\mathcal{A}}} \cdots$$

where Ω_A^k stands for the sheaf of *holomorphic* sections of $\wedge^k A^* \to X$ (and $\Omega_A^0 = \mathcal{O}_X$).

 By definition, the *holomorphic* Lie algebroid cohomology of A is the cohomology H^{*}(X, Ω[•]_A) of this complex of sheaves.

EXAMPLE: X = complex mfd, A = TX

$$H^*(X, \Omega^{ullet}_X) \simeq H^*_{\mathsf{DR}}(X)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □□ のQ@

QUESTION: Given an arbitrary *holomorphic* Lie algebroid *A*, find a *complex* Lie algebroid *L* whose cohomology groups are isomorphic to those of *A*.

ANSWER: $L = T^{0,1}X \bowtie A^{1,0}$

When $A = (T^*X)_{\pi}$ (where X is a holomorphic Poisson manifold), then L is the $\sqrt{-1}$ -eigenbundle of the generalized complex structure $\mathbb{J}_{4\pi}$.

Matched Pair of Lie Algebroids

[Lu,Mackenzie,Mokri]

A and *B* are (\mathbb{C} or \mathbb{R}) Lie algebroids over same base mfd *M B* is an *A*-module: $\Gamma(A) \otimes \Gamma(B) \rightarrow \Gamma(B) : (X, Y) \mapsto \nabla_X Y$ *A* is a *B*-module: $\Gamma(B) \otimes \Gamma(A) \rightarrow \Gamma(A) : (Y, X) \mapsto \nabla_Y X$ Compatibility conditions:

 $[a(X), b(Y)] = -a(\nabla_Y X) + b(\nabla_X Y),$ $\nabla_X[Y_1, Y_2] = [\nabla_X Y_1, Y_2] + [Y_1, \nabla_X Y_2] + \nabla_{\nabla_{Y_2} X} Y_1 - \nabla_{\nabla_{Y_1} X} Y_2,$ $\nabla_Y[X_1, X_2] = [\nabla_Y X_1, X_2] + [X_1, \nabla_Y X_2] + \nabla_{\nabla_{X_2} Y} X_1 - \nabla_{\nabla_{X_1} Y} X_2,$

where $X_1, X_2, X \in \Gamma(A)$ and $Y_1, Y_2, Y \in \Gamma(B)$.

a = anchor of Ab = anchor of B Holomorphic Lie Algebroids

Integration

Given a matched pair (A, B) of Lie algebroids, there is a Lie algebroid structure $A \bowtie B$ on the direct sum vector bundle $A \oplus B$, with anchor $c(X \oplus Y) = a(X) + b(Y)$ and bracket

$$\begin{aligned} [X_1 \oplus Y_1, X_2 \oplus Y_2] &= \left([X_1, X_2] + \nabla_{Y_1} X_2 - \nabla_{Y_2} X_1 \right) \\ &\oplus \left([Y_1, Y_2] + \nabla_{X_1} Y_2 - \nabla_{X_2} Y_1 \right). \end{aligned}$$

Conversely, if $A \oplus B$ has a Lie algebroid structure for which $A \oplus 0$ and $0 \oplus B$ are Lie subalgebroids, then the representations ∇ defined by

$$[X \oplus 0, 0 \oplus Y] = -\nabla_Y X \oplus \nabla_X Y$$

endow the couple (A, B) with a matched pair structure.

EXAMPLE:

$$\begin{split} & X = \text{complex mfd} \\ & \text{Set } \nabla_{X^{0,1}} X^{1,0} = \text{pr}^{1,0} [X^{0,1}, X^{1,0}] \\ & \text{and } \nabla_{X^{1,0}} X^{0,1} = \text{pr}^{0,1} [X^{1,0}, X^{0,1}] \\ & \text{for all } X^{0,1} \in \mathfrak{X}^{0,1}(X) \text{ and } X^{1,0} \in \mathfrak{X}^{1,0}(X). \\ & \text{Then } (T^{0,1}X, T^{1,0}X) \text{ is a matched pair.} \\ & T^{0,1}X \bowtie T^{1,0}X \simeq T_{\mathbb{C}}X \text{ as CLAs} \end{split}$$

More generally, given a holomorphic Lie algebroid *A*, the couple $(A^{0,1}, A^{1,0})$ is a matched pair of Lie algebroids and $A^{0,1} \bowtie A^{1,0}$ is isomorphic, as a complex Lie algebroid, to $A_{\mathbb{C}}$.

WELL-KNOWN FACT: Let *E* be a complex vector bundle over a complex manifold *X*. Then *E* is a holomorphic vector bundle if, and only if, *E* is a $T^{0,1}X$ -module — i.e. there exists a *flat* $T^{0,1}X$ -connection on *E*.

FACT: Let *A* be a holomorphic Lie algebroid over a complex manifold *X*. Then the couple $(T^{0,1}X, A^{1,0})$ is naturally a matched pair of complex Lie algebroids. Conversely, given a complex manifold *X* and a matched pair $(T^{0,1}X, B)$, where *B* is a complex Lie algebroid over *X* whose anchor takes its values in $T^{1,0}X$, there exists a holomorphic Lie algebroid *A* such that $B \simeq A^{1,0}$ as complex Lie algebroids.

THEOREM: For any HLA $A \rightarrow X$,

$$H^*(X,\Omega^{\bullet}_A)=H^*(T^{0,1}X\bowtie A^{1,0},\mathbb{C}).$$

IDEA OF THE PROOF: Use a double complex

- whose total cohomology is $H^*(T^{0,1}X \bowtie A^{1,0}, \mathbb{C})$
- and which is a resolution of the complex of sheaves Ω[•]_A.

FACT: Let *A* and *B* be a pair of Lie algebroids over *M* with mutual actions ∇ . The couple (A, B) is a matched pair **IFF** the diagram

$$\begin{array}{c|c} \Gamma(\wedge^{k}A^{*}\otimes\wedge^{l}B^{*}) & \xrightarrow{\partial_{A}} & \Gamma(\wedge^{k+1}A^{*}\otimes\wedge^{l}B^{*}) \\ & & & \downarrow \\ \partial_{B} & & \downarrow \\ \Gamma(\wedge^{k}A^{*}\otimes\wedge^{l+1}B^{*}) & \xrightarrow{\partial_{A}} & \Gamma(\wedge^{k+1}A^{*}\otimes\wedge^{l+1}B^{*}) \end{array}$$

commutes, where ∂_A and ∂_B denote the Lie algebroid cohomology differential operators of A with values in the module $\wedge^{\bullet}B^*$ and of B with values in the module $\wedge^{\bullet}A^*$, respectively.

The Lie algebroid cohomology of $A \bowtie B$ (with trivial coefficients) is isomorphic to the total cohomology of this double complex.

More

Taking $A = T^{0,1}X$ and $B = A^{1,0}$ in this double complex, by the holomorphic Poincaré Lemma, we obtain a resolution of the complex of sheaves Ω_A^{\bullet} :

where $\Omega_X^{0,k} \otimes_{C_X^{\infty}} \mathcal{A}_{\infty}^{l,0}$ denotes the sheaf of sections of the complex vector bundle $(T^{0,k}X)^* \otimes \wedge^l A^{1,0} \to X$.

THEOREM: Let (X, π) be a holomorphic Poisson manifold. The following cohomologies are all isomorphic:

- **1** the **holomorphic Poisson cohomology** of (X, π) ;
- **2** the holomorphic Lie algebroid cohomology of $(T^*X)_{\pi}$;
- 3 the complex Lie algebroid cohomology of $T_X^{0,1} \bowtie (T^{1,0}X)_{\pi}^*$;
- 4 the total cohomology of the double complex

More

In particular, if $\pi = 0$, we obtain:

$$H^k((T^*X)_0) = \bigoplus_{i+j=k} H^i(X, T^{j,0}).$$

Since the restrictions of the operators $\frac{\partial}{\partial z}$, $\frac{\partial}{\partial x}$ and $-i\frac{\partial}{\partial y}$ from $C^{\infty}(X,\mathbb{C})$ to \mathcal{O}_X are one and the same, there are different natural ways one can extend a differential operator defined on \mathcal{O}_X to an operator defined on $C^{\infty}(X,\mathbb{C})$.

Here $\pi = \sum \pi_{ij} \partial_{z_i} \wedge \partial_{z_j} \in \Gamma(\wedge^2 T^{1,0} X)$ is a bidifferential operator on $C^{\infty}(X.\mathbb{C})$. We have already made the choice of the extension.

Note that the complex dual $\operatorname{Hom}_{\mathbb{C}}(A, \mathbb{C})$ of a holomorphic vector bundle $A \to X$ is again a holomorphic manifold, which is also a holomorphic vector bundle over X. We denote by $p : \operatorname{Hom}_{\mathbb{C}}(A, \mathbb{C}) \to X$ the projection onto the base manifold. There is a one-one correspondence between holomorphic sections $V \in \mathcal{A}(U)$ and fiberwise-linear holomorphic functions I_V on $\operatorname{Hom}_{\mathbb{C}}(A|_U, \mathbb{C})$: $\forall \alpha \in \operatorname{Hom}_{\mathbb{C}}(A|_U, \mathbb{C})$

$$I_{V}(\alpha) = \alpha(V|_{p(\alpha)}).$$

Here the Lie algebroid structure on $(A, \rho, [\cdot, \cdot])$ and the Poisson structure on Hom_{\mathbb{C}} (A, \mathbb{C}) are related by the following equations:

$$\{ p^* f, l_V \} = p^* (\rho(V)(f)) \\ \{ l_V, l_W \} = l_{[V,W]}$$

for any $V, W \in \mathcal{A}(U)$ and $f \in \mathcal{O}_X(U)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a complex vector bundle $A \to X$, we denote its complex and real dual bundles by $\operatorname{Hom}_{\mathbb{C}}(A, \mathbb{C}) \to X$ and $\operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}) \to X$, respectively.

There is an isomorphism of real vector bundles

Note that $\Psi^{-1}(\xi) = \Re_{\circ} \xi$.

1 $A \rightarrow X$ is a HLA

2 For all
$$X^{0,1} \in \Gamma(T^{0,1}X)$$
 and $A^{1,0} \in \Gamma(A^{1,0})$, set
 $\nabla_{X^{0,1}}A^{1,0} = 0$ and $\nabla_{A^{1,0}}X^{0,1} = \operatorname{pr}^{0,1}[\rho_{\mathbb{C}}A^{1,0}, X^{0,1}].$
Then $(T^{0,1}X, A^{1,0})$ is a matched pair of CLAs.
3 $A_{\mathbb{C}} = A^{0,1} \bowtie A^{1,0} \longrightarrow T_X^{0,1} \bowtie A^{1,0} \longrightarrow T_X^{0,1} \bowtie T_X^{1,0} = T_{\mathbb{C}}X$

◀ Go back

▲□ → ▲圖 → ▲目 → ▲目 → ④ ● ●

STEP 1 Given a matched pair (A, B), $A \bowtie B$ is a Lie algebroid.

Its Lie algebroid differential

$$\Gamma(\wedge^{\bullet}(A\oplus B)^{*})\xrightarrow{d_{A\bowtie B}}\Gamma(\wedge^{\bullet+1}(A\oplus B)^{*}),$$

is defined by

$$(d_{A \bowtie B} \alpha)(C_0, \ldots, C_n) = \sum_{i=0}^n (-1)^i c(C_i) (\alpha(C_0, \ldots, \widehat{C}_i, \ldots, C_n)) + \sum_{i < j} (-1)^{i+j} \alpha([C_i, C_j], C_0, \ldots, \widehat{C}_i, \ldots, \widehat{C}_j, \ldots, C_n),$$

and satisfies $d_{A\bowtie B}^2 = 0$.

STEP 2 Now, remember that

$$\wedge^n (\mathbf{A} \oplus \mathbf{B})^* = \bigoplus_{k+l=n} \wedge^k \mathbf{A}^* \otimes \wedge^l \mathbf{B}^*.$$

It is easy to see that

$$d_{A\bowtie B}(\Gamma(\wedge^{k}A^{*}\otimes\wedge^{l}B^{*}))\subset \Gamma(\wedge^{k+2}A^{*}\otimes\wedge^{l-1}B^{*})\oplus \Gamma(\wedge^{k+1}A^{*}\otimes\wedge^{l}B^{*})$$
$$\oplus \Gamma(\wedge^{k}A^{*}\otimes\wedge^{l+1}B^{*})\oplus \Gamma(\wedge^{k-1}A^{*}\otimes\wedge^{l+2}B^{*}).$$

Moreover, since A and B are Lie subalgebroids of $A \bowtie B$, the stronger relation

$$d_{A\bowtie B}\Gamma(\wedge^kA^*\otimes\wedge^lB^*)\subset \Gamma(\wedge^{k+1}A^*\otimes\wedge^lB^*)\oplus \Gamma(\wedge^kA^*\otimes\wedge^{l+1}B^*)$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

holds.

STEP 3 Composing $d_{A \bowtie B}$ with the natural projections on each of the direct summands

we get two operators ∂_A and ∂_B .

From
$$d^2_{A \bowtie B} = 0$$
, it follows that $\partial^2_A = 0$, $\partial^2_B = 0$ and $\partial_{A^\circ} \partial_B = \partial_{B^\circ} \partial_A$.

Go back

The operator d_{π} is defined by the relation

 $(d_{\pi}\alpha)(Y_1,\ldots,Y_k) = [\pi, \alpha(Y_1,\cdots,Y_k)] + (-1)^k [\pi, Y_1 \wedge \cdots \wedge Y_k] \square \alpha,$ where Y_1,\ldots,Y_k are arbitrary elements of $\mathfrak{X}^{0,1}(X)$. Alternatively, if $\omega \in \Omega^{0,k}(X)$ and $P \in \mathfrak{X}^{l,0}(X)$, then

$$d_{\pi}(\omega \otimes P) = \omega \otimes [\pi, P] + \sum_{i=1}^{n} (i_{\pi^{\sharp} e^{i}} d\omega) \otimes (e_{i} \wedge P),$$

where (e_1, \ldots, e_n) is a basis of $T_x^{1,0}X$ and (e^1, \ldots, e^n) is the dual basis of $(T_x^{1,0}X)^*$.