The Jacobian map, the Jacobian group and the group of automorphisms of the Grassmann algebra

V. Bavula (University of Sheffield/IHES) *

*(arXiv:math.RA/0703352) V. Bavula, The Jacobian map, the Jacobian group and the group of automorphisms of the Grassmann algebra. (73 pages)

Plan

- 1. Motivation.
- 2. The group G of automorphisms of the Grassmann algebra Λ_n and its subgroups.
- 3. The Jacobian group Σ and the Jacobian map $\mathcal{J}.$
- 4. The Jacobian ascents.

MOTIVATION

 \boldsymbol{K} is a field of characteristic 0

 $P_n := K[x_1, \ldots, x_n]$ is a polynomial algebra

 $\partial_1 := \frac{\partial}{\partial x_1}, \dots, \partial_n := \frac{\partial}{\partial x_n} \in \operatorname{Der}_K(P_n)$

 $\sigma \in \operatorname{End}_{K-alg}(P_n), \ \mathcal{J}(\sigma) := \det(\frac{\partial \sigma(x_i)}{\partial x_j}), \ \text{the}$ Jacobian of σ

 $\sigma \mapsto \mathcal{J}(\sigma)$, the Jacobian map

The chain rule: $\mathcal{J}(\sigma\tau) = \mathcal{J}(\sigma)\sigma(\mathcal{J}(\tau))$

The Jacobian monoid

 $\Sigma := \{ \sigma \in \operatorname{End}_{K-alg}(P_n) \, | \, \mathcal{J}(\sigma) = 1, \sigma(x) = x + \cdots \}$

The Jacobian Conj: $\sigma \in \Sigma \Rightarrow \sigma$ is an automorphism, i.e. the Jacobian monoid Σ is a **group**

If JC is true, $K = \overline{K}$, then $\operatorname{Aut}_{K}(P_{n}) = \operatorname{Aff}_{n}(P_{n}) \times_{ex} \Sigma$, the exact product of groups

Motivation: For the Grassmann algebra Λ_n the Jacobian monoid Σ turns out to be a group, the Jacobian group

The Grassmann algebras and skew derivations

Throughout, K is a reduced commutative ring with $\frac{1}{2} \in K$

The Grassmann alg (the exterior alg) $\Lambda_n = K \lfloor x_1, \ldots, x_n \rfloor$:

$$x_1^2 = \dots = x_n^2 = 0, \ x_i x_j = -x_j x_i, \ i \neq j.$$

 $\mathcal{B}_n = \{ \alpha = (\alpha_1, \dots, \alpha_n) \mid \alpha_i \in \{0, 1\} \} \simeq \{0, 1\}^n$

$$\Lambda_n = \oplus_{\alpha \in \mathcal{B}_n} K x^{\alpha}, \ x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

Z-grading: $\Lambda_n = \bigoplus_{i=0}^n \Lambda_{n,i}, \ \Lambda_{n,i} = \bigoplus_{|\alpha|=i} K x^{\alpha},$ $|\alpha| = \alpha_1 + \dots + \alpha_n$

$$\mathfrak{m} = (x_1, \ldots, x_n), \ \Lambda_n/\mathfrak{m} \simeq K, \ \mathfrak{m}^{n+1} = 0$$

 $\mathbb{Z}_s := \mathbb{Z}/s\mathbb{Z}\text{-grading:} \quad \Lambda_n = \bigoplus_{t \in \mathbb{Z}_s} \Lambda_{n,t}, \quad \Lambda_{n,t} = \bigoplus_{i \equiv t \mod s} \Lambda_{n,i}$

$$\mathbb{Z}_2$$
-grading: $\Lambda_n = \Lambda_n^{ev} \oplus \Lambda_n^{od}$

Exp. fact: skew derivations rather than derivations are more important in studying the Grassmann algebras

A skew derivation $\delta : \Lambda_n \to \Lambda_n$ is a K-lin map $\delta(a_i a_j) = \delta(a_i) a_j + (-1)^i a_i \delta(a_j), a_i \in \Lambda_{n,i}$ $\text{SDer}_K(\Lambda_n) \supseteq \bigoplus_{i=1}^n \Lambda_n^{ev} \partial_i, \partial_i := \frac{\partial}{\partial x_i}$ $\partial_i (x_1 \cdots x_i \cdots x_k) = (-1)^{i-1} x_1 \cdots x_{i-1} x_{i+1} \cdots x_k$

 $\partial_1^2 = \cdots = \partial_n^2 = 0, \ \partial_i \partial_j = -\partial_j \partial_i, \ i \neq j.$ $K \langle \partial_1, \dots, \partial_n \rangle \simeq \Lambda_n$

$$\operatorname{End}_{K}(\Lambda_{n}) = K\langle x_{1}, \dots, x_{n}, \partial_{1}, \dots, \partial_{n} \rangle$$
:

$$\begin{aligned} x_{i}^{2} = 0, \qquad x_{i}x_{j} = -x_{j}x_{i}, \\ \partial_{i}^{2} = 0, \qquad \partial_{i}\partial_{j} = -\partial_{j}\partial_{i}, \\ \partial_{i}x_{j} + x_{j}\partial_{i} = \delta_{ij}, \text{ the Kronecker delta.} \end{aligned}$$

Elem. $a = a(x_1, ..., x_n) = \sum a_{\alpha} x^{\alpha} \in \Lambda_n$ should be seen as a polynomial function in anti-comm variables, $a(0) := a_0 \in K = \Lambda_m/\mathfrak{m}$

The Taylor formula: $a = \sum_{\alpha \in \mathcal{B}_n} \partial^{\alpha}(a)(0) x^{\alpha}$, $\partial^{\alpha} := \partial_n^{\alpha_n} \cdots \partial_1^{\alpha_1}$

The group $Aut_K(\Lambda_n)$ and its subgroups

 $G := \operatorname{Aut}_K(\Lambda_n)$, an algebraic group over K

$$GL_n(K)^{op} := \{\sigma_A | \sigma_A(x_i) = \sum_{j=1}^n a_{ij} x_j, A = (a_{ij}) \in GL_n(K)\}, \sigma_A \sigma_B = \sigma_{BA}$$

Inn $(\Lambda_n) := \{\omega_u : x \mapsto uxu^{-1}\}$, the group of inner automorphisms of Λ_n

$$\Gamma := \{ \gamma_b | \gamma_b(x_i) = x_i + b_i, \ b_i \in \Lambda_n^{od} \cap \mathfrak{m}^3, i = 1, \dots, n \}, \ b = (b_1, \dots, b_n)$$

If $K = \mathbb{C}$ the group $\Gamma GL_n(\mathbb{C})^{op}$ was considered by F. Berezin (1967, Mat Zametki). If K = k is a field of char $\neq 2$ it was proved by D. Djokovic (1978, Canad J Math) that $G = Inn(\Lambda_k(k)) \rtimes$ $G_{\mathbb{Z}_2-gr}$.

$$\Omega := \{ \omega_{1+a} \mid a \in \Lambda_n^{od} \}, \ \omega_{1+a} \omega_{1+b} = \omega_{1+a+b}$$

 $U := \{ \sigma \in G | \sigma(x_i) = x_i + \cdots \text{ for all } i \}$ where the three dots mean bigger terms with respect to the \mathbb{Z} -grading

Theorem 1. Let *K* be a reduced commutative ring with $\frac{1}{2} \in K$. Then

1. $G = U \rtimes \operatorname{GL}_n(K)^{op} = (\Omega \rtimes \Gamma) \rtimes \operatorname{GL}_n(K)^{op}$

2. $G = \Omega \rtimes G_{\mathbb{Z}_2-gr}, \ G_{\mathbb{Z}_2-gr} = \Gamma \rtimes GL_n(K)^{op}$

3. $U = \Omega \rtimes \Gamma$ and Ω is a maximal abelian subgroup of U if n is even $(\Omega \supseteq U^n)$; and $\Omega U^n = \Omega \times U^n$ is a maximal abelian subgroup of U if nis odd $(\Omega \cap U^n = \{e\})$ where $U^n := \{\tau_\lambda \mid \tau_\lambda(x_i) = x_i + \lambda_i x_1 \cdots x_n, \lambda = (\lambda_1, \dots, \lambda_n) \in K^n\} \simeq K^n$, $\tau_\lambda \leftrightarrow \lambda$

4. $\operatorname{Inn}(\Lambda_n) = \Omega$ and $\operatorname{Out}(\Lambda_n) \simeq G_{\mathbb{Z}_2-gr}$

5. $G = G^{ev}G^{od} = G^{od}G^{ev}$ where $G^{od} := \{\sigma \in G \mid \sigma(x_i) \in \Lambda_{n,1} + \Lambda_n^{od} \text{ for all } i\}$ and $G^{ev} := \{\sigma \in G \mid \sigma(x_i) \in \Lambda_{n,1} + \Lambda_n^{ev} \text{ for all } i\}$

6.
$$G^{od} = G_{\mathbb{Z}_2 - gr}$$

7. Let s = 2, ..., n. Then

(a) If s is even then $G_{\mathbb{Z}_s-gr} = \Gamma(s) \rtimes \operatorname{GL}_n(K)^{op}$ where $\Gamma(s) := \{\gamma_b | \text{ all } b_i \in \sum_{j \ge 1} \Lambda_{n,1+js} \}$ and $\gamma_b(x_i) = x_i + b_i.$

(b) If s is odd then $G_{\mathbb{Z}_s-gr} = \Omega(s) \rtimes \operatorname{GL}_n(K)^{op}$ where $\Omega(s) := \{\omega_{1+a} \mid a \in \sum_{1 \leq j \text{ is odd }} \Lambda_{n,js}\}.$

The unique presentation $\sigma = \omega_{1+a} \gamma_b \sigma_A$ for $\sigma \in G$

Each $\sigma \in G = (\Omega \rtimes \Gamma) \rtimes GL_n(K)^{op}$ is a *unique* product

$$\sigma = \omega_{1+a} \gamma_b \sigma_A$$

 $\omega_{1+a} \in \Omega$ $(a \in \Lambda_n^{\prime od})$, $\gamma_b \in \Gamma$, and $\sigma_A \in \operatorname{GL}_n(K)^{op}$ where $\Lambda_n^{\prime od} := \bigoplus_i \Lambda_{n,i}$ and *i* runs through *odd* natural numbers such $1 \leq i \leq n-1$. The next theorem determines explicitly the elements *a*, *b*, and *A* via the vector-column

$$\sigma(x) := (\sigma(x_1), \dots, \sigma(x_n))^t$$

(for, only one needs to know explicitly the inverse γ_b^{-1} for each $\gamma_b \in \Gamma$ which is given by the inversion formula below, Theorem 3.

$$\Lambda_n = \Lambda_n^{ev} \oplus \Lambda_n^{od} \ni u = u^{ev} + u^{od}.$$

Theorem 2 Each element $\sigma \in G$ is a unique product $\sigma = \omega_{1+a}\gamma_b\sigma_A$ where $a \in \Lambda_n^{\prime od}$ and

1.
$$\sigma(x) = Ax + \cdots$$
 for some $A \in GL_n(K)$,

2.
$$b = A^{-1}\sigma(x)^{od} - x$$
, and

$$a = -\frac{1}{2}\gamma_b(\sum_{i=1}^{n-1} x_1 \cdots x_i \partial_i \cdots \partial_1 \partial_{i+1} (a'_{i+1}) + \partial_1 (a'_1))$$

where $a'_i := (A^{-1}\gamma_b^{-1}(\sigma(x)^{ev}))_i$, the *i*'th component of the column-vector $A^{-1}\gamma_b^{-1}(\sigma(x)^{ev})$.

The inversion formula σ^{-1} for $\sigma \in G$

Theorem 3. Let K be a commutative ring, $\sigma \in \Gamma \rtimes \operatorname{GL}_n(K)^{op}$ and $a \in \Lambda_n(K)$. Then

$$\sigma^{-1}(a) = \sum_{\alpha \in \mathcal{B}_n} \lambda_\alpha x^\alpha$$

where

 $\lambda_{\alpha} := (1 - \sigma(x_n)\partial'_n) \cdots (1 - \sigma(x_1)\partial'_1)\partial'^{\alpha}(a) \in K,$ $\partial'^{\alpha} := \partial'^{\alpha_n} \partial'^{\alpha_{n-1}}_{n-1} \cdots \partial'^{\alpha_1}_1,$

$$\partial_{i}' := \frac{1}{\det(\frac{\partial\sigma(x_{\nu})}{\partial x_{\mu}})} \det \begin{pmatrix} \frac{\partial\sigma(x_{1})}{\partial x_{1}} & \cdots & \frac{\partial\sigma(x_{1})}{\partial x_{m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial}{\partial x_{1}} & \cdots & \frac{\partial}{\partial x_{m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial\sigma(x_{n})}{\partial x_{1}} & \cdots & \frac{\partial\sigma(x_{n})}{\partial x_{m}} \end{pmatrix},$$

 $i=1,\ldots,n.$

Any $\tau \in G = (\Omega \rtimes \Gamma) \rtimes \operatorname{GL}_n(K)^{op}$ is a unique product $\tau = \omega_{1+a}\sigma$. Then $\tau^{-1} = \sigma^{-1}\omega_{1-a}$ since $\omega_{1+a}^{-1} = \omega_{1-a}$.

The Jacobian group Σ

$$\Gamma := \{ \gamma_b | \gamma_b(x_i) = b_i = x_i + b'_i, b'_i \in \Lambda_n^{od} \cap \mathfrak{m}^3, \\ i = 1, \dots, n \},$$

where the element $b = (b_1, \ldots, b_n)$ should be seen as a vector-function in anti-commuting variables x_1, \ldots, x_n , i.e. $b = b(x) = b(x_1, \ldots, x_n)$.

$$\gamma_b \gamma_c = \gamma_{c \circ b}$$

where $c \circ b$ is the composition of functions; namely, the *i*'th coordinate $(c \circ b)_i$ of the *n*tuple $c \circ b$ is equal to $c_i(b_1, \ldots, b_n)$ where $c_i =$ $c_i(x_1, \ldots, x_n)$ (we have substituted elements b_i for x_i in the function $c_i = c_i(x_1, \ldots, x_n)$).

Each $\sigma \in G = (\Omega \rtimes \Gamma) \rtimes GL_n(K)^{op}$ is the *unique* product

 $\sigma = \omega_{1+a} \gamma_b \sigma_A, \quad \omega_{1+a} \in \Omega, \ \gamma_b \in \Gamma, \ \sigma_A \in \mathsf{GL}_n(K)^{op}$

Let $\sigma' = \omega_{1+a'} \gamma_{b'} \sigma_{A'}$. Then

 $\sigma \sigma' = \omega_{1+a+\gamma_b \sigma_A(a')} \gamma_{A^{-1}\sigma_A(b') \circ b} \sigma_{A'A}$ where $\sigma_A(b') := (\sigma_A(b'_1), \dots, \sigma_A(b'_n))^t$ and $\sigma_A(b') \circ$ $b := (\sigma_A(b'_1) \circ b, \dots, \sigma_A(b'_n) \circ b)$. This formula shows that the most sophisticated part of the group G is the group Γ .

The even algebra $\Lambda_n^{ev} = \bigoplus_{m \ge 0} \Lambda_{n,2m}$ belongs to the centre of Λ_n , $E_n := K^* + \sum_{m \ge 1} \Lambda_{n,2m}$ is the group of units of Λ_n^{ev} , $E_n = K^* \times E'_n$ where $E'_n := 1 + \sum_{m \ge 1} \Lambda_{n,2m}$, K^* is the group of units of K.

For $\sigma \in \Gamma$, $\frac{\partial \sigma}{\partial x} := (\frac{\partial \sigma(x_i)}{\partial x_j})$ is the **Jacobian matrix** of σ

The chain rule: $\frac{\partial(\sigma\tau)}{\partial x} = \sigma(\frac{\partial\tau}{\partial x}) \cdot \frac{\partial\sigma}{\partial x}$

The Jacobian map

$$\mathcal{J}: \Gamma \to E'_n, \ \sigma \mapsto \mathcal{J}(\sigma) := \det(\frac{\partial \sigma(x_i)}{\partial x_j}).$$

Theorem 4. The Jacobian map $\mathcal{J} : \Gamma \to E'_n$, $\sigma \mapsto \mathcal{J}(\sigma)$, is surjective if n is odd, and it is not surjective if n is even but in this case its image is a closed affine subvariety of E'_n of codimension 1 which is given by a single equation.

$$\mathcal{E}^{od} := \{ \sigma \in \operatorname{End}_{K-alg}(\Lambda_n) | \sigma(x_i) - x_i \in \Lambda_n^{od} \cap \mathfrak{m}^3 \}, \\ \Gamma \subset \mathcal{E}^{od}.$$

$$\mathcal{J}(\sigma\tau) = \mathcal{J}(\sigma)\sigma(\mathcal{J}(\tau)), \ \sigma, \tau \in \mathcal{E}^{od}.$$

Theorem 5. The monoid

$$\Sigma = \{ \sigma \in \mathcal{E}^{od} \, | \, \mathcal{J}(\sigma) = 1 \}$$

is a group, the Jacobian group, $\Sigma \subseteq \Gamma$.

 Σ is trivial iff $n \leq 3$. So, we always assume that $n \geq 4$. Despite the fact that \mathcal{J} is not a group homomorphism Σ should be seen as the 'kernel' of \mathcal{J} .

Theorem 6. The Jacobian group Σ is not a normal subgroup of Γ iff $n \geq 5$.

An algebraic group A over K is called **affine** if its algebra of regular functions is a polynomial algebra $K[t_1, \ldots, t_d]$ with coefficients in Kwhere $d := \dim(A)$ is called the **dimension** of A (i.e. A is an *affine space*). If K is a field then $\dim(A)$ is the usual dimension of the algebraic group A over the field K. Below all algebraic groups and varieties are affine.

• **Theorem 7**. The Jacobian group Σ is an affine group over K of dimension

 $\dim(\Sigma) = \begin{cases} (n-1)2^{n-1} - n^2 + 2 & \text{if } n \text{ is even,} \\ (n-1)2^{n-1} - n^2 + 1 & \text{if } n \text{ is odd.} \end{cases}$

A subgroup of an algebraic group A over K is called a 1-parameter subgroup if it is isomorphic to the algebraic group (K, +). A minimal set of generators for an affine group A over Kis a set of 1-parameter subgroups that generate the group A as an abstract group but each smaller subset does not generate A.

• Coordinate functions on Σ and a minimal set of generators for Σ are given explicitly.

 $\sigma_{i,\lambda x_j x_k x_l} \in \Gamma: \ x_i \mapsto x_i + \lambda x_j x_k x_l, \ x_m \mapsto x_m, \text{ for all } m \neq i, \ \lambda \in K.$

Theorem 8. $\Gamma = \langle \sigma_{i,\lambda x_j x_k x_l} | i = 1, ..., n; \lambda \in K; j < k < l \rangle$. The subgroups $\{\sigma_{i,\lambda x_j x_k x_l}\}_{\lambda \in K} \simeq (K, +)$ form a minimal set of generators for Γ .

The subgroups Σ' and Σ'' of Σ

 $\Phi := \{ \sigma : x_i \mapsto x_i (1 + a_i) | a_i \in \Lambda_n^{ev} \cap \mathfrak{m}^2, i = 1, \dots, n \}.$

To prove the (above) results for Σ we first study in detail two of its subgroups Σ' and Σ'' :

$$\Sigma' := \Sigma \cap \Phi = \{ \sigma : x_i \mapsto x_i (1 + a_i) | \mathcal{J}(\sigma) = 1, \\ a_i \in \Lambda_n^{ev} \cap \mathfrak{m}^2, \ 1 \le i \le n \}$$

and the subgroup Σ'' is generated by the explicit automorphisms of Σ :

 $\xi_{i,b_i} : x_i \mapsto x_i + b_i, \ x_j \mapsto x_j, \ j \neq i,$ where $b_i \in K \lfloor x_1, \dots, \hat{x}_i, \dots, x_n \rfloor_{\geq 3}^{od}$ and $i = 1, \dots, n.$

The importance of these subgroups is demonstrated by the following two facts.

Theorem 9. $\Sigma = \Sigma' \Sigma''$.

Theorem 10. $\Gamma = \Phi \Sigma''$.

Note that each element x_i is a *normal* element of Λ_n : $x_i\Lambda_n = \Lambda_n x_i$. Therefore, the ideal (x_i) of Λ_n generated by the element x_i determines a coordinate 'hyperplane.' The groups Σ' and Σ'' have the following geometric interpretation: the group Σ' preserves the coordinate 'hyperplanes' and elements of the group Σ'' can be seen as 'rotations.'

By the definition, the group Σ' is a closed subgroup of Σ , it is not a normal subgroup of Σ unless $n \leq 5$. It is not obvious from the outset whether the subgroup Σ'' is closed or normal. In fact, it is. **Theorem 11**. Σ'' is the closed normal subgroup of Σ , Σ'' is an affine group of dimension

$$\dim(\Sigma'') = \begin{cases} (n-1)2^{n-1} - n^2 + 2 - (n-3)\binom{n}{2} \\ (n-1)2^{n-1} - n^2 + 1 - (n-3)\binom{n}{2} \end{cases}$$

where *n* is even and odd resp., and the factor group Σ/Σ'' is an abelian affine group of dimension $(n-3)\binom{n}{2}$.

Theorem 12. The group Σ' is an affine group over *K* of dimension

$$\dim(\Sigma') = \begin{cases} (n-2)2^{n-2} - n + 2 & \text{if } n \text{ is even,} \\ (n-2)2^{n-2} - n + 1 & \text{if } n \text{ is odd.} \end{cases}$$

Theorem 13. The intersection $\Sigma' \cap \Sigma''$ is a closed subgroup of Σ , it is an affine group over K of dimension

dim
$$(\Sigma' \cap \Sigma'') = \begin{cases} (n-2)2^{n-2} - n + 2 - (n-3)\binom{n}{2} \\ (n-2)2^{n-2} - n + 1 - (n-3)\binom{n}{2} \end{cases}$$

where n is even and odd resp.

• The coordinates on Σ' and Σ'' are given explicitly.

To find coordinates for the groups Σ , Σ' , and Σ'' explicitly, we introduce avoidance functions and a series of subgroups $\{\Phi'^{2s+1}\}$, $s = 1, 2, \ldots, [\frac{n-1}{2}$ of Φ that are given explicitly. They are too technical to explain.

The Jacobian ascents Γ_{2s}

In order to study the image of the Jacobian map $\mathcal{J}: \Gamma \to E'_n$, $\sigma \mapsto \mathcal{J}(\sigma)$, certain overgroups of the Jacobian group Σ are introduced. They are called the *Jacobian ascents*. The problem of finding the image im(\mathcal{J}) is equal to the problem of finding generators for these groups. Let us give some details.

The Grassmann algebra Λ_n has the m-adic filtration $\{\mathfrak{m}^i\}$. Therefore, the group E'_n has the induced m-adic filtration:

$$E'_{n} = E'_{n,2} \supset \cdots \supset E'_{n,2m} \supset \cdots \supset E'_{n,2[\frac{n}{2}]}$$
$$\supset E'_{n,2[\frac{n}{2}]+2} = \{1\},$$

where $E'_{n,2m} := E'_n \cap (1 + \mathfrak{m}^{2m})$. Correspondingly, the group Γ has the **Jacobian filtration**:

$$\Gamma = \Gamma_2 \supseteq \Gamma_4 \supseteq \cdots \supseteq \Gamma_{2m}$$
$$\supseteq \cdots \supseteq \Gamma_{2[\frac{n}{2}]} \supseteq \Gamma_{2[\frac{n}{2}]+2} = \Sigma_2$$

where

$$\Gamma_{2m} := \mathcal{J}^{-1}(E'_{n,2m}) = \{ \sigma \in \Gamma \mid \mathcal{J}(\sigma) \in E'_{n,2m} \}.$$

It follows from the equality $\mathcal{J}(\sigma\tau) = \mathcal{J}(\sigma)\sigma(\mathcal{J}(\tau))$ that all Γ_{2m} are subgroups of Γ , they are called, the **Jacobian ascents** of the Jacobian group Σ .

The Jacobian ascents are *distinct* groups with a *single* exception when two groups coincide.

This is a subtle fact, it explains (partly) why formulae for various dimensions differ by 1 in odd and even cases.

Theorem 14 Let K be a commutative ring and $n \ge 4$.

(a) If n is an odd number then the Jacobian ascents

 $\Gamma = \Gamma_2 \supset \cdots \supset \Gamma_{2s} \supset \cdots \supset \Gamma_{2[\frac{n}{2}]} \supset \Gamma_{2[\frac{n}{2}]+2} = \Sigma$ are distinct groups.

(b) If n is an even number then the Jacobian ascents

 $\Gamma = \Gamma_2 \supset \cdots \supset \Gamma_{2[\frac{n}{2}]-2} \supset \Gamma_{2[\frac{n}{2}]} = \Gamma_{2[\frac{n}{2}]+2} = \Sigma$ *are distinct groups except the last two groups, i.e.* $\Gamma_{2[\frac{n}{2}]} = \Gamma_{2[\frac{n}{2}]+2}.$

The subgroups $\{\Gamma^{2s+1}\}$ of Γ are given explicitly,

$$\Gamma^{2s+1} := \{ \sigma : x_i \mapsto x_i + a_i \mid a_i \in \Lambda_n^{od} \cap \mathfrak{m}^{2s+1}, \\ 1 \le i \le n \}, \ s \ge 1,$$

they have clear structure. The next result explains that the Jacobian ascents $\{\Gamma_{2s}\}$ have clear structure too, $\Gamma_{2s} = \Gamma^{2s+1}\Sigma$, and so the structure of the Jacobian ascents is completely determined by the structure of the Jacobian group Σ .

Theorem 15. Let *K* be a commutative ring and $n \ge 4$. Then $\Gamma_{2s} = \Gamma^{2s+1}\Sigma$ for each $s = 1, 2, \ldots, [\frac{n-1}{2}]$.