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MOTIVATION
K is a field of characteristic O
P, .= Klz1,...,zn] is a polynomial algebra

Oy 1= 8%, < On = 52— € Derg(Pn)

o € Endg_g,(Pn), J(o) = det(%ﬁji)), the
Jacobian of o

oc— J(o), the Jacobian map
The chain rule: J(o1) = J(0)o(T(7))
The Jacobian monoid

> :={oc € Endg_4y(Pn) | T(0) =1,0(z) = z+- -

The Jacobian Conj: ¢ € > = ¢ is an automor-
phism, i.e. the Jacobian monoid 2 is a group
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If JCistrue, K = K, then Autyg(Pn) = Affn(Pn) Xex
>, the exact product of groups

Motivation: For the Grassmann algebra A, the
Jacobian monoid > turns out to be a group,
the Jacobian group

The Grassmann algebras and skew
derivations

Throughout, K is a reduced commutative ring
with 5 € K

The Grassmann alg (the exterior alg) N\, =
Klxz1,...,zn]:
2 __ _ .2 _ . — g -
r{ = --- =z, = 0, Liglj = —X5Lq, i FE g

By, ={a=(a1,...,an)|a; € {0,1}} ~ {0, 1}"

. (8%
Npn = @pep, Kz, =% = :1:11 cee oM

Z-grading: A, = @?:O/\n,iv /\n,i = @|oz|=iKma'
ol = a1+ -+ + an



m:(azl,...,:z;n), /\n/m:K, m”"‘l =0

Ls = ZL/sZ-grading: Ap = @iz Nnt: Nt =
Di=t mod S/\n,z'

Zo-grading: Ap, = ASV @ A4
Exp. fact: skew derivations rather than deriva-

tions are more important in studying the Grass-
mann algebras

A skew derivation 6 : N\, — N\, IS @ K-lin map
6(aja;) = 0(a;)a; + (—1)'a;6(a;), a; € Ny ;

SDer g (An) D &I AL, 8; = -

02 = - = 02 = 0, 9,0, = —9;0;, i # j.



3322 — O, LiTj — —T5Tq,
82 =0,  8;0; = —98;0;,
Oirj + x;0; = §;;5, the Kronecker delta.

Elem. a = a(z1,...,2n) = > aqx® € Ny, should
be seen as a polynomial function in anti-comm
variables, a(0) :=ag € K = Ajpp/m

The Taylor formula: a = Y ,ep5, 0%(a)(0)x®,
0% = a,,gvn---a‘fl



The group Auti(An) and its subgroups
G = Autg(An), an algebraic group over K

GLn(K)? = {oaloa(z;) = X1 aijzj, A =

(a;j) € GLp(K)}, cp0p = 0opa

Inn(An) = {wy : = — uzu~1}, the group of
inner automorphisms of Ay,

= {y|v(z;) = z; + b, b; € A9 nm3,i
1,...,n},b:(b1,...,bn)

If K = C the group N'GL,(C)° was considered
by F. Berezin (1967, Mat Zametki). If K =k is
a field of char # 2 it was proved by D. Djokovic
(1978, Canad J Math) that G = Inn(Ar(k)) %

GZy—gr-



Q 1= {wiqqla € NG}, Wi4qwW14h = Witatb

U:={oce€G|lo(x;) = x; +--- forall i} where
the three dots mean bigger terms with respect
to the Z-grading

Theorem 1. Let K be a reduced commutative
ring with % € K. Then

1. G=U X GL,(K)P = (2 x ) x GL,(K)OP
2. G=0x GZQ—grr GZQ—g’r' =T x GLp(K)°P

3. U=Q0QxI and 2 is a maximal abelian sub-
group of U ifn is even (2 D U™); and QU™ =
Qx U™ is a maximal abelian subgroup of U if n
isodd (QNU™ = {e}) where U™ := {1y | n\(x;) =
;i + NT1-xn, A= (Aq,..., ) € K"} ~ K",
T)\ < )\

4. Inn(An) = Q2 and Out(A\n) ~ Gz,_g4r
5. G = GG = GG where G = {0 €

G|o(z;) € N1+ A9 forall i} and G := {0 €
G|o(xz;) € N1+ AP forall i}



6. GOd — GZQ—Q?"
7. Let s=2,...,n. Then

(a) If s is even then Gz _,. = I (s) x GLn(K)P
where T'(s) = {vwp|all b; € Xj>1/N\p 1445 and
Yo(xz;) = z; + b;.

(b) If s is odd then Gz__,. = Q(s) x GLp(K)P
where Q(s) == {wi4qla € Xi1<jisodd Nnjs)-



The unique presentation o = w4 ,v,04 fOr
oceqdG

Each c € G = (2 x 1) x GL,(K)P is a unique
product

0 = W1+4+470 A
Witq € R (ac /\;gd), vp €T, and o4 € GLp(K)°P
where A9 = @;A,; and i runs through odd
natural numbers such 1 <:<n—1. The next
theorem determines explicitly the elements a,
b, and A via the vector-column

o(z) = (c(x1),...,0(zn))?

(for, only one needs to know explicitly the in-
verse fyb_l for each v, € ' which is given by the
inversion formula below, Theorem 3.
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An = AL D NE S u=u® + uo,

Theorem 2 Each element o € (G is a unique
product o = wi 4,04 Where a € N9 and

1. o(x) = Az + --- for some A € GL,(K),
2. b= A"1lo(2)% — 2, and

3.
1 n—1 , ,
a = _E%( > xy--xi0 - - 01041 (aiy1)+01(at))
i=1
where a) := (A—lyb_l(a(a:)e”))i, the i'th com-

ponent of the column-vector A—lyb_l(a(x)e”).

11



The inversion formula ¢! for ¢ € G

Theorem 3. Let K be a commutative ring,
ocecl xGL,(K) and a € N\p(K). Then

o 1(a) = > Az

aeEBy
where
A = (1 —o(xn)d),) - (1 —0(x1)07)0"*(a) € K,
8/04 — 8/an8/an 1. 8/041

(M M\

ox1 OTm
1 5 | 5
8{ = det 11 te 3— 3
det(95x)) S
Oo(xn) 80’(31371)

\ 0y T Oam

1=1,...,n.

Any 7 € G = (2 xT) xGLL(K)P is a unique
product 7‘ = Wwi440. Then 1 = o7 1w,

since w1+ = Wi_gq-
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The Jacobian group >

r o= {wlw@) =b =z; + b, bj € A% Nm>,
i=1,...,n},
where the element b = (b1,...,bn) should be

seen as a vector-function in anti-commuting
variables xq,...,zn, i.e. b=0b(x) = b(x1,...,xn).

YoYe — “Veob

where c o b is the composition of functions;
namely, the i'th coordinate (cob); of the n-

tuple co b is equal to ¢;(by,...,bn) Where ¢; =
c;(x1,...,2n) (we have substituted elements b;
for x; in the function ¢; = c¢;(x1,...,2n)).

Eacho e G = (2xIMN) xGLy(K)°P is the unique
product

o = w1_|_a’)/b0‘A, w1_|_a - Q, Yb c I_, O A c GLn(K)Op
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Let o/ = Wi4a VYo 4. Then

oo’ = Wita+ty,04(a’) TA=1o4(b)ob T A’A
vvhere oa(t)) = (o4(bY),...,04(b))) and o4 (V)0
= (o4(b]) 0b,. aA(b;ﬁL) b). This formula
shows that the most sophisticated part of the
group G is the group I'.

The even algebra ALY = ®,,>0\n,2m belongs
to the centre of Ap, En = K"+ > ,>1 N\pom 1S
the group of units of A%, E, = K* x E], where
Ey =14 ,>1 Ny 2m, K*is the group of units
of K.

For o e, aa; ' (8"(“’”&)) is the Jacobian ma-
trix of o

The chain rule: 2(07) — a(%) : g—g

ox
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The Jacobian map

80'(377,)
5 )-

Lj
Theorem 4. The Jacobian map J : I — E{,L,
o— J(o0), is surjective if n is odd, and it is not
surjective if n is even but in this case its image

is a closed affine subvariety of E,fl of codimen-
sion 1 which is given by a single equation.

J: T —=E ., o— J(o):=det(

god - — {a € Endg_a1y(An)|o(z;)—z; € AGNm3},
rc &9

T(o1) = T(0)a(T (7)), o1 &

T heorem 5. The monoid

> ={ocec&J(0) =1}
is a group, the Jacobian group, > C .

2 is trivial iff n < 3. So, we always assume
that n > 4. Despite the fact that J is not a
group homomorphism 2= should be seen as the
‘kernel’ of 7.
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Theorem 6. The Jacobian group > is not a
normal subgroup of I iff n > 5.

An algebraic group A over K is called affine
if its algebra of regular functions is a polyno-
mial algebra KJtq,...,t4] with coefficients in K
where d := dim(A) is called the dimension of
A (i.e. Ais an affine space). If K is a field then
dim(A) is the usual dimension of the algebraic
group A over the field K. Below all algebraic
groups and varieties are affine.

e Theorem 7. The Jacobian group > is an
affine group over K of dimension

(n—1)2"1_n242 jfn is even,

dim(>) =
(%) {(n—l)Q”l—n2—|—1 if n is odd.
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A subgroup of an algebraic group A over K is
called a 1-parameter subgroup if it is isomor-
phic to the algebraic group (K,+). A minimal
set of generators for an affine group A over K
IS a set of 1-parameter subgroups that gener-
ate the group A as an abstract group but each
smaller subset does not generate A.

e Coordinate functions on > and a minimal
set of generators for 2= are given explicitly.

Tizxjapr € [ x; — x; + Axjzpxy, om — Tm, fOr
all m#=1, A € K.

Theorem 8. [ = (%ijmu =1,...,n;\ €

K;j <k<l). The subgroups {az-,mjkal},\eK ~
(K,+4) form a minimal set of generators for I.
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The subgroups X/’ and X" of

P = {0z — z(l+a)|a € ANLNM?, i =
1.,

To prove the (above) results for >~ we first
study in detail two of its subgroups >/ and X':

Y = Ined={o:x;— x;(1+a;)|T(0) =1,
aiE/\%UﬂmQ, 1<i<n}

and the subgroup X" is generated by the ex-
plicit automorphisms of >_:

g’i,bi : IZHIZ_I_bZ) Ly Tyg, J 7'—57’7

where b, eKLxl,...,:}Ei,...,an%d3 andi=1,...,n.

The importance of these subgroups is demon-
strated by the following two facts.

Theorem 9. > =3/,

Theorem 10. [ = oY,
18



Note that each element x; iIs a normal element
of An: x;A\n = Anx;. Therefore, the ideal (z;)
of An, generated by the element x; determines
a coordinate ‘hyperplane.” The groups ¥’ and
> have the following geometric interpreta-
tion: the group X’ preserves the coordinate
‘hyperplanes’ and elements of the group X"
can be seen as ‘rotations.’

By the definition, the group X’ is a closed sub-
group of 2, it is not a normal subgroup of >
unless n < 5. It is not obvious from the outset
whether the subgroup ¥’ is closed or normal.
In fact, it is.
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Theorem 11. X" js the closed normal sub-
group of >, 3" is an affine group of dimension

(n—1)2" 1 _p242_(n-— 3)23;

dim(Z") = {(n —1)2n 1l _pn241 - (n-23)

mn
2
where n is even and odd resp., and the fac-
tor group X /3" is an abelian affine group of

dimension (n — 3) (g)

Theorem 12. The group X' is an affine group
over K of dimension

(n—2)2""2_n+2 ifn is even,

dim(Z) =
() {(n—2)2”_2—n—|—1 if n is odd.

Theorem 13. The intersection X' N¥" is a
closed subgroup of >, it is an affine group over
K of dimension

_ ) (n—2)2""2_n4+2—(n-3)("
amiine - (022 2030

mn
2
where n is even and odd resp.
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e The coordinates on ¥’ and X" are given
explicitly.

To find coordinates for the groups X, ¥/, and
> " explicitly, we introduce avoidance functions

and a series of subgroups {®/25T1} s =1,2, ...,

of & that are given explicitly. They are too
technical to explain.

The Jacobian ascents [ o,

In order to study the image of the Jacobian
map J : I — E!, o — J (o), certain overgroups
of the Jacobian group > are introduced. They
are called the Jacobian ascents. The prob-
lem of finding the image im(J7) is equal to the
problem of finding generators for these groups.
Let us give some details.

21
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The Grassmann algebra A, has the m-adic fil-
tration {m’}. Therefore, the group E! has the
induced m-adic filtration:

E, = E,0D---DEp5, DD Eq’%Q[%]
/ —
D By o2 =11}

where E! , = E/, N (1+ m?™). Correspond-
ingly, the group I' has the Jacobian filtration:

= To20M42---20oy
DD ny n =
2 2o 2 o2 = 2

where

[op i= j_l(Ejv,,Qm) ={ocel|J(o) € E’fz,Qm}

It follows from the equality J(o7) = J(0)o (T (7))
that all '»,,, are subgroups of [, they are called,

the Jacobian ascents of the Jacobian group
> .

The Jacobian ascents are distinct groups with
a single exception when two groups coincide.
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This is a subtle fact, it explains (partly) why
formulae for various dimensions differ by 1 in
odd and even cases.

Theorem 14 Let K be a commutative ring
and n > 4.

(a) If n is an odd number then the Jacobian
ascents

I‘:I‘QD---DFQSD---DI’Q[%]DI’Q[%]_I_2=Z

are distinct groups.

(b) If n is an even number then the Jacobian
ascents

I_ P |_2 :) ...... D I_Q[%]—Q D I_Q[%] p— I—Q[%]—l—z pr— Z
are distinct groups except the last two groups,
i.e. FQ[%] = FQ[%]_I_Q
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The subgroups {25711 of I are given explic-
itly,

s+l .— {o:x;— x;+a;|a; € /\%dﬂmQS"'l,
1 <1< n}, s>1,

they have clear structure. The next result ex-
plains that the Jacobian ascents {Io;} have
clear structure too, My, = M2s+13 and so the
structure of the Jacobian ascents is completely
determined by the structure of the Jacobian
group 2.

Theorem 15. Let K be a commutative ring
and n > 4. Then Ny, = 2511y for each s =
1,2,..., %51
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