The Jacobian map, the Jacobian group and the group of automorphisms of the Grassmann algebra

V. Bavula (University of Sheffield/IHES) *
*(arXiv:math.RA/0703352) V. Bavula, The Jacobian map, the Jacobian group and the group of automorphisms of the Grassmann algebra. (73 pages)

Plan

1. Motivation.
2. The group G of automorphisms of the Grassmann algebra Λ_{n} and its subgroups.
3. The Jacobian group Σ and the Jacobian $\operatorname{map} \mathcal{J}$.
4. The Jacobian ascents.

MOTIVATION

K is a field of characteristic 0
$P_{n}:=K\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial algebra
$\partial_{1}:=\frac{\partial}{\partial x_{1}}, \ldots, \partial_{n}:=\frac{\partial}{\partial x_{n}} \in \operatorname{Der}_{K}\left(P_{n}\right)$
$\sigma \in \operatorname{End}_{K-a l g}\left(P_{n}\right), \mathcal{J}(\sigma):=\operatorname{det}\left(\frac{\partial \sigma\left(x_{i}\right)}{\partial x_{j}}\right)$, the Jacobian of σ
$\sigma \mapsto \mathcal{J}(\sigma)$, the Jacobian map
The chain rule: $\mathcal{J}(\sigma \tau)=\mathcal{J}(\sigma) \sigma(\mathcal{J}(\tau))$

The Jacobian monoid

$\Sigma:=\left\{\sigma \in \operatorname{End}_{K-a l g}\left(P_{n}\right) \mid \mathcal{J}(\sigma)=1, \sigma(x)=x+\cdots\right\}$

The Jacobian Conj: $\sigma \in \Sigma \Rightarrow \sigma$ is an automorphism, i.e. the Jacobian monoid Σ is a group

If JC is true, $K=\bar{K}$, then $\operatorname{Aut}_{K}\left(P_{n}\right)=\operatorname{Aff}_{n}\left(P_{n}\right) \times e x$ Σ, the exact product of groups

Motivation: For the Grassmann algebra Λ_{n} the Jacobian monoid Σ turns out to be a group, the Jacobian group

The Grassmann algebras and skew derivations

Throughout, K is a reduced commutative ring with $\frac{1}{2} \in K$

The Grassmann alg (the exterior alg) $\wedge_{n}=$ $K\left\lfloor x_{1}, \ldots, x_{n}\right\rfloor$:

$$
x_{1}^{2}=\cdots=x_{n}^{2}=0, \quad x_{i} x_{j}=-x_{j} x_{i}, \quad i \neq j
$$

$$
\mathcal{B}_{n}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in\{0,1\}\right\} \simeq\{0,1\}^{n}
$$

$\wedge_{n}=\oplus_{\alpha \in \mathcal{B}_{n}} K x^{\alpha}, x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$
\mathbb{Z}-grading: $\wedge_{n}=\oplus_{i=0}^{n} \wedge_{n, i}, \wedge_{n, i}=\oplus_{|\alpha|={ }_{i}} K x^{\alpha}$, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$

$$
\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right), \wedge_{n} / \mathfrak{m} \simeq K, \mathfrak{m}^{n+1}=0
$$

$\mathbb{Z}_{s}:=\mathbb{Z} / s \mathbb{Z}$-grading: $\quad \wedge_{n}=\oplus_{t \in \mathbb{Z}_{s}} \wedge_{n, t}, \quad \wedge_{n, t}=$ $\oplus_{i \equiv t \bmod } \wedge_{n, i}$
\mathbb{Z}_{2}-grading: $\Lambda_{n}=\Lambda_{n}^{e v} \oplus \Lambda_{n}^{o d}$

Exp. fact: skew derivations rather than derivations are more important in studying the Grassmann algebras

A skew derivation $\delta: \Lambda_{n} \rightarrow \Lambda_{n}$ is a K-lin map $\delta\left(a_{i} a_{j}\right)=\delta\left(a_{i}\right) a_{j}+(-1)^{i} a_{i} \delta\left(a_{j}\right), a_{i} \in \wedge_{n, i}$
$\operatorname{SDer}_{K}\left(\Lambda_{n}\right) \supseteq \oplus_{i=1}^{n} \wedge_{n}^{e v} \partial_{i}, \partial_{i}:=\frac{\partial}{\partial x_{i}}$
$\partial_{i}\left(x_{1} \cdots x_{i} \cdots x_{k}\right)=(-1)^{i-1} x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{k}$
$\partial_{1}^{2}=\cdots=\partial_{n}^{2}=0, \partial_{i} \partial_{j}=-\partial_{j} \partial_{i}, i \neq j$. $K\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle \simeq \wedge_{n}$
$\operatorname{End}_{K}\left(\wedge_{n}\right)=K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}\right\rangle:$

$$
\begin{array}{ll}
x_{i}^{2}=0, & x_{i} x_{j}=-x_{j} x_{i} \\
\partial_{i}^{2}=0, & \partial_{i} \partial_{j}=-\partial_{j} \partial_{i}
\end{array}
$$

$\partial_{i} x_{j}+x_{j} \partial_{i}=\delta_{i j}, \quad$ the Kronecker delta.

Elem. $a=a\left(x_{1}, \ldots, x_{n}\right)=\sum a_{\alpha} x^{\alpha} \in \Lambda_{n}$ should be seen as a polynomial function in anti-comm variables, $a(0):=a_{0} \in K=\wedge_{m} / \mathfrak{m}$

The Taylor formula: $a=\sum_{\alpha \in \mathcal{B}_{n}} \partial^{\alpha}(a)(0) x^{\alpha}$, $\partial^{\alpha}:=\partial_{n}^{\alpha_{n}} \cdots \partial_{1}^{\alpha_{1}}$

The group $\operatorname{Aut}_{K}\left(\wedge_{n}\right)$ and its subgroups

$G:=\operatorname{Aut}_{K}\left(\wedge_{n}\right)$, an algebraic group over K
$\mathrm{GL}_{n}(K)^{o p}:=\left\{\sigma_{A} \mid \sigma_{A}\left(x_{i}\right)=\sum_{j=1}^{n} a_{i j} x_{j}, \quad A=\right.$ $\left.\left(a_{i j}\right) \in \mathrm{GL}_{n}(K)\right\}, \sigma_{A} \sigma_{B}=\sigma_{B A}$
$\operatorname{Inn}\left(\wedge_{n}\right):=\left\{\omega_{u}: x \mapsto u x u^{-1}\right\}$, the group of inner automorphisms of Λ_{n}
$\Gamma:=\left\{\gamma_{b} \mid \gamma_{b}\left(x_{i}\right)=x_{i}+b_{i}, \quad b_{i} \in \wedge_{n}^{o d} \cap \mathfrak{m}^{3}, i=\right.$ $1, \ldots, n\}, b=\left(b_{1}, \ldots, b_{n}\right)$

If $K=\mathbb{C}$ the group $\Gamma \mathrm{GL}_{n}(\mathbb{C})^{o p}$ was considered by F. Berezin (1967, Mat Zametki). If $K=k$ is a field of char $\neq 2$ it was proved by D. Djokovic (1978, Canad J Math) that $G=\operatorname{Inn}\left(\wedge_{k}(k)\right) \rtimes$ $G_{\mathbb{Z}_{2}-g r}$.
$\Omega:=\left\{\omega_{1+a} \mid a \in \wedge_{n}^{o d}\right\}, \omega_{1+a} \omega_{1+b}=\omega_{1+a+b}$
$U:=\left\{\sigma \in G \mid \sigma\left(x_{i}\right)=x_{i}+\cdots\right.$ for all $\left.i\right\}$ where the three dots mean bigger terms with respect to the \mathbb{Z}-grading

Theorem 1. Let K be a reduced commutative ring with $\frac{1}{2} \in K$. Then

1. $G=U \rtimes \mathrm{GL}_{n}(K)^{o p}=(\Omega \rtimes \Gamma) \rtimes \mathrm{GL}_{n}(K)^{o p}$
2. $G=\Omega \rtimes G_{\mathbb{Z}_{2}-g r}, G_{\mathbb{Z}_{2}-g r}=\Gamma \rtimes G L_{n}(K)^{o p}$
3. $U=\Omega \rtimes \Gamma$ and Ω is a maximal abelian subgroup of U if n is even $\left(\Omega \supseteq U^{n}\right)$; and $\Omega U^{n}=$ $\Omega \times U^{n}$ is a maximal abelian subgroup of U if n is odd $\left(\Omega \cap U^{n}=\{e\}\right)$ where $U^{n}:=\left\{\tau_{\lambda} \mid \tau_{\lambda}\left(x_{i}\right)=\right.$ $\left.x_{i}+\lambda_{i} x_{1} \cdots x_{n}, \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in K^{n}\right\} \simeq K^{n}$, $\tau_{\lambda} \leftrightarrow \lambda$
4. $\operatorname{Inn}\left(\wedge_{n}\right)=\Omega$ and $\operatorname{Out}\left(\wedge_{n}\right) \simeq G_{\mathbb{Z}_{2}-g r}$
5. $G=G^{e v} G^{o d}=G^{o d} G^{e v}$ where $G^{o d}:=\{\sigma \in$ $G \mid \sigma\left(x_{i}\right) \in \Lambda_{n, 1}+\Lambda_{n}^{o d}$ for all $\left.i\right\}$ and $G^{e v}:=\{\sigma \in$ $G \mid \sigma\left(x_{i}\right) \in \Lambda_{n, 1}+\Lambda_{n}^{e v}$ for all $\left.i\right\}$
6. $G^{o d}=G_{\mathbb{Z}_{2}-g r}$
7. Let $s=2, \ldots, n$. Then
(a) If s is even then $G_{\mathbb{Z}_{s}-g r}=\Gamma(s) \rtimes G \mathrm{~L}_{n}(K)^{o p}$ where $\Gamma(s):=\left\{\gamma_{b} \mid\right.$ all $\left.b_{i} \in \sum_{j \geq 1} \wedge_{n, 1+j s}\right\}$ and $\gamma_{b}\left(x_{i}\right)=x_{i}+b_{i}$.
(b) If s is odd then $G_{\mathbb{Z}_{s}-g r}=\Omega(s) \rtimes G L_{n}(K)^{o p}$ where $\Omega(s):=\left\{\omega_{1+a} \mid a \in \sum_{1 \leq j \text { is odd }} \wedge_{n, j s}\right\}$.

The unique presentation $\sigma=\omega_{1+a} \gamma_{b} \sigma_{A}$ for $\sigma \in G$

Each $\sigma \in G=(\Omega \rtimes \Gamma) \rtimes \mathrm{GL}_{n}(K)^{o p}$ is a unique product

$$
\sigma=\omega_{1+a} \gamma_{b} \sigma_{A}
$$

$\omega_{1+a} \in \Omega\left(a \in \Lambda_{n}^{\prime o d}\right), \gamma_{b} \in \Gamma$, and $\sigma_{A} \in \mathrm{GL}_{n}(K)^{o p}$ where $\Lambda_{n}^{\prime o d}:=\oplus_{i} \Lambda_{n, i}$ and i runs through odd natural numbers such $1 \leq i \leq n-1$. The next theorem determines explicitly the elements a, b, and A via the vector-column

$$
\sigma(x):=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)^{t}
$$

(for, only one needs to know explicitly the inverse γ_{b}^{-1} for each $\gamma_{b} \in \Gamma$ which is given by the inversion formula below, Theorem 3.
$\wedge_{n}=\Lambda_{n}^{e v} \oplus \wedge_{n}^{o d} \ni u=u^{e v}+u^{o d}$.

Theorem 2 Each element $\sigma \in G$ is a unique product $\sigma=\omega_{1+a} \gamma_{b} \sigma_{A}$ where $a \in \Lambda_{n}^{\prime o d}$ and

1. $\sigma(x)=A x+\cdots$ for some $A \in \mathrm{GL}_{n}(K)$,
2. $b=A^{-1} \sigma(x)^{o d}-x$, and
3.

$a=-\frac{1}{2} \gamma_{b}\left(\sum_{i=1}^{n-1} x_{1} \cdots x_{i} \partial_{i} \cdots \partial_{1} \partial_{i+1}\left(a_{i+1}^{\prime}\right)+\partial_{1}\left(a_{1}^{\prime}\right)\right)$
where $a_{i}^{\prime}:=\left(A^{-1} \gamma_{b}^{-1}\left(\sigma(x)^{e v}\right)\right)_{i}$, the i^{\prime} th component of the column-vector $A^{-1} \gamma_{b}^{-1}\left(\sigma(x)^{e v}\right)$.

The inversion formula σ^{-1} for $\sigma \in G$

Theorem 3. Let K be a commutative ring, $\sigma \in \Gamma \rtimes \mathrm{GL}_{n}(K)^{o p}$ and $a \in \Lambda_{n}(K)$. Then

$$
\sigma^{-1}(a)=\sum_{\alpha \in \mathcal{B}_{n}} \lambda_{\alpha} x^{\alpha}
$$

where
$\lambda_{\alpha}:=\left(1-\sigma\left(x_{n}\right) \partial_{n}^{\prime}\right) \cdots\left(1-\sigma\left(x_{1}\right) \partial_{1}^{\prime}\right) \partial^{\prime \alpha}(a) \in K$,
$\partial^{\prime \alpha}:=\partial_{n}^{\prime \alpha_{n}} \partial_{n-1}^{\alpha_{n-1}} \cdots \partial_{1}^{\alpha_{1}}$,

$$
\partial_{i}^{\prime}:=\frac{1}{\operatorname{det}\left(\frac{\partial \sigma\left(x_{\nu}\right)}{\partial x_{\mu}}\right)} \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \sigma\left(x_{1}\right)}{\partial x_{1}} & \cdots & \frac{\partial \sigma\left(x_{1}\right)}{\partial x_{m}} \\
\vdots & \vdots & \vdots \\
\frac{\partial}{\partial x_{1}} & \cdots & \frac{\partial}{\partial x_{m}} \\
\vdots & \vdots & \vdots \\
\frac{\partial \sigma\left(x_{n}\right)}{\partial x_{1}} & \cdots & \frac{\partial \sigma\left(x_{n}\right)}{\partial x_{m}}
\end{array}\right),
$$

$i=1, \ldots, n$.

Any $\tau \in G=(\Omega \rtimes \Gamma) \rtimes \mathrm{GL}_{n}(K)^{o p}$ is a unique product $\tau=\omega_{1+a} \sigma$. Then $\tau^{-1}=\sigma^{-1} \omega_{1-a}$ since $\omega_{1+a}^{-1}=\omega_{1-a}$.

The Jacobian group Σ

$$
\begin{aligned}
\Gamma:= & \left\{\gamma_{b} \mid \gamma_{b}\left(x_{i}\right)=b_{i}=x_{i}+b_{i}^{\prime}, b_{i}^{\prime} \in \wedge_{n}^{o d} \cap \mathfrak{m}^{3}\right. \\
& i=1, \ldots, n\}
\end{aligned}
$$

where the element $b=\left(b_{1}, \ldots, b_{n}\right)$ should be seen as a vector-function in anti-commuting variables x_{1}, \ldots, x_{n}, i.e. $b=b(x)=b\left(x_{1}, \ldots, x_{n}\right)$.

$$
\gamma_{b} \gamma_{c}=\gamma_{c \circ b}
$$

where $c \circ b$ is the composition of functions; namely, the i 'th coordinate $(c \circ b)_{i}$ of the n tuple $c \circ b$ is equal to $c_{i}\left(b_{1}, \ldots, b_{n}\right)$ where $c_{i}=$ $c_{i}\left(x_{1}, \ldots, x_{n}\right)$ (we have substituted elements b_{i} for x_{i} in the function $\left.c_{i}=c_{i}\left(x_{1}, \ldots, x_{n}\right)\right)$.

Each $\sigma \in G=(\Omega \rtimes \Gamma) \rtimes \mathrm{GL}_{n}(K)^{o p}$ is the unique product

$$
\sigma=\omega_{1+a} \gamma_{b} \sigma_{A}, \quad \omega_{1+a} \in \Omega, \gamma_{b} \in \Gamma, \sigma_{A} \in \mathrm{GL}_{n}(K)^{o p}
$$

Let $\sigma^{\prime}=\omega_{1+a^{\prime}} \gamma_{b^{\prime}} \sigma_{A^{\prime}}$. Then

$$
\sigma \sigma^{\prime}=\omega_{1+a+\gamma_{b} \sigma_{A}\left(a^{\prime}\right)} \gamma_{A^{-1} \sigma_{A}\left(b^{\prime}\right) \circ b} \sigma_{A^{\prime} A}
$$

where $\sigma_{A}\left(b^{\prime}\right):=\left(\sigma_{A}\left(b_{1}^{\prime}\right), \ldots, \sigma_{A}\left(b_{n}^{\prime}\right)\right)^{t}$ and $\sigma_{A}\left(b^{\prime}\right) \circ$ $b:=\left(\sigma_{A}\left(b_{1}^{\prime}\right) \circ b, \ldots, \sigma_{A}\left(b_{n}^{\prime}\right) \circ b\right)$. This formula shows that the most sophisticated part of the group G is the group Γ.

The even algebra $\Lambda_{n}^{e v}=\oplus_{m \geq 0} \wedge_{n, 2 m}$ belongs to the centre of $\Lambda_{n}, E_{n}:=K^{*}+\sum_{m \geq 1} \Lambda_{n, 2 m}$ is the group of units of $\Lambda_{n}^{e v}, E_{n}=K^{*} \times E_{n}^{\prime}$ where $E_{n}^{\prime}:=1+\sum_{m \geq 1} \wedge_{n, 2 m}, K^{*}$ is the group of units of K.

For $\sigma \in \Gamma, \frac{\partial \sigma}{\partial x}:=\left(\frac{\partial \sigma\left(x_{i}\right)}{\partial x_{j}}\right)$ is the Jacobian matrix of σ

The chain rule: $\frac{\partial(\sigma \tau)}{\partial x}=\sigma\left(\frac{\partial \tau}{\partial x}\right) \cdot \frac{\partial \sigma}{\partial x}$

The Jacobian map

$$
\mathcal{J}: \Gamma \rightarrow E_{n}^{\prime}, \quad \sigma \mapsto \mathcal{J}(\sigma):=\operatorname{det}\left(\frac{\partial \sigma\left(x_{i}\right)}{\partial x_{j}}\right)
$$

Theorem 4. The Jacobian map $\mathcal{J}: \Gamma \rightarrow E_{n}^{\prime}$, $\sigma \mapsto \mathcal{J}(\sigma)$, is surjective if n is odd, and it is not surjective if n is even but in this case its image is a closed affine subvariety of E_{n}^{\prime} of codimension 1 which is given by a single equation.
$\mathcal{E}^{o d}:=\left\{\sigma \in \operatorname{End}_{K-a l g}\left(\Lambda_{n}\right) \mid \sigma\left(x_{i}\right)-x_{i} \in \wedge_{n}^{o d} \cap \mathfrak{m}^{3}\right\}$, $\Gamma \subset \mathcal{E}^{o d}$.

$$
\mathcal{J}(\sigma \tau)=\mathcal{J}(\sigma) \sigma(\mathcal{J}(\tau)), \quad \sigma, \tau \in \mathcal{E}^{o d}
$$

Theorem 5. The monoid

$$
\Sigma=\left\{\sigma \in \mathcal{E}^{o d} \mid \mathcal{J}(\sigma)=1\right\}
$$

is a group, the Jacobian group, $\Sigma \subseteq \Gamma$.
Σ is trivial iff $n \leq 3$. So, we always assume that $n \geq 4$. Despite the fact that \mathcal{J} is not a group homomorphism Σ should be seen as the 'kernel' of \mathcal{J}.

Theorem 6. The Jacobian group Σ is not a normal subgroup of Γ iff $n \geq 5$.

An algebraic group A over K is called affine if its algebra of regular functions is a polynomial algebra $K\left[t_{1}, \ldots, t_{d}\right]$ with coefficients in K where $d:=\operatorname{dim}(A)$ is called the dimension of A (i.e. A is an affine space). If K is a field then $\operatorname{dim}(A)$ is the usual dimension of the algebraic group A over the field K. Below all algebraic groups and varieties are affine.

- Theorem 7. The Jacobian group Σ is an affine group over K of dimension

$$
\operatorname{dim}(\Sigma)= \begin{cases}(n-1) 2^{n-1}-n^{2}+2 & \text { if } n \text { is even } \\ (n-1) 2^{n-1}-n^{2}+1 & \text { if } n \text { is odd }\end{cases}
$$

A subgroup of an algebraic group A over K is called a 1-parameter subgroup if it is isomorphic to the algebraic group ($K,+$). A minimal set of generators for an affine group A over K is a set of 1-parameter subgroups that generate the group A as an abstract group but each smaller subset does not generate A.

- Coordinate functions on Σ and a minimal set of generators for Σ are given explicitly.
$\sigma_{i, \lambda x_{j} x_{k} x_{l}} \in \Gamma: x_{i} \mapsto x_{i}+\lambda x_{j} x_{k} x_{l}, x_{m} \mapsto x_{m}$, for all $m \neq i, \lambda \in K$.

Theorem 8. $\Gamma=\left\langle\sigma_{i, \lambda x_{j} x_{k} x_{l}}\right| i=1, \ldots, n ; \lambda \in$ $K ; j<k<l\rangle$. The subgroups $\left\{\sigma_{i, \lambda x_{j} x_{k} x_{l}}\right\}_{\lambda \in K} \simeq$ $(K,+)$ form a minimal set of generators for Γ.

The subgroups Σ^{\prime} and $\Sigma^{\prime \prime}$ of Σ

$\Phi:=\left\{\sigma: x_{i} \mapsto x_{i}\left(1+a_{i}\right) \mid a_{i} \in \wedge_{n}^{e v} \cap \mathfrak{m}^{2}, i=\right.$ $1, \ldots, n\}$.

To prove the (above) results for Σ we first study in detail two of its subgroups Σ^{\prime} and $\Sigma^{\prime \prime}$:

$$
\begin{aligned}
\Sigma^{\prime}:= & \Sigma \cap \Phi=\left\{\sigma: x_{i} \mapsto x_{i}\left(1+a_{i}\right) \mid \mathcal{J}(\sigma)=1\right. \\
& \left.a_{i} \in \wedge_{n}^{e v} \cap \mathfrak{m}^{2}, 1 \leq i \leq n\right\}
\end{aligned}
$$

and the subgroup $\Sigma^{\prime \prime}$ is generated by the explicit automorphisms of Σ :

$$
\xi_{i, b_{i}}: x_{i} \mapsto x_{i}+b_{i}, \quad x_{j} \mapsto x_{j}, \quad j \neq i
$$

where $b_{i} \in K\left\lfloor x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right\rfloor_{\geq 3}^{o d}$ and $i=1, \ldots, n$.
The importance of these subgroups is demonstrated by the following two facts.

Theorem 9. $\Sigma=\Sigma^{\prime} \Sigma^{\prime \prime}$.

Theorem 10. $\Gamma=\Phi \Sigma^{\prime \prime}$.

Note that each element x_{i} is a normal element of $\Lambda_{n}: x_{i} \Lambda_{n}=\Lambda_{n} x_{i}$. Therefore, the ideal $\left(x_{i}\right)$ of Λ_{n} generated by the element x_{i} determines a coordinate 'hyperplane.' The groups Σ ' and $\Sigma^{\prime \prime}$ have the following geometric interpretation: the group Σ^{\prime} preserves the coordinate 'hyperplanes' and elements of the group $\Sigma^{\prime \prime}$ can be seen as 'rotations.'

By the definition, the group Σ^{\prime} is a closed subgroup of Σ, it is not a normal subgroup of Σ unless $n \leq 5$. It is not obvious from the outset whether the subgroup $\Sigma^{\prime \prime}$ is closed or normal. In fact, it is.

Theorem 11. $\Sigma^{\prime \prime}$ is the closed normal subgroup of $\Sigma, \Sigma^{\prime \prime}$ is an affine group of dimension $\operatorname{dim}\left(\Sigma^{\prime \prime}\right)=\left\{\begin{array}{l}(n-1) 2^{n-1}-n^{2}+2-(n-3)\binom{n}{2} \\ (n-1) 2^{n-1}-n^{2}+1-(n-3)\binom{n}{2}\end{array}\right.$
where n is even and odd resp., and the factor group $\Sigma / \Sigma^{\prime \prime}$ is an abelian affine group of dimension $(n-3)\binom{n}{2}$.

Theorem 12. The group Σ^{\prime} is an affine group over K of dimension
$\operatorname{dim}\left(\Sigma^{\prime}\right)= \begin{cases}(n-2) 2^{n-2}-n+2 & \text { if } n \text { is even, } \\ (n-2) 2^{n-2}-n+1 & \text { if } n \text { is odd. }\end{cases}$
Theorem 13. The intersection $\Sigma^{\prime} \cap \Sigma^{\prime \prime}$ is a closed subgroup of Σ, it is an affine group over K of dimension
$\operatorname{dim}\left(\Sigma^{\prime} \cap \Sigma^{\prime \prime}\right)=\left\{\begin{array}{l}(n-2) 2^{n-2}-n+2-(n-3)\binom{n}{2} \\ (n-2) 2^{n-2}-n+1-(n-3)\binom{n}{2}\end{array}\right.$
where n is even and odd resp.

- The coordinates on Σ^{\prime} and $\Sigma^{\prime \prime}$ are given explicitly.

To find coordinates for the groups Σ, Σ^{\prime}, and $\Sigma^{\prime \prime}$ explicitly, we introduce avoidance functions and a series of subgroups $\left\{\Phi^{\prime 2 s+1}\right\}, s=1,2, \ldots,\left[\frac{n-1}{2}\right.$ of Φ that are given explicitly. They are too technical to explain.

The Jacobian ascents $\Gamma_{2 s}$

In order to study the image of the Jacobian map $\mathcal{J}: \Gamma \rightarrow E_{n}^{\prime}, \sigma \mapsto \mathcal{J}(\sigma)$, certain overgroups of the Jacobian group Σ are introduced. They are called the Jacobian ascents. The problem of finding the image $\operatorname{im}(\mathcal{J})$ is equal to the problem of finding generators for these groups. Let us give some details.

The Grassmann algebra Λ_{n} has the \mathfrak{m}-adic filtration $\left\{\mathfrak{m}^{i}\right\}$. Therefore, the group E_{n}^{\prime} has the induced \mathfrak{m}-adic filtration:

$$
\begin{aligned}
E_{n}^{\prime}= & E_{n, 2}^{\prime} \supset \cdots \supset E_{n, 2 m}^{\prime} \supset \cdots \supset E_{n, 2\left[\frac{n}{2}\right]}^{\prime} \\
& \supset E_{n, 2\left[\frac{n}{2}\right]+2}^{\prime}=\{1\}
\end{aligned}
$$

where $E_{n, 2 m}^{\prime}:=E_{n}^{\prime} \cap\left(1+\mathfrak{m}^{2 m}\right)$. Correspondingly, the group Γ has the Jacobian filtration:

$$
\begin{aligned}
\Gamma= & \Gamma_{2} \supseteq \Gamma_{4} \supseteq \cdots \supseteq \Gamma_{2 m} \\
& \supseteq \cdots \supseteq \Gamma_{2\left[\frac{n}{2}\right]} \supseteq \Gamma_{2\left[\frac{n}{2}\right]+2}=\Sigma
\end{aligned}
$$

where

$$
\Gamma_{2 m}:=\mathcal{J}^{-1}\left(E_{n, 2 m}^{\prime}\right)=\left\{\sigma \in \Gamma \mid \mathcal{J}(\sigma) \in E_{n, 2 m}^{\prime}\right\}
$$

It follows from the equality $\mathcal{J}(\sigma \tau)=\mathcal{J}(\sigma) \sigma(\mathcal{J}(\tau))$ that all $\Gamma_{2 m}$ are subgroups of Γ, they are called, the Jacobian ascents of the Jacobian group Σ.

The Jacobian ascents are distinct groups with a single exception when two groups coincide.

This is a subtle fact, it explains (partly) why formulae for various dimensions differ by 1 in odd and even cases.

Theorem 14 Let K be a commutative ring and $n \geq 4$.
(a) If n is an odd number then the Jacobian ascents
$\Gamma=\Gamma_{2} \supset \cdots \supset \Gamma_{2 s} \supset \cdots \supset \Gamma_{2\left[\frac{n}{2}\right]} \supset \Gamma_{2\left[\frac{n}{2}\right]+2}=\Sigma$ are distinct groups.
(b) If n is an even number then the Jacobian ascents
$\left\ulcorner=\Gamma_{2} \supset \cdots \cdots \supset \Gamma_{2\left[\frac{n}{2}\right]-2} \supset \Gamma_{2\left[\frac{n}{2}\right]}=\Gamma_{2\left[\frac{n}{2}\right]+2}=\Sigma\right.$ are distinct groups except the last two groups, i.e. $\Gamma_{2\left[\frac{n}{2}\right]}=\Gamma_{2\left[\frac{n}{2}\right]+2}$.

The subgroups $\left\{\Gamma^{2 s+1}\right\}$ of Γ are given explicitly,

$$
\begin{aligned}
\Gamma^{2 s+1}:= & \left\{\sigma: x_{i} \mapsto x_{i}+a_{i} \mid a_{i} \in \wedge_{n}^{o d} \cap \mathfrak{m}^{2 s+1}\right. \\
& 1 \leq i \leq n\}, \quad s \geq 1
\end{aligned}
$$

they have clear structure. The next result explains that the Jacobian ascents $\left\{\Gamma_{2 s}\right\}$ have clear structure too, $\Gamma_{2 s}=\Gamma^{2 s+1} \Sigma$, and so the structure of the Jacobian ascents is completely determined by the structure of the Jacobian group Σ.

Theorem 15. Let K be a commutative ring and $n \geq 4$. Then $\Gamma_{2 s}=\Gamma^{2 s+1} \Sigma$ for each $s=$ $1,2, \ldots,\left[\frac{n-1}{2}\right]$.

